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A B S T R A C T
Purpose- In brain MRI analysis, image segmentation is commonly used for mea-
suring and visualizing the brain’s anatomical structures, for analyzing brain chang-
es, delineating pathological regions, and image-guided interventions. Since manual 
segmentation is time-consuming and prone to variable errors, it makes automatic 
techniques more demanding. 

Method- This paper describes a framework for automatic segmentation and tu-
mor border estimation of both normal and abnormal anatomy from medical images 
based on Adaptive Neuro-Fuzzy Inference System (ANFIS) which is applicable to 
different types of tumors. The segmentation framework is comprised of five stages: 
first, median filter is applied to remove or reduce the noise of images; second, it is 
followed by EM clustering to segment it into different parts with various intensities 
which is used for feature extraction in the third step. At the fourth stage, extracted 
features besides ground truth are utilized as ANFIS training dataset. Lastly, the lev-
el set is adopted for a precise detection of abnormal tissues for detected abnormal 
sections either edema or tumor core. 

Results- This method was applied for 15 High-Grade (HG) and 15 Low-Grade 
(LG) simulated brain tumor images. The proposed model provided satisfactory out-
comes in which, for the segmentation of whole tumor including both edema and 
tumor core, the dice index was recorded 0.936±0.04 and 0.921±0.02 for HG and 
LG dataset respectively; however, the tumor core were recorded 0.899±0.04 and 
0.902±0.05 in the mentioned groups. 

Conclusion- The results of this study prove the robustness of fuzzy inference sys-
tems and neural networks in clinical image analysis and tumor evaluation for brain 
cancers. 

1. Introduction

Generally, magnetic resonance images have 
been proven a valuable tool to detect 
brain tumors surrounded by normal 

tissues that is highly applicable in many diagnosis 
and treatment fields such as external beam 
radiotherapy. Manual tumor border delineation is 

highly influenced by miscalculations due to inter-
observer variability and human error in addition 
to being time-consuming. In the ideal form, an 
automatic or semi-automatic segmentation and 
border detection model would be highly welcome 
as it decreases the dependency on the human 
observation that may causes non-negligible errors. 
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For medical images segmentation with different 
sort of tumors, there is not any ubiquitous 
algorithm. Since tumor and surrounding edema 
tissues have possible overlapping distributions with 
nearby normal tissues, various border delineation 
strategies were proposed at different literatures 
using two region-based and contour-based 
techniques [1, 2]. Mostly, they are devoted to full-
enhanced tumors or specific types of tumors, and 
cannot apply to more general types. Furthermore, 
experiments based on fuzzy clustering algorithms 
are also proposed in the literature [3-5]. Prastawa 
et al. [6] proposed a method based on learning 
process using the atlas which considered the tumor 
as outliers of the normal voxels distribution. The 
limitation of this method is for large deformations 
of brain structures, and when such deformations 
occur, the use of the brain atlas may result in 
incorrect learning. As an alternative, another 
method [7] based on the combination of model-
based techniques and graph-based affinity, is 
proposed which uses multi- channel MR images 
and needs a learning procedure for parameters 
estimation. In Capelle et al. [8], the proposed 
method works by an evidential segmentation 
scheme of multi-echo MR images for brain tumors 
detection. They showed that for the processing 
of redundant and complementary data of MR 
images, a modeling by the use of evidence theory 
is appropriate. 

Moreover, automated segmentation methods, 
based on artificial intelligence techniques, were 
also proposed in the literature [9, 10], in which none 
of them used intensity enhancements, provided 
by the means of contrast agents. However, its 
application is limited since the input images are 
restricted to T1, T2, and PD MR Image channels. 

Generally, apart from the already mentioned 
limitations of each method, region-based methods 
only depend on local information for each voxel 
rather than the combination of global shape and 
boundary restraints. Considering contour-based 
methods, Lefohn et al. [11] have introduced a 
semi-automatic method for tumor segmentation 
by an application of level sets. For segmentation 
initialization, the user must first select the tumor 
region and then according to a visual examination 
of the results, the level set parameters are set by a 

repetitive process. The major handicaps of contour-
based deformable models are the difficulties in 
the definition of the initial contours, the tuning 
parameters and leakage in ill-defined edges. 

Our method presented in this study combines 
EM clustering strategy with the robustness of 
fuzzy inference system and neural networks for 
the definition of tumor and edema simultaneously, 
relying on the information provided in the T2 image 
channel. However, other image channels are also 
implementable in our strategy. Among our dataset 
that includes 15 High-Grade (HG) and 15 Low-
Grade (LG) simulated brain tumor images, only T2 
image channels are utilized. High-grade gliomas 
are attributed to those with the more aggressive 
form of the disease that have a life expectancy of 
two years or less and demand immediate treatment 
[12, 13]. In contrast, low-grade variants, such as 
low-grade astrocytomas or oligodendrogliomas, 
come with an average survival rate of several 
years, so an aggressive treatment is often 
postponed as long as possible. For both groups, 
intensive neuro-imaging protocols are used before 
and after treatment to evaluate the progression of 
the disease and the success of a chosen treatment 
strategy [14]. At a glance, the proposed strategy 
is the investigation the performance of ANFIS for 
tumor border detection by using EM data cluster 
algorithm and a level-set deformable model. 

The ultimate goal of applying such a system is to 
reach a precise insight into an image such as pixel 
greyness ambiguity, geometrical segmentation of 
the image and the uncertain interpretation of a 
scene [15]. 

The final analyzed results of this study 
demonstrate that the proposed technique can detect 
edema and tumor core with high accuracy for both 
high-grade and low-grade dataset. 

2. Materials and Methods
The automated segmentation method that we 

have developed is composed of five major stages, 
as shown in Figure 1. First, a median filter is 
applied to the image for noise reduction and 
making it smoother; after the pre-processing stage, 
the intensity values are divided into five clusters 
with varied intensity characteristics using EM data 
clustering algorithm. EM has a strong statistical 
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basis besides being robust to outliers and a fast 
performance. The function of EM is separating 
different areas with variable densities for feature 
extracting of labeled tissues. In addition to initial 
segmentation of image, by means of EM clustering, 
the complexity of the process that can be reduced 
as abnormal tissues are in high densities fashion. 
To be more precise, all clusters are not essentially 
necessitated to be considered for abnormality 
detection. In this work, three clusters that are 
susceptible to contain lesion regions were analyzed. 
Then, the extracted features with ground truth are 
used for ANFIS training. Fuzzy logic represents an 
applicable approach to comprehend and manually 
influence the mapping behavior. Fuzzy inference 
(reasoning) is the actual process of mapping 
from a given input to an output using fuzzy logic 
[16, 17]. Since there are some small areas with 
similar intensity to tumor core or edema and a size 
fewer than 35 pixels, an image erosion as well as 

small objects removal were utilized to remove 
these sections, which also reduced processing 
complexity. This was followed by applying Gray 
Level Co-occurrence Matrix (GLCM) method 
for the labeled image in order to extract features 
such as entropy, contrast, maximum intensity, 
minimum intensity, etc. In the fourth step, the 
extracted features with the real state of each 
segment according to the ground truth are adopted 
to ANFIS as input and output dataset, taken into 
account that k-fold cross validation is selected for 
validation of the proposed method. However HG 
and LG images are trained and assessed separately 
since the intensity was different for each group. 
In the last stage, having the estimates for tumor 
and edema intensity parameters obtained, the level 
set technique is applied to the extracted abnormal 
parts in order to approach an accurate definition 
of the tumor tissues. The details of each stage are 
discussed in the following subsections.

Figure 1. Proposed segmentation model flowchart.
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2.1. Image Filtering 
Noise removal is the first step of image analysis 

and is necessary to apply an efficient to redress for 
such data corruption. In this work, a non-linear 
common filter namely median filter with a 3x3 
square window was adapted to the images as it 
preserves edges and useful details under certain 
conditions while removing the noise. It replaces 
the pixel value with the median of neighboring 
pixel values. 

2.2. Initial Segmentation

2.2.1. Segmentation Using EM Clustering

The Expectation Maximization (EM) algorithm 
is the most applicable and efficient technique 
for estimating the mixture model parameters, 
where the data are supposed to exist as a mixture 
of densities [18]. The algorithm relies on the 
maximum likelihood estimations of parameters 
when the data model depends on certain latent 
variables [19, 20]. 

It should be noted that the clustering methods 
can also be implemented to partially labeled data 
or data with other types of algorithms known as 
semi-supervised clustering methods that use both 
labeled and unlabeled data, accordingly. Among 
different data clustering algorithm for tumor 
border detection, K-means cluster method can be 
taken into account to be modified and the semi-
supervised clustering is then emerged. K-means 
clustering is one of the most common available 
methods that are implemented to database while 
all the variables are quantitative and the distance 

between observations is calculated by means 
of a squared euclidean distance. Apart from 
the K-means algorithm, a few semi-supervised 
hierarchical clustering methods have also been 
introduced. This is partly due to the fact that 
the problem must be formulated differently for 
hierarchical clustering. In some conditions, the 
cluster assignments emerged from medical images 
dataset may be known for some subset of the 
data. The objective is to classify the unlabeled 
observations in the data to the appropriate clusters 
using that cluster assignments determined for this 
subset of the data. In a certain sense, this problem is 
equivalent to a supervised classification problem, 
while the objective is to develop a model to assign 
observations in a data set to one of a finite set of 
classes based on a training set where the true class 
labels are known. However, traditional supervised 
classification methods may be inefficient when 
only a small subset of the data is labeled. For 
these types of problems, conventional supervised 
classification methods may be inefficient and 
typically do not use unlabeled data to build the 
classification algorithm. In these situations, one 
can often build more accurate classification rules 
by combining both labeled and unlabeled data that 
is known as semi-supervised approach [21-26].

Figure 2 demonstrates clustering results using 
EM algorithm with five clusters besides original 
image and ground truth. Only three clusters 
including abnormal regions have been represented 
in this figure.

Figure 2. Top: Original image, ground truth and clustered image; Bottom: Three clusters of the image with abnormal regions
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2.2.2. Image Erosion

Erosion is one of the basic operator in the area of 
mathematical morphology, which is used to erode 
away the boundaries of regions of foreground 
pixels (i.e. white pixels, typically) [27]. Thus, 
areas of foreground pixels shrink in size, and holes 
within those areas become larger. Figure 3 shows 
eroded version of our typical image from skull 
base section.

Figure 3. Third cluster of an image and corresponding 
eroded image.

2.2.3. Small Objects Removal

The intensity of skull section and also some 
parts of the brain are analogous to tumor areas 
intensity; to neglect these sections and increase 
the processing speed, after image erosion imple-
mentation, all connected components (objects) 
that have fewer pixels than the threshold value 
which is 35 in this work, were removed from a 
binary image (as displayed in Figure 3). This has 
increased the processing speed and avoided any 
potential misinterpretations in model training 
[28]. This operation is known as an area opening.

2.2.4. Image Labeling

After separating candidate areas, each connected 
pixels in the extracted candidate matrix is numbered 
so that each connected candidate pixels got the 
same label. Thereafter, the properties of each label 
will be detected and given to the classifier.

2.3. Feature Extraction
To feed the classifier for classification purposes, 

we need to extract mathematical measurements 
(features) from that object. Two categories of 
features were used in this work: 1) shape (features 
of the shape’s geometry captured by both the 
boundary and the interior region) and 2) texture 

(features of the grayscale values of the interior) 
[29]. The list of features used in this research and 
also what they measure are as follows:

2.3.1. Shape

Shape feature is an important property to 
describe an image. Firstly, the shape often links to 
the target, which has a certain semantic meaning. 
So shape feature can be a higher level feature than 
the color and texture feature. A few of the property 
options used in this study are Diameter, Perimeter 
and Euler Number [30]. 

2.3.2. Texture

Gray-Level Co-occurrence Matrix (GLCM) is 
the statistical method of examining the textures 
that considers the spatial relationship of the pixels. 
The GLCM functions characterize the texture of 
an image by calculating how often pairs of pixel 
with specific values and in a specified spatial 
relationship occur in an image, creating a GLCM, 
and then extracting statistical measures from this 
matrix. Textural features used as input for model 
training at this study consist of contrast, Entropy, 
Homogeneity, Autocorrelation, Variance and 
Cluster Prominence [31]. 

2.4. Neuro-fuzzy Based Classification
Neuro-fuzzy systems which use local learning 

techniques to learn fuzzy sets and fuzzy rules have 
been recently attracted in research and application. 
Conventional approaches of pattern classification, 
fuzzy classification assume that the boundary 
between two neighboring classes as a continuous 
and overlapping area within which an object is 
not allocated to one cluster exclusively and has 
limited membership in each class. The theory of 
fuzzy logic provides a mathematical strength to 
capture the non-statistical uncertainties associated 
with human cognitive processes, such as thinking 
and reasoning  [32]. 

2.4.1. ANFIS Architecture 

A neuro-fuzzy approach as a combination of neural 
networks and fuzzy logic has been introduced to 
overcome the individual weaknesses and to offer 
more appealing features. Neural networks can only 
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be taken into account if the problem is expressed 
by adequate amount of observed examples that 
are used to train the black box. On the contrary, 
a fuzzy system demands linguistic rules instead 
of learning examples as prior knowledge. In the 
case of incomplete, faulty or inconsistent attained 
knowledge, fuzzy system must be adjusted in a 
heuristic way. A suitable method for fuzzy system 
adaptation is an automatic adaptation procedure 
like neural networks.

In the present study, a class of adaptive networks 
that act as a fundamental framework for ANFIS 
is employed. The process of developing a fuzzy 
inference in combination with adaptive neural 
networks is called an ANFIS.

The structure of ANFIS developed in this study 
consists of 11 inputs indicating mentioned features 
of candidate regions and one output which means 
that we consider one neuron in outer layer and 
we learn the system so that the output of this 
neuron show the class of regions in classification 
procedure.  

Our dataset consists of two categories: 15 HG and 
15 LG brain tumor images. K-fold cross validation 
is employed for the definition of the model training 
and testing dataset. In k-fold cross-validation, 
the original sample is randomly partitioned into 
k equal size sub-samples. Of the k sub-samples, 
a single sub-sample is retained as the validation 
data for testing the model, and the remaining 
k − 1 sub-samples are used as training data. The 
cross-validation process is then repeated k times 
(the folds), with each of the k subsamples used 
exactly once as the validation data. The k results 
from the folds can then be averaged (or otherwise 
combined) to produce a single estimation. The 
advantage of this method over repeated random 

sub-sampling is that all observations are used for 
both training and validation, and each observation 
is used for validation exactly once. In this study, k 
was equal to five. In addition, the training samples 
are clustered into three different regions namely 
normal and two abnormal groups including edema 
and tumor-core regions. Cluster center of the tumor 
region for all classes are observed and stored. 
In the testing process, features are extracted and 
matched with the best possible solution. 

There are several training algorithms for feed 
forward networks of which we implemented 
hybrid learning algorithm. Hybrid learning 
algorithm proposed by Jang, Sun and Mizutani 
[33] uses a fusion of Steepest Descent and Least 
Squares Estimation (LSE) strategies.

  2.5. Extraction of Whole Tumor Region

Boundary

As described in section 2.3, for small objects 
removal, segmented parts of the image are eroded. 
Moreover, due to overlapping vicissitudes which 
happens among edema, tumor core and healthy 
tissues while image clustering, as a compensatory 
strategy, a level set deformable model [34] in the 
context of active contours is applied for a precise 
extraction of tumor region boundary. 

Figure 4 shows the ground-truth image and result-
ed tumor region boundary without and with various 
level set models with 1.0,2,6,1 ==== µλσ v  
after approximately 250 iterations. It should be 
noted that the σ is smoothed Dirac approximation 
value, μ is the level set regularization value and λ 
and ν are constant values. As it is clear from the 
figure, results obtained by applying level set is 
more accurate and reliable. 

Figure 4. Segmentation results with and without level set and ground truth.
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3. Results
The validation of the segmentation results is 

very important, especially for medical images as 
any significant disagreement between the detected 
results and the real targets might lead to severe 
damages in clinical activities.

Our segmentation procedure is evaluated on 30 
simulated cases (15 HG gliomas, 15 LG gliomas) 
including manual expert annotations. We performed 
the labelling of each image of the training set, in 
a 5-fold cross validation framework. The dataset 
is publicly available through the MICCAI 2013 
Brain Tumor Segmentation challenge [37].  

We obtained 2D segmented tissues using EM 
algorithm and adaptive neuro-fuzzy inference 
systems. Overall, the results suggest comparatively 
higher score for complete tumors than tumor core. 
Two different categories namely tumor core and 
complete tumor, consisting of both edema and 
tumor core, were considered for the evaluation.

Several metrics were applied for results and model 
evaluation including Dice, Jaccard, Sensitivity and 
Specificity indexes.

The Jaccard index, also known as the Jaccard 
similarity coefficient was represented by Paul 
Jaccard, is a statistic used for measuring the 
similarity and diversity of an automatic binary 
segmentation by a specific method in comparison 
to its ground truth (where B is the ground truth of 
the tumor pixels, and A is the set pixels classified 
as tumor by the automatic method) (see Figure 5):

𝐽𝐽𝐽𝐽(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) =
𝐴𝐴𝐴𝐴 ∩ 𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴 ∪ 𝐵𝐵𝐵𝐵 =

𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝
𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛

 

�
(1)      

The Jaccard score will be 1 if the segmentations 
are identical, while for completely dissimilar 
segmentations it will approach 0.

Figure 5. Regions used for calculating evaluation metrics. FN is the true lesion area (outline blue), TN is the remaining 
normal area, FP is the false predicted lesion area and TP is the true predicted lesion area.

FP and TP are the areas predicted to be lesion by 
an algorithm (outlined orange), of course unlike 
TP, FP is not lesion area in reality.

Like the Jaccard similarity index, the Dice 
coefficient also measures set agreement [35]. In 
this case, the measure is given by the formula:

D (A,B) =
2(𝐴𝐴 ∩ 𝐵𝐵)
(|A| + |B|) =

2𝑡𝑡𝑝𝑝
(𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑝𝑝) + (𝑓𝑓𝑛𝑛 + 𝑡𝑡𝑝𝑝)

                                                                (2)

More simply, this formula represents the size of 
the union of 2 sets divided by the average size of 
the two sets. 

A summary of quantitative overlap scores using 
Dice and Jaccard metrics for HG and LG dataset 
are presented in Table 1.
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Table 1. Evaluation results of two regions for both HG and LG dataset.

Case No.
Dice Jaccard

Whole Tumor Tumor Core Whole Tumor Tumor Core

1
HG 0.949 0.938 0.902 0.883

LG 0.918 0.946 0.848 0.897

2
HG 0.927 0.899 0.865 0.817

LG 0.878 0.879 0.782 0.785

3
HG 0.936 0.829 0.879 0.708

LG 0.864 0.864 0.761 0.761

4
HG 0.887 0.943 0.797 0.892

LG 0.924 0.901 0.858 0.820

5
HG 0.968 0.937 0.939 0.882

LG 0.921 0.936 0.854 0.879

6
HG 0.958 0.905 0.920 0.826

LG 0.899 0.957 0.817 0.917

7
HG 0.946 0.899 0.897 0.816

LG 0.937 0.927 0.881 0.863

8
HG 0.970 0.938 0.942 0.883

LG 0.931 0.807 0.871 0.676

9
HG 0.956 0.935 0.916 0.878

LG 0.958 0.918 0.920 0.848

10
HG 0.835 0.837 0.717 0.720

LG 0.913 0.913 0.839 0.839

11
HG 0.928 0.913 0.865 0.840

LG 0.935 0.795 0.877 0.660

12
HG 0.910 0.877 0.834 0.781

LG 0.932 0.853 0.872 0.743

13
HG 0.921 0.841 0.854 0.725

LG 0.924 0.908 0.859 0.831

14
HG 0.940 0.889 0.888 0.800

LG 0.921 0.817 0.854 0.690

15
HG 0.878 0.87 0.783 0.769

LG 0.921 0.902 0.854 0.822
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Table 2. Median and standard deviation of evaluation indexes for two regarded groups.

Dice Jaccard Sensitivity Specificity

 Whole
Tumor

 Tumor
Core

 Whole
Tumor

 Whole
Tumor

 Whole
Tumor

 Tumor
Core

 Whole
Tumor

 Tumor
Core

Median
HG 0.936 0.899 0.879 0.817 0.962 0.983 0.997 0.997

LG 0.921 0.902 0.854 0.822 0.896 0.891 0.998 0.999

STD
HG 0.037 0.039 0.062 0.064 0.044 0.071 0.003 0.003

LG 0.023 0.051 0.039 0.081 0.056 0.012 0.002 0.003

According to Table 2 and considering the Dice 
index the median is 0.936±0.0 and 0.921±0.02 
for HG and LG dataset, respectively. Hence, the 
model has represented an accurate execution for 
both groups in detection of abnormality; however, 
the level of preciseness in the former group was 
slightly higher than the latter. On the one hand, the 
results reveal that the proposed method performed 
more accurate in detection of tumor core for LG 
than HG, on the other hand it was reverse in the 
detection of edema.

In medical image processing, other common 
criteria such as sensitivity and specificity were 
also taken into account for gauging and evaluation 
of models performances [36]. Sensitivity or true 
positive rate evaluates the ability of the model to 
identify abnormal tissues correctly. 

Sens = Number of true positive Marks
Number of Lesions  =

𝑡𝑡𝑝𝑝
(𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑛𝑛)

 � (3)

Specificity or true negative rate examines 
model execution in identification of healthy areas 
accurately. 

Spec = Number of true Negative Marks
Number of Normal tissues  =

𝑡𝑡𝑛𝑛
(𝑓𝑓𝑝𝑝 + 𝑡𝑡𝑛𝑛)

 � (4)

Table 3 represents the overall quantitative of 
the mentioned assessment tools for two HG and 
LG dataset. From the results of the Table 3, it can 
be seen that the proposed model performance 
for abnormality detection in the former group 
with 0.962±0.04 was superior to the latter with 
0.896±0.06 in sensitivity; even though the 
noticeable disparity relates to the identification 
of tumor core with sensitivities at the points of 
0.983±0.07 and 0.891±0.01 respectively; which 
presents the higher success of the method in HG 
than LG group. Both dataset had high and close 
outcomes of specificity, the accuracy of normal 
tissues detection, in two regarded regions.

Table 3. Average results of sensitivity and specificity criteria for all cases.

Sensitivity Specificity

Whole Tumor Tumor Core Whole Tumor Tumor Core

Median
HG 0.962 0.983 0.997 0.997

LG 0.896 0.891 0.998 0.999

STD
HG 0.044 0.071 0.003 0.003

LG 0.056 0.012 0.002 0.003
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Figure 6. Visual result of image segmentation a) Original image; b) Clustered image; c) Segmentation by proposed model; d) 
Ground truth.

In Figure 6, as a visual assessment of the model 
performance, segmentation results of three dataset 
have been represented in addition to their ground 
truths and corresponding clustered images.

4. Discussion 
An automatic segmentation method based on 

ANFIS in combination with EM algorithm may 
process a wide variety of tumors located at different 
sites of patient body. Number of clusters are very 
crucial for model performance. In this specific 
study, the operation of segmentation algorithm 
with less than four or more than five cluster 
numbers becomes unsatisfactory especially in the 
definition of edema due to the similarity between 
brain structure and this area. 

The proposed method segments the whole brain 
including healthy tissues, and then identifies 
edema as a target for surgical planning and also 
a definition proper treatment planning system as 
the main component at radiotherapy. Moreover, 
the proposed process works automatically with 
less computational complexity due to the intrinsic 
robustness of EM clustering and ANIFS model. 

Testing the proposed method on 15 HG and 15 
LG dataset showed that the segmentation process 
is satisfactory and reliable according to the ground 
truth dataset. In addition to the visual validation, 
several quantitative measures such as Jaccard 
and Dice were performed for tumor segmentation 
quality estimation. At HG dataset, the median of 
Jaccard factor for whole tumor was 0.879±0.06 
while this value was 0.854±0.04 for LG dataset. 

5. Conclusion
In this paper we proposed an automatic tumor 

segmentation method which integrates EM 
clustering method, adaptive neuro-fuzzy inference 
system, and boundary extraction based on a level 
set deformable model. The proposed method was 
quantitatively assessed with two-labeled (edema 
and tumor core) brain tumor taken with an MR 
imaging system. Future studies aim at tumor 
segmentation of real database in three dimensions 
and dividing tumor core into three categories 
namely non-enhancing solid core, active core and 
non-solid core. 
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