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1. Introduction

lioblastoma Multiforme (GBM) brain 
tumor is the most aggressive form of 
primary brain tumors, for which the 
survival duration is usually between 6 
to 12 months, mostly due to improper 
decision making about the extension of 

tumor invasion and incomplete tumor resection [11]. 
The treatment plan usually involves surgical tumor re-
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Purpose: Glioblastoma Multiforme (GBM) brain tumor is heterogeneous in nature; so, its 
quantification depends on how to accurately segment different parts of the tumor, i.e. active 
tumor, edema and necrosis. This procedure becomes more effective when physiological 
information like diffusion-weighted-imaging (DWI) and perfusion-weighted-imaging (PWI) 
are incorporated with the anatomical MRI. In this preliminary tumor quantification work, the 
idea is to characterize different regions of the GBM tumors in an MRI-based multi-parametric 
approach to achieve more accurate characterization of pathological regions, which cannot be 
obtained by using individual modalities. 

Methods: For this purpose, three MR sequences, namely T2-weighted imaging (anatomical 
MR imaging), PWI and DWI of five GBM patients were acquired. To enhance the delineation 
of the boundaries of each pathological region (peri-tumoral edema, tumor and necrosis), the 
spatial fuzzy C-means (FCM) algorithm is combined with the region growing (RG) method. 

Results: The results show that exploiting the multi-parametric approach along with the 
proposed segmentation method can improve characterization of tumor cells, edema and 
necrosis in comparison to mono-parametric imaging approach. 

Conclusion: The proposed MRI-based multi-parametric segmentation approach has the 
potential to accurately segment tumorous regions, leading to an efficient design of the treatment 
planning, e.g. in radiotherapy.
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G
section, followed by radiotherapy and/or chemotherapy, 
which relies on the anatomical information provided by 
conventional MRI sequences, such as FLAIR, contrast-
enhanced T1-weighted imaging (T1-WI), and T2-WI 
[6]. In radiotherapy, the whole pathological region 
(consisting of peri-tumoral edema, enhancing tumor 
and necrosis) observed as hyperintensity area on FLAIR 
images, is used as the target of therapy. However, this 
region may contain uncontaminated tissue, while miss-
ing some tumor cells diffused in the surrounding tissue 
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[4]. This issue could be overcome by segmenting vari-
ous regions of the pathological tissue, to make the tar-
geting more focused on the viable tumor cells; thus, it 
increases the success rate while exposing the patient to 
less radiation. 

Conventionally, the tumoral region is defined as the 
enhancing region observed in the contrast-enhanced 
T1-W images, and the peri-tumoral edema is usually de-
fined as the hyperintensity portion on T2-W or FLAIR 
images, located outside the enhancing area. However, 
due to infiltrative nature of the GBM tumors, it has been 
shown that there exists the possibility of tumor inva-
sion in the surrounding tissue and peri-tumoral edema 
which, if not resected or destroyed, could increase the 
probability of tumor recurrence [4]. Therefore recently, 
functional MRI modalities such as diffusion- and perfu-
sion- weighted imaging (DWI and PWI) which provide 
deeper insight about the physiological behavior of glial 
tumors, have gained a great deal of interest [2, 9]. 

It has been proposed that diffusion measurements are 
advantageous in discriminating normal from abnormal 
tissues to some extent, but unable to differentiate tu-
morous regions [9]. The apparent diffusion coefficient 
(ADC) values calculated by DWI reflect the extent of 
diffusion restriction in the tissue under investigation: 
the necrosis and the edematous regions can be identi-
fied by higher ADC values. However, T2-W MRI has 
been reported to be more successful in characterizing 
the boundaries of peri-tumoral edema than DWI [8, 9]. 
Despite, this area may still contain tumor cells. On the 
other hand, regional cerebral blood volume (rCBV) pa-
rameter calculated from PWI has shown high correla-
tion with angiogenesis and tumor aggressiveness. Thus, 
it can be used to reliably identify the tumor margins [8]. 
Nevertheless, DWI and PWI are non-specific in deter-
mination of the tumor margins [7]. 

Hence, each MRI modality is advantageous in provid-
ing some information about the tumor, but not necessar-
ily capable to characterize it properly. In order to better 
identify the alterations caused by disease, the physiolo-
gy-based information must be used as a supplement to 
the anatomy-based knowledge in a multi-parametric ap-
proach. To this end, incorporating the information pro-
vided by DWI and PWI with conventional MRI seems 
to be the leading solution for accurate evaluation of the 
extent of tissue involvement with tumor, improving the 
treatment planning and ultimately increasing the chance 
of patient's survival [10]. 

On the other hand, as the number of images and the 
amount of information are increased, the interpretation 
and decision making procedures become more compli-
cated, subjective and time-consuming. In order to facili-
tate the decision making, MRI-based image segmentation 
methods for delineation of the tumor boundaries could 
be beneficial. However, automatic or semi-automatic 
segmentation of GBM tumors is a challenging issue, for 
which a vast number of image segmentation methods 
with large variability between their performances have 
been proposed [1]. The variety (in terms of reproduc-
ibility) among the results achieved with each method 
arises from infiltration of tumor cells into the surround-
ing tissues, irregular borders of glioma tumors, diversity 
between the amount of tumor contrast uptake between 
different patients (due to dissimilar vascularization) and 
different imaging protocols ) [1]. More specifically, GBM 
is surrounded by a mixture of cytotoxic and vasogenic 
types of edema. Vasogenic edema in brain may modestly 
enhance after contrast administration due to the local in-
flammation in blood-brain barrier which makes the local 
vessels relatively leaky and this may be a source of error 
when one attempts to delineate the exact interface be-
tween edema and the tumor in T1-w images with contrast 
enhancement (T1w+C). On the contrary, the high signal 
in PWI is due to neoangiogenesis, an absent process in 
peritumoral edema. So, PWI can define tumor-edema in-
terface more accurately than T1-w+C (frequently used in 
segmentation studies [12]. 

In this work, we exploit accurate information from 
quantitative DWI/PWI maps (ADC/rCBV), incorporated 
with high-resolution T2-w image in an MRI-based multi-
parametric tissue characterization approach, to accurately 
segment the tumor, necrosis and peri-tumoral edema 
from the normal brain tissue in GBM brain tumors. For 
segmentation, we employ the formulations of fuzzy C-
means (FCM) and region growing (RG) algorithms [3], 
to take into account the advantages of both methods for 
better characterization of pathological tissues.

The paper is organized as follows: section II describes 
how the data obtained by different modalities are com-
bined, followed by the proposed segmentation ap-
proach. In section III, results are summarized. In section 
IV, the discussions on the achievements are presented.

2. Methods

2.1. Data Acquisition

The images for this experiment were acquired from 
five patients being diagnosed with Glioblastoma Multi-
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forme (GBM) tumor with histopathological assessment 
after the surgery. The MR data for each patient were ac-
quired on a 3 T MR scanner (Siemens MAGNETOM 
Tim TRIO). Each sequence was applied with the fol-
lowing specifications: T2-WI was performed using SE 
sequence with TE/TR = 96/5000 ms, image matrix = 
308 × 384, FOV = 17.6 × 21.9 cm2, slice thickness = 
6 mm. PWI was performed using a GE-EPI sequence 
with: TE/TR = 45/2340 ms, flip angle = 60°, image ma-
trix = 128 × 128, FOV = 23 × 23 cm2, slice thickness = 
5mm, number of measurements = 50 at 1 sec/volume 
and number of slices = 21. The acquisition was per-
formed before and immediately after injection of 15cc 
of Gd-DTPA (0.2 mmol/kg) as the contrast agent with a 
flow rate of 5ml/sec, followed by injection of 20 cc of 
normal saline solution. DW images were acquired with 
GE-EPI sequence with: TE/TR = 137/4300 ms, image 
matrix = 192×192, FOV = 22 × 22 cm2, number of slices 
= 21, slice thickness = 5 mm, b-values of 0 and 1000 s/
mm2 in three orthogonal directions.

2.2. Pre-processing and Analysis

All the images were reconstructed to a 128×128 ma-
trix, rigidly registered for motion correction, resliced 
and coregistered with PWI images using SPM8 soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/). In order to 
reduce the noise while preserving the edges, aniso-
tropic diffusion filter was applied to the DWI images. 
The PWI images were skull-stripped using SPM8 and 
the relative cerebral blood volume (rCBV) maps were 
generated on the slices containing tumor, edema, and/
or necrosis regions. The ADC-maps were created from 
DWI images.

2.3. Spatial Fuzzy C-means (FCM) Algorithm

Medical images are inherently fuzzy and can be con-
sidered as the combination of intensities belonging to 
the various tissue types beside other unwanted inten-
sities. Thus, it is of paramount importance to take this 
property into account. Spatial FCM is an unsupervised 
clustering method utilized in medical image segmenta-
tion [5]. This technique tries to iteratively partition the 
image pixels into C clusters, by minimizing the follow-
ing cost function: 
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The algorithm is ideally optimized when high mem-
bership values are achieved in pixels with close prox-
imity to the centroid, while pixels far apart have low 
values. In this application, due to heterogeneous GBM 
tumor margins with its surrounding tissue, specifically 
in the quantitative maps, the FCM is employed to create 
several clusters for each image: 

- T2-W images are classified into three clusters: tis-
sues with hyperintensity values (CSF and pathological 
region except for necrosis), tissues with hypointensity 
values (necrosis and normal tissue), and background; 

-rCBV maps are classified into two clusters (since 
skull-stripping has been performed prior to quanti-
fication, the background cluster is eliminated here): 
tissues with high perfusion (including tumor), tissues 
with low perfusion (including necrosis);

- ADC maps are classified into four clusters: tissues 
with high diffusion (CSF), with intermediate diffusion 
(vessels and pathological region excluding necrosis), 
with low diffusion (white matter, gray matter, and ne-
crosis), and with no diffusion (background and skull).

2.4. Region Growing (RG) Algorithm

One of the most commonly used region-based methods 
for image segmentation is the Region Growing approach, 
which starts with selecting n seed points, from which re-
gions grow by seeking for neighboring pixels meeting the 
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similar criteria as the seed points. The similarity criterion 
is defined based on texture, homogeneity, topology or 
other properties of the image. Region growing method 
has several advantages in medical image segmentation 
context, such as its good performance in the presence of 
noise, the capability to separate the regions with similar 
properties, and its simple concept. Since we are interested 
in creating region masks, we use RG in conjunction with 
FCM method [3].

Here, the RG approach is utilized to extract each tissue 
from individual clusters. We used the mean intensity of 
the seed points and the neighboring pixels are added to 
the current region if their intensities are nearest to the 
mean of the region and less than a pre-defined thresh-
old. The initial seed point is selected manually in each 
cluster of interest.

2.5. FCM-RG Method for Tumorous Tissue 
Characterization

Hereafter, the overall segmentation algorithm is re-
ferred to as FCM-RG method. The procedure is carried 
out as follows (Figure 1.):

─ FCM clustering of the ADC and T2-W images, fol-
lowed by application of RG with some morphological 
image processing methods to create individual patho-
logical masks (P1 and P2), to be added to generate the 
final pathological mask (P) 

 ─ FCM clustering of rCBV map, followed by em-
ploying RG to one of the clusters to segment the ini-
tial necrosis (N1) and to the other one to separate the 
initial tumorous region (T1),

─ Taking the intersection of each of N1 and T1 regions 
with P, to obtain final necrosis (N) and tumor (T) masks,

─  Excluding T and N pixels from P, to obtain pure 
edema area (E), with no tumor invasion.

Figure 1.  The overall segmentation procedure.

2.6. Ground Truth for Evaluation

To evaluate the performance of the segmentation algo-
rithm, the GBM tumors were manually segmented by 
an expert neuroradiologist. The manual segmentation 
results were considered as the ground truth. Then, the 
accuracy, sensitivity, and specificity criteria, with the 
following definitions, were calculated for each case and 
averaged over all cases to obtain the ultimate values:

Sensitivity =  TP/TP+TN

Specificity =  TN/TN+FP                                                             

Accuracy = TP+TN/TP+FN+TN+FP                     
                                                      

 (5)

Where TP, TN, FN, and FP represent the True Posi-
tive, the True Negative, the False Negative and the False 
Positive detections, respectively.
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3. Results 

The proposed method has been implemented in MAT-
LAB 7.14 (MathWorks, Inc.). The quality of exploit-
ing FCM-RG method was compared in segmentation of 
mono- and multi-parametric data. In order to evaluate 
mono-parametric data segmentation results, we applied 
FCM-RG to T2-W images using four clusters. The fuzzy 
classes consisted of background, pathological region, 
edema and necrosis. The tumor region was extracted by 
subtracting the edema and necrosis regions, from the path-
ological region, obtained from mono-parametric data.

In Figure 2, the results of segmentation using FCM-
RG in multi-parametric data and the manual segmenta-
tion results in one of the cases are illustrated. In Table 
1 and 2, the evaluation results of segmentation in multi-
parametric and mono-parametric oncoming are given. 
As can be inferred from the results, the multi-parametric 
approach outperforms the mono-parametric method in 
segmentation of Tumor and Edema regions. The evalu-
ation parameters do not show significant changes in Ne-
crosis and Pathological regions in both approaches, due 
to their similar definitions in both methods.

Figure 2. (a) T2-W image, (b) ADC map (b-value = 1000), (c) rCBV map; segmentation results of the FCM-RG algorithm: 
(d) pathological, (e) tumor, (f) necrosis, and (g) edema masks overlayed on T2-W image, (f) the segmentation boundaries 
(yellow:pathological, blue: edema, pink: tumor, and green: necrosis areas) ; and segmentation results of manual method: 
(i) pathological, (j) tumor, (k) necrosis, and (l) edema regions overlayed on T2-W image, (m) the segmentation boundaries 
(yellow:pathological, blue: edema, pink: tumor, and green: necrosis areas).

Table 1. Evaluation of the Segmentation Outcomes in Each Region (using FCM-RG method on Multi-parametric data)

Accuracy Mean (std.) Sensitivity Mean (std.) Specificity Mean (std.)

Pathology 89.6 (3.38) 89.71 (1.82) 89.5 (9.9)

Tumor 84.19 (5.7) 86.66 (2.93) 83.42 (6.47)

Necrosis 91.01 (1.88) 81.43 (6.2) 99.74 (1.1)

Edema 91.2 (1.5) 89.84 (8.1) 95.17 (2.92)
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4. Discussion

We proposed a flexible approach for segmentation of 
Glioblastoma Multiforme (GBM) brain tumors employ-

ing an MRI-based multi-parametric imaging approach, 
to account for the difficulties and complications of the 
segmentation of this type of tumor. Generally, GBM tu-
mor is heterogeneous and the borders between the tumor 
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and edema are not well-defined and due to infiltration, 
the edema region contains tumor cells. Thus, accurate 
differentiation of the pathological regions becomes dif-
ficult. This issue becomes essentially important in treat-
ment planning procedures, such as radiotherapy, where 
it is important to destroy as much of the tumourous tis-
sue as possible, and at the same time, avoiding as much 
of uncontaminated tissue as possible.

In this work, spatial Fuzzy C-means (FCM) clustering 
algorithm was used in combination with region grow-
ing (RG) method, referred to as FCM-RG algorithm, to 
take the fuzzy behavior of the GBM tumor border into 
account and to take advantage of the RG segmentation 
method, such as its good performance in the presence 
of noise and its capability to correctly separate the re-
gions. It was shown that utilizing the FCM-RG method 
in MRI-based multi-parametric approach outperforms 
the one applied in MRI-based mono-parametric meth-
od, in segmentation of tumor and edema regions. As 
mentioned before, the accurate separation of these two 
regions is of utmost importance.

In conclusion, the combination of information provided 
by anatomical as well as physiological MRI modalities in 
a multi-parametric framework (T2-W, PWI and DWI) is 
beneficial in accurate characterization of pathological re-
gions in GBM brain tumors, which could not be achieved 
by exclusively using the anatomical MRI. Further vali-
dation of this work shall be performed by using a larger 
sample size data, and in order to explore its robustness to 
inter-patient variations of GBM tumors.
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