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A B S T R A C T
Purpose- Using mathematical models for cancer treatment has had excellent re-
sults in recent years. Modeling of the tumor-immune interactions is possible by 
several mathematical models. Stochastic models such as Stochastic Petri Net 
(SPN) consider the random effects and uncertainty in the biological environments. 
Therefore, they are good choices for the simulation of biological systems, specially 
the complex dynamical network of tumor-immune interactions. 

Methods- In this study, we have modeled the interactions of the B16-F10 
tumor cells, Cytotoxic T Cells (CTL) and MDSC by SPN. By a systematic 
search on immunology resources, we identified the behaviors, characteristics, 
and effective interactions between these cells. We used SPN to construct the 
dynamics of these cells, therefore a dynamical network of tumor-immune 
interactions (DNTII) has been made. By considering these cells as places and 
all interactions as transitions of SPN, we can simulate this complex biological 
network. The model has some control parameters that their regulation causes 
DNTII to mimic different behaviors of tumor-immune system, such as tumor 
escape and degradation.

Results- The model can properly simulate complete dynamical network of tu-
mor-immune interactions compared to the biological reality. This model is capable 
to represent different behavior of tumor-immune system such as tumor escape from 
immune response, overcoming the immune system on the tumor cells. 

Conclusion- By using this model, we can test different immunology hypothesis in 
a simulation environment without spending any time and money.

1. Introduction

The main challenge in the biology is 
exploring the basic rules governing 
the structure and function of biological 

networks [1]. One of the most complex networks is 
a single cell [2]. The interactions between different 
cells follow complicated rules that mathematical 
modeling can help to identify. This complexity 
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increases in cancer environment. Therefore, the 
nonlinear Dynamical Network of Tumor-Immune 
Interactions may exhibit different behaviors [3]. 
There are some key components in DNTII that 
control the dynamic of network with a dominant 
effect. According to biological literatures, tumor 
cells, Cytotoxic T cells (CTL) and MDSCs are 
key components of DNTII [4]. Some disorders 
and perturbations in genetic factors cause a 
healthy cell to transfer to a tumor cell with non-
standard functions. The Main immune response 
against tumor cell is expressed by CTL. In fact, 
in micro-environment of tumor, tumor cells 
release some antigens that are recognizable by 
CTLs, then CTLs immigrate to tumor site and 
encounter. The increased immune response creates 
an inflammatory environment, therefore MDSCs 
are produced and decrease the immune response. 
This preamble stated the interactions between key 
components of DNTII concisely [5].

Mathematical modeling of biological networks 
is a very effective tool which is widely used for 
the system identification and optimization of drug 
delivery systems [6]. A number of mathematical 
methods for simulating the DNTII have been pro-
posed, for example [7-10] are Ordinary Differential 
Equation (ODE) models that describe the average 
behavior of DNTIIs without regarding stochastic 
effects. Because of determinism rigidity of ODE 
models, we prefer to use stochastic models to cap-
ture the inherent randomness of DNTII. One of the 
best models in the system biology and mathemati-
cal modeling of DNTII is Petri Nets (PN) [11-13]. 
PN is a comprehensive mathematical model which 
describes the dynamical network quantitatively. 
SPN is an extended form of PN which regards to 
stochastic nature of interactions. Therefore, SPN is 
suitable for modeling of DNTII [14]. 

In this study, we have constructed a SPN model 
to simulate the DNTII. This model has control 
parameters to display different behaviors according 
to the reality of the biological system. 

2. Methods
In the following, the biological background 

of tumor-immune system and the concept of 
stochastic petri net is expressed, then the model is 
described in detail.

2.1. Biological Background of Tumor-

Immune System
Tumors are generally the result of uncontrolled 

growth of host tissue cells. In normal tissues, 
growth rate of cells is controlled by several 
mechanisms. Many factors such as genetic 
mutations due to carcinogens may cause failure 
of these mechanisms and disrupt the cellular 
metabolic processes. Tumor cells are mainly able 
to proliferate in a shorter time than normal cells. 
In our model, it is assumed that the tumor cells 
can proliferate autonomously with a constant rate 
and are not responsive to apoptosis signals from 
microenvironment. Alternatively, it is assumed 
that the only agent which eliminates tumor cells 
from the microenvironment is the effector cells of 
immune system [15]. 

Effector cells are the relatively short-lived 
activated cells that respond to adaptive immune 
stimulus and referred to the collection of plasma 
cells which secrete antibodies, and activated T 
cells which include cytotoxic T cells and helper 
T cells and carry out cell-mediated responses. 
Cytotoxic T cells begin to exist at a high frequency 
during an adaptive immune response in the 
tumor microenvironment following a recognition 
of tumor antigens by antigen presenting cells. 
Effector cells are steadily recruited to the tumor 
microenvironment to sustain an effective response 
to tumor growth. In agreement with this function 
of adaptive immune system, we have considered 
a recruitment of effector cells due to the presence 
of tumor. The recruitment rate of the effectors is 
dependent on the tumor population. Present effector 
cells in microenvironment are able to encounter 
tumor cells and may eliminate them completely. 
Like many other cells of immune system, effector 
cells may undergo apoptosis after a finite number 
of encounters or by aging. To model this attribute, 
we have assumed a half-life of effector cells.

Similar to chronic infections, tumors can cause 
altered haematopoiesis which in long term leads to 
an expansion of immunosuppressive activities of 
immune system. One of these immunosuppressive 
mechanisms is the differentiation of myeloid cells 
formed in the bone marrow toward MDSCs. MD-
SCs differentiate to dendritic cells, macrophages 
and neutrophils in healthy individuals. MDSCs 
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suppressor effect lies in their ability to inhibit T 
cell proliferation and activation. They also acceler-
ate tumor progression and metastasis. Growing tu-
mors secret a variety of chemokines and molecules 
which are necessary for myeloid cells differentia-
tion to MDSCs. In order to simulate this effect in 
the model, we have considered MDSC generation 
as a result of tumor growth [16, 17]. 

2.2. Concept of Stochastic Petri Net (SPN)
The SPN model is implemented in Matlab 

environment. A simple PN is composed of two 
groups of nodes that are places and transitions. 
Also there are some arcs with specified weight 
that connect places to transitions and transitions 
to places. Places and transitions describe the cells 
(or proteins) and interaction between the places 
respectively. Places and transitions express the 
static part of PN and the dynamic of PN is modeled 
by flowing of tokens between places through 
transitions. In fact, tokens describe the amount 
of each place, for example the concentration of a 
specific protein or the population of a cell [18]. 

Each transition has some input places and output 
places. When tokens of input places of transition  
ti  be more than the weight of related arcs between 
that input places and transition, ti , this transition 
is enabled. In PN, enabled transition is fired 
immediately, and in SPN is fired with a stochastic 
delay with an exponential probability distribution. 
After firing of a transition, ti, tokens flow from input 
places of this transition to output places. The amount 
of transitioned tokens between input places and 
output places correspond to the weight of related arcs 
between places and transitions. For example, in PN 
of Figure 1, if transition T1 is fired, the amount of 
w11 tokens and w21 tokens from places A and B are 
reduced respectively and the amount of w'13 tokens 
are added to place C [18].

Figure 1. A PN with three places, one transition and three arcs 
relate places and transition. Circles and square depict places and 

transition respectively. The values of w11,w12 and w'13 are the 
weights of preplaces and post places of transition T1.

As it was mentioned, in SPN, enabled transitions 
are fired with a delay (t∈T) which is stochastic 
variable (Xt∈[0,1)) with the following probability 
distribution:

 (1)

 (2)

In Equation (1), γ is a function of marking of SPN 
which is calculated with the mass action kinetic law. 
The mass action kinetic law for reaction A+B →C is 
as follow:

 (3)

2.3. SPN for Modeling of DNTII
We have considered MDSC, CTL and Tumor cell 

as places of SPN and 7 transitions for modeling 
of their interactions and execution of the cells as 
depicted in Figure 2. First, we have assigned the 
initial values to the cells, then run SPN model to 
achieve the dynamics of the system. The dynamics 
of the model is achieved by firing of only one 
transition from 7 transitions at any time step. 
Each transition has a rate which is computed by 
the mass action law according to Equations (2) 
and (3). Then, these rates are normalized to their 
summation. These normalized rates describe the 
probability of firing of each enabled transition. 
Therefore, with subsequent firing of enabled 
transitions during time, the dynamic of model is 
completed. 

Figure 2. SPN of DNTII. Places P1, P2 and P3 (circles) 
describe tumor cell, effector cell and MDSC respectively and 
squares T1 to T7 describe different interactions between cells 

according to the immunology knowledge.
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As mentioned before, each of these transitions 
describe an interaction between places. In other 
words, these places apply their features and be-
haviors through transitions. All transitions and 
their biological concept is described in Table 1. 
The model has two outcome strategies: firstly, 
the tumor escape from the immune response and 

secondly, the tumor elimination by the immune 
system. Changing control parameters generates 
different scenarios according to biological reality 
in a tumor microenvironment. The weights of arcs 
(wij, w'ij, i, j=1,2,…,7) and constant rates of transi-
tions (ki, i=1,2,…,7) are the control parameters of 
the model.

Table 1. Description of reactants and reactions of DNTII.

Reactants Transition Description of 
Transition

Weight of the arcs associated 
with the corresponding 

transition for first strategy 
(tumor escape)

Weight of the arcs associated 
with the corresponding 

transition for second strategy 
(tumor degradation)

MDSC, 
Effector T1

Inhibition of effector 
cells by MDSC in tumor 

microenvironment.

w21 = 2, w31 = 1,
w'12 = 1
k1 = 10-6

w21 = 2, w31 = 1,
w'12 = 1
k1 = 10-6 

Tumor, 
Effector T2 Killing tumor cells by 

effector cells.

w12 = 2, w22 = 1
w'21 = 1
k2 = 10-4

w12 = 2, w22 = 1
w'21 = 1
k2 = 10-4

Tumor, 
MDSC T3 Expression of MDSC 

by tumor cells.
w13 = 1, w'33 = 1

k3 = 8*10-7

w13 = 1, w'33 = 1
k3 = 0.8

MDSC, 
Tumor T4 Expression of tumor 

cells by MDSC.
w34 = 1, w'41 = 2

k4 = 0.8
w34 = 1, w'41 = 1

k4 = 0.8

MDSC T5 Random degradation of 
MDSC.

w35 = 1
k5 = 1

w35 = 1
k5 = 1

Tumor T6 Self-reproduction of 
tumor cells.

w16 = 1, w'61 = 4
k6 = 0.7

w16 = 1, w'61 = 2
k6 = 1

Tumor, 
Effector T7

Expression of effector 
cells due to the presence 

of tumor cells.

w17 = 1, w'71 = 1
k7 = 1

w17 = 1, w'71 = 1
k7 = 1

According to the literature, half-life of MDSC 
and effector cells is approximated to be 34 and 10 
days respectively [19, 20]. Therefore, in addition 
to these transitions, MDSC and effector cells 
undergo apoptosis due to half-life.

3. Results
To assess the dynamics of tumor-immune 

system and predict the behavior of different cells 
in tumor microenvironment, we have designed 
a computational model which can model the 
behavior of system with regarding randomness 

in interactions. We executed the model for two 
strategies that are tumor escape from immune 
response and tumor elimination by the immune 
system. The dynamic of tumor cells, effector 
cells and MDSC for these strategies is depicted 
in Figure 3 and 5. As presented in these figures, 
SPN models the behavior of tumor cells, effector 
cells and MDSC in each of the two strategies of 
tumor escape and tumor elimination correctly. 
According to Figure 5, in the early time steps, 
tumor cells recruit MDSCs in order to immune 
cells response suppression. Consequently, effector 
cells population decreases with the increment of 
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the MDSCs population. However, effector cells 
overcome the MDSCs in the next times and the 
population of effector cells converge to a nonzero 
value and eliminate tumor cells.

As mentioned before, SPN applies random effects 
in interactions. Therefore, multiple executions of 

SPN can create different dynamics (with similar 
patterns). Figures 4 and 6 depict the region of 
uncertainty which is derived by 20 times of 
implementation of SPN for two strategies of tumor 
escape and tumor elimination respectively. 

 
Figure 3. Average dynamic of cells in DNTII. Dynamic of tumor cells, effector cells and MDSC is generated by SPN. SPN is 

executed for 20 times and the average of dynamics of cells is computed.

Figure 4. Uncertainty region for tumor escape phase. Region of uncertainty for tumor cells, effector cells and MDSC is 
generated by 20 execution of SPN. 
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Figure 5. Average dynamic of cells in DNTII. Dynamic of tumor cells, effector cells and MDSC is generated by SPN. SPN is 

executed for 20 times and the average of dynamics of cells is computed.

Figure 6. Uncertainty region for tumor elimination phase. Region of uncertainty for tumor cells, effector cells and MDSC is 
generated by 20 execution of SPN.

4. Discussion
In this study, we constructed a computational 

model to perform a time course study on the 
tumor-immune system. The non-linear Dynamical 
Network of Tumor-Immune Interactions (DNTII) 
is a very complex network and we have created 

a computational model to predict its dynamical 
behaviors. We performed a literature review for key 
components that are responsive in determining the 
dynamic of the tumor-immune system. Therefore, 
MDSC, effector and tumor cells are selected and 
a model was constructed based on these factors, 
their behaviors and interactions.
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The computational model of this study is 
stochastic petri net which can exhibit inherent 
features of tumor-immune system like stochasticity 
and complexity. This model accurately predicts the 
dynamical behavior of tumor-immune system in 
the tumor escape and tumor elimination phases.

We believe that the major contribution of our 
survey, in addition to the offer of the use of 
stochastic petri net in cancer modeling, is that a 
deeper understanding and comprehensive analysis 
of the biological network can be achieved.
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