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Abstract 

Purpose: Magnetic Resonance Fingerprinting (MRF) is a novel framework that uses a random acquisition to 

acquire a unique tissue response, or fingerprint. Through a pattern-matching algorithm, every voxel-vise 

fingerprint is matched with a pre-calculated dictionary of simulated fingerprints to obtain MR parameters of 

interest. Currently, a correlation algorithm performs the MRF matching, which is time-consuming. Moreover, 

MRF suffers from highly undersampled k-space data, thereby reconstructed images have aliasing artifact, 

propagated to the estimated quantitative maps. We propose using a distance metric learning method as a matching 

algorithm and a Singular Value Decomposition (SVD) to compress the dictionary, intending to promote the 

accuracy of MRF and expedite the matching process. 

Materials and Methods: In this investigation, a distance metric learning method, called the Relevant Component 

Analysis (RCA) was used to match the fingerprints from the undersampled data with a compressed dictionary to 

create quantitative maps accurately and rapidly. An Inversion Recovery Fast Imaging with Steady-State (IR-

FISP) MRF sequence was simulated based on an Extended Phase Graph (EPG) on a digital brain phantom. The 

performance of our work was compared with the original MRF paper. 

Results: Effectiveness of our method was evaluated with statistical analysis. Compared with the correlation 

algorithm and full-sized dictionary, this method acquires tissue parameter maps with more accuracy and better 

computational speed. 

Conclusion: Our numerical results show that learning a distance metric of the undersampled training data 

accompanied by a compressed dictionary improves the accuracy of the MRF matching and overcomes the 

computation complexity. 
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1. Introduction  

Magnetic Resonance Imaging (MRI) is an 

invaluable diagnostic tool that inherently creates 

qualitative images. To provide additional 

physiological data, quantitative MRI is needed. The 

quantitative MRI has numerous applications that 

provide different aspects of the tissue properties. 

However, quantitative MR imaging faces fundamental 

challenges, when long scan time is still its major 

problem. Therefore, it would be intended to use an 

alternative method that improves the quality of 

parameter mapping in a limited time. 

Magnetic Resonance Fingerprinting (MRF) [1] is a 

promising paradigm that paves the way toward 

quantitative MR imaging. MRF applies a series of 

time-varying parameters in a sequence of pseudo-

random pulses to create quite a few images in a single 

scan. With the aim of speeding the acquisition, 

Variable Density Spiral (VDS) [2] sampling was used 

to sample just a proportion of the k-space, named 

undersampling measurement. Therefore, the acquired 

images have significantly aliasing artifact.  

Apart from the sequence, a predefined database 

called dictionary, which is a collection of simulated 

signal time courses was generated based on the Bloch 

equation or the Extended Phase Graph (EPG) 

formalism [3] to predict the combinations of tissue 

properties. Now it is time to compare every fingerprint 

contained in a voxel with the dictionary entries to find 

the best-matched entry of each voxel with the 

dictionary, which is done by an appropriate pattern 

recognition algorithm. A positive match retrieved 

from the dictionary is assigned as the features of the 

associated tissue of that voxel, which then were 

translated into quantitative maps such as T1, T2, and 

Proton Density (PD).  

MRF suffers from undersampled data in k-space 

that cause aliasing artifacts in reconstructed images. 

The conventional MRF matching algorithm or 

correlation algorithm propagates these artifacts to the 

estimated parameter maps, which cause inaccuracy 

[1]. The correlation algorithm is equivalent to 

applying a L2 distance. This algorithm is not always 

practical to find the best match between observed 

signals and dictionary entries. To improve the 

accuracy of tissue mapping Wang et al.[4] proposed to 

use distance metric learning to learn from the 

undersampled training data based on an Inversion 

Recovery Balanced Steady-State Free Precession (IR-

bSSFP) pulse sequence [1]. They proposed a 

Compress-Sensing (CS) framework for denoising the 

aliased images. Moreover, they adopted the Relevant 

Component Analysis (RCA) metric [5] as a superior 

distance metric learning compared to other metric 

methods such as the Discriminative Component 

Analysis (DCA) [6] and the Local Fisher Discriminant 

Analysis (LFDA) [7]. As a result, they have obtained 

more accurate tissue parameters compared to the 

correlation algorithm [1]. However, their approach is 

not practical in the MR clinic, since they have 

simulated a comprehensive dictionary of signal 

evolutions, so their matching faced with the problem 

of slowness because of an intractable database that 

was used to their matching framework. It is plausible 

that this time-consuming matching process could have 

influenced the results obtained. 

This paper leveraged results from [8] allowing for 

fewer computations required for MRF reconstruction 

and develop an accelerated distance metric learning 

algorithm for dictionary matching to promote the 

accuracy and speed of tissue parameters estimation. 

We proposed to use the RCA metric algorithm for an 

Inversion Recovery Fast Imaging with Steady-State 

(IR-FISP) pulse sequence [9] with digital brain 

phantom measurements to improve the MRF 

reconstruction accuracy. Moreover, we employed the 

low-rank and subspace model [8] to accelerate the 

RCA algorithm [5] by compressing the dictionary in 

the time domain. In this method, the fingerprint of 

every voxel is matched to its nearest neighbors in the 

compressed dictionary with the aim of acquiring more 

accurate quantitative maps in a short time. We first 

assessed the MRF method on synthetic undersampled 

data. Then we compared our proposed method or the 

accelerated RCA algorithm with the RCA algorithm 

(without SVD space) and Correlation algorithm, using 

statistics to show which one is outperforming the other 

in the estimation of tissue-related parameters.  

2. Materials and Methods  

In the following, we, first, explain a brief overview 

of SVD and distance metric learning in MRF. In the 
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second section, we discuss our experimental setup and 

dictionary generation, which lead us to highly 

undersampled k-space measurements and a pre-

calculated dictionary of all possible signal evolutions 

in brain tissues. We, next, discuss the dictionary 

matching with reviewing the matching correlation 

algorithm and proposing our algorithm in this domain. 

Finally, we use statistics to examine the performance 

of our simulation on a digital brain phantom. All 

simulation and pattern recognition codes are written in 

Matlab (Mathworks, Natick, MA). 

2.1. Theory of SVD  

The SVD of A is a real-valued factorization where 

U, V, and S are orthogonal diagonal matrices, 

respectively: 

𝐴[𝑛×𝑑] = 𝑈[𝑛×𝑛]𝑆[𝑛×𝑑](𝑉[𝑑×𝑑])
𝑇

 

The closest rank-k approximation of a matrix A 

(under both the Fobenius norm and the spectral norm) 

is: 

𝐴𝑘 = ∑ 𝜎𝑖𝑈𝑖𝑉𝑖
𝑇

𝑘

𝑖=1

 

The U and V matrices are called left and right 

singular vectors, respectively. 𝐴𝑘 minimizes the sum 

of the squares of the difference of the element A and 

𝐴𝑘. It has been Proventhat the optimal low-rank 

approximation of A is [10]: ‖𝐴𝑘 − 𝐴‖2 = inf‖𝐵 −

𝐴‖
2, where B is a 𝑛 × 𝑑 matrix that 𝑟𝑎𝑛𝑘 (𝐵) ≤ 𝑘. 

Sum of the squares of singular values of A is equal to 

its total energy, as: 𝐸 = ∑ 𝜎𝑖
2𝑟

𝑖=1 . The fraction of the 

preserved energy in the rank-k approximation 𝐴𝑘 is 

determined by the energy ratio: 𝑒𝑘 =
1

𝐸
∑ 𝜎𝑖

2𝑘
𝑖=1 . 

The energy ratio retains quite a few pieces 

information from the described original matrix, which 

is useful in determining an appropriate truncation 

index for a low-rank approximation. By applying the 

SVD, the MRF dictionary will be [8]: 𝐷 = 𝑈𝑆𝑉𝑇, 

where U, S, and V are the same parameters as 

aforementioned. It is proved that the SVD space 

representation of the dictionary is as [8]: 𝐷𝑘 = 𝐷𝑉𝑘. 

2.2. Theory of Distance Metric Learning  

A metric or distance function defines a distance 

between each pair of elements of a set. A family of 

metrics over X is defined by computing Euclidean 

distances after applying a linear transformation L such 

that x → Lx [11]. These metrics compute squared 

distances as  

𝒟𝐿(𝑋𝑖, 𝐷𝑗  )  = ||𝑳𝑋𝑖 − 𝑳𝐷𝑖||2
2 

Which is defined as a valid metric if L is full rank 

and a valid pseudo-metric otherwise. 

Expanding the squared distances equation: 

𝒟𝐿(𝑋𝑖, 𝐷𝑗  ) = ||𝐿𝑋𝑖 − 𝐿𝐷𝑖||
2

2

= (𝑋𝑖  − 𝐷𝑗)
𝑇

𝐿𝑇𝐿 (𝑋𝑖 − 𝐷𝑗) 

This allows us to express squared distances in terms 

of the square matrix 𝑴 =  𝑳𝑇𝑳 which is guaranteed to 

be positive semidefinite. In terms of M, we denoted 

squared distances as: 

𝒟𝑀(𝑋𝑖 , 𝐷𝑗)  =  (𝑋𝑖 −  𝐷𝑗)
𝑇

𝑴 (𝑋𝑖 −  𝐷𝑗) 

Pseudo-metrics of this form referred to as 

Mahalanobis metrics [11]. By learning a Mahalanobis 

distance, we are able to match every observed signal 

with dictionary entries. 

The state-of-the-art algorithms for distance metric 

learning include global and local methods. In this 

paper, we applied a global supervised distance metric 

learning algorithms. The supervised distance metric 

learning tries to learn distance metrics with pairwise 

constraints, or known as side information. Each 

constraint indicates whether two data points are 

relevant or irrelevant in a particular learning task. In 

this study, we used the RCA that learns a global linear 

transformation by exploiting only the relevant 

constraints [5]. The RCA functions take a data set and 

a set of positive constraints as arguments and return a 

linear transformation of the data space into better 

representation, alternatively, a Mahalanobis metric 

over the data space. 
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2.2.1. Theory of RCA  

To learn an optimal distance metric between 

fingerprints as training samples, the RCA [6] requires 

fingerprints and their labels. The training fingerprints 

consist of fingerprints from the image sequence and 

their corresponding dictionary entries [6]. The 

observed fingerprints taken from voxel-wise images 

that correspond to the same dictionary are assigned the 

same label. In addition, the same label is given to the 

corresponding dictionary entries. The RCA 

framework [5] is described in Algorithm 1. A chunklet 

denotes a group of fingerprints that share the same 

label. 

Algorithm 1. RCA  

Inputs: 

• The number of training fingerprints with L 

different labels: M 

• The fingerprints in the chunklet jth,: 𝒙𝒋𝒊 

• The number of fingerprints in the jth chunklet: 

𝒏𝒋 

• Desired dimensionality: n 

Outputs: 

• The transformation matrix: A 

Compute:  

I. Compute the within chunklet covariance matrix 

�̂� =
𝟏

𝑵
∑ ∑(𝒙𝒋𝒊 − 𝒎𝒋)(𝒙𝒋𝒊 − 𝒎𝒋)

𝑻

𝒏𝒋

𝒊=𝟏

𝒏

𝒋=𝟏

 

Where 𝒎𝒋 denotes the mean of the jth chunklet. 

II. Compute the optimal transformation matrix with: 

�̂�: 𝑾 = �̂�−
𝟏

𝟐
 , which has large weights on relevant 

dimensions and small weights on irrelevant 

dimensions. 

Return 𝑨 matrix. 

2.3. Simulation Setup 

 2.3.1. Bloch Response Simulation 

The dynamics of the magnetization for an 

isochromat are described by the response of the Bloch 

equations by the excitation parameters. Let i = 1, …, 

N denote the voxels of the imaged slice. We assume 

that in each voxel a single isochromat dominates. 

The magnetization dynamics at voxel i for an 

isochromat are described by the parameter set          

𝜃𝑖 = {𝑇1𝑖, 𝑇2𝑖} 𝜖 𝜒 (tissue parameters) as living on a 

manifold M, where 𝜒 denotes the feasible values of 

𝑇1
𝑖, 𝑇2

𝑖 (relaxation times at voxel i) and 1 ≤ 𝑖 ≤ 𝑁.  

In MRF, multiple scans are obtained from one slice 

of the object. We indicated the scans by a matrix 

𝑋[𝑁×𝑇], in which N is the total voxels’ numbers and T 

is the number of frames. Let 𝑖 = 1, … , 𝑁 denote the 

voxels of scanned slice. Let 𝑋𝑡
𝑖  [𝑁 × 𝑡] and 𝑋[1×𝑇]

𝑖  

denote the response image acquired from the voxel i, 

respectively at time t and for all times. Similarly, 

𝑋𝑡  [𝑁 × 1] denotes the scanned slice at time t.  

The dynamics of the Bloch equations are also 

characterized by the excitation parameters of the pulse 

at time t, namely the Time of Repetition (TR), Time of 

Echo (TE), and Flip Angle (𝛼) which, are known 

parameters and are shown in a column vector as:     

θ′ = {𝛼𝑗, 𝑇𝑅𝑗, 𝑇𝐸𝑗}
𝑇
, where 1 ≤ 𝑗 ≤ 𝑇.  

The combination of both the pulse sequence 

characteristics and the voxel properties define the 

magnetization response sequence at the 𝑖𝑡ℎ voxel 

when properly scaled by the proton density of voxel, 

𝑃𝐷𝑖  ≥  0. 

Now, signal evolutions or fingerprints of any voxel 

can be written as a parameter mapping from 𝜃𝑖 and 𝜃′ 

to the sequence or 𝑋𝑖,: as: 𝑋𝑖,: = 𝑃𝐷𝑖𝐵(𝜃𝑖; 𝜃′)[1×𝑇]. 

Where B represents a smooth mapping induced by the 

Bloch equation dynamics: 𝐵 ∶  𝑀 →  𝐶 (1 × 𝐿). To 

be able to recover the Bloch parameters or 𝜃𝑖
  from 𝑋𝑖,:, 

we need to define a dictionary 𝐷[𝑘×𝑇] that consists of 

all possible signal evolutions, simulated by the Bloch 

equation. Each dictionary entry or k is normalized. 

Note PD of the voxel i that is not simulated in the 

dictionary since it is a scale for matching the observed 

signal from a pixel with the dictionary entries. The 

sequence parameters, or 𝜃 
′ are used for both creating 

the dictionary and acquiring the scanned data, or X. 

After pre-calculating the dictionary and acquiring 

fingerprints from X, it is time to match every row of X 

with a single row of the 𝐷 = {𝐷𝑘}, 𝐷𝑘 = 𝐵(𝜃𝑖; 𝜃 
′).  A 

Look Up Table (LUT) is constructed that consists of 

tissue parameter values of the dictionary. The LUT 

provides an inverse for 𝐷𝑘 such that: 𝜃𝑖
𝑘 = 𝐿𝑈𝑇𝐵(𝑘). 

The parameter 𝑘 is the matching dictionary index. 

Thus, the tissue parameter maps are extracted from 

LUT for each �̂�𝑖. 
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2.3.2. Pulse Sequence Simulation 

This experiment is based on the simulation of the 

data acquisition by a series of pseudo-randomized Flip 

Angles (FAs) and Repetition Times (TRs) to excite the 

spin system and acquire a series of undersampled 

images. 

The bSSFP signal was used in the original MRF 

publication [1], which is sensitive to T1 and T2. The 

main problem with bSSFP is that the banding artifacts 

resulting from inhomogeneous fields could affect 

quantification. However, the FISP sequence acquires 

coherent steady state signals with a constant 

unbalanced gradient moment in each repetition time 

[9]. The FISP sequence does not lead to the banding 

artifacts that are seen in bSSFP. Without any other 

mechanisms to destroy the coherence of the transverse 

magnetization (such as RF spoiling), the sequence is 

sensitive to both longitudinal and transverse relaxation 

times. In this study, our pulse sequence structure is the 

IR-FISP sequence, similar to that of the original 

MRF–FISP [9], which is simulated using the EPG 

Bloch equation solver to predict the signal evolution 

of spins that are strongly dephased by unbalanced 

gradients [3]. The physical processes in the IR-FISP 

sequence are RF excitation, spin relaxation, and spin 

de-phasing. With the use of spoiler gradients, the IR-

FISP sequence is robust to off-resonance effects. The 

acquisition length was 1000 TRs. A fixed Echo Time 

(TE) of 2 ms is used for all the frames. The random 

FAs and TRs are implemented based on the MRF-

FISP paper [9], which are as follows: 

A sinusoidal variation of FAs by the following 

pattern: 

𝐹𝐴 (𝑛) = sin (
𝑛𝜋

𝑁𝑟𝑓
) ∗ 𝐹𝐴𝑚𝑎𝑥 

Where: 

n: the number of flip angles from 1 to N_rf (N_rf = 

200) 

FA_max: the maximum flip angle that is randomly 

selected from 5 to 90 degrees. 

The TR variation is based on a Perlin noise pattern 

from 11.5 to 14.5 ms. The FA and TR patterns are 

shown in Figure 1.  

The chosen FA and TR patterns drive the 

magnetization into a persistent transient state, which is 

sensitive to the parameters of relaxation. 

In this study, we implemented the VDS trajectory 

[2, 12] using minimum-time gradient design with 

zeroth-order gradient moment compensation [13]. We 

acquired under-sampled k-space data using a spiral 

trajectory, in which we used 24 interleaves to fully 

sample the inner region, and 48 interleaves to fully-

sample the outer region. For every time point, each 

spiral trajectory is rotated by (360/48) 7.5 degrees to 

highly undersampled the data for each time point. The 

undersampling ratio is 9 %, the same as the original 

MRF paper [1]. In order to have noisy undersampled 

data, we added a complex Gaussian distribution noise 

with zero-mean and a standard deviation of σ=0.5 to 

the undersampled k-space data. Therefore, the 

distance metric is trained with a set of images 

contaminated by this type of noise. 

2.3.3. Digital Phantom Experiments 

All experiments were performed on a digital brain 

phantom to investigate our method and assess the 

accuracy of the measurements across the acquisition, 

which were downloaded from the BrainWeb 

repository [14]. The material components of the 

phantoms were listed in Table 1. The phantom size is 

108 × 90 with 90¬ slices. The 45th slice was used for 

training the distance metric. Slices 46 to 56 are used 

for validation of our method. Both the training and the 

testing slices are further rescaled and zero-padded to 

make a 128 × 128 image to simplify the computations. 

The numerical brain phantom, colored by an index is 

shown in Figure 2. The numerical phantom is 

restricted to 5 material components as listed in      

Table 1. 

Figure 1. A sinusoidal pattern of FAs (Left side) and 

a Perlin noise pattern for TRs (Right side) 
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2.4. Dictionary Simulation and Generation 

The FISP dictionary is simulated by the EPG 

formalism [3] to cover a wide range of 𝑇1 and 𝑇2 that 

contains 18,838 combinations of 𝑇1 and 𝑇2 of about 2 

GB with the discrete parameter ranges. We outlined 

the 𝑇1 and 𝑇2 ranges and step sizes in Table 2. This 

range covers the total values of relaxation times that 

can be found in a healthy brain. 

2.5. Dictionary Matching 

In the experiments below we compared two 

different algorithms for reconstructing the image 

sequences. These are: (1) the original MRF algorithm 

or the correlation algorithm; (2) The proposed 

algorithm. 

Algorithm 2. The Original MRF algorithm (Correlation 

algorithm) 

Inputs: 

• Undersampled images: Y 

• Pre-calculated dictionary: D 

• Look Up Table: 𝑳𝑼𝑻𝑩 

Outputs: 

• Tissue-related parameters: 𝑻𝟏, 𝑻𝟐, and PD. 

Compute:  

Reconstruct 𝐗:  �̂� = 𝑭𝑯{𝒀} 

for i=1: N do 

�̂�𝒊 = 𝒂𝒓𝒈𝒎𝒂𝒙𝒌 𝒓𝒆𝒂𝒍 < 𝑫𝒌, �̂�𝒊,: >/||𝑫𝒌||
𝟐

    

𝜽�̂� = 𝑳𝑼𝑻 (�̂�𝒊) 

𝝆�̂� = 𝐦𝐚𝐱 {𝒓𝒆𝒂𝒍 < 𝑫�̂�𝒊
, �̂�𝒊,: >/ ||𝑫�̂�𝒊

||
𝟐

𝟐

  , 𝟎} 

end for 

Return 𝜽,̂ �̂� 

2.5.1. MRF Approach 

The pattern-matching framework or correlation in 

the original MRF paper [1] is described in Algorithm 

2. We generated discrete images (X) with the help of 

𝐹𝐻{Y}, in which F{.}, H, and Y are referred to as the 

2D inverse Non-Uniform Fourier Transform (NUFFT) 

operator [15], conjugate transpose, and undersampled 

images, respectively. The undersampled images of 

each time point are reconstructed separately using 

NUFFT [15]. 

To construct a dictionary we needed 𝐷 = {𝐷𝑘}, in 

which: 𝐷𝑘 = 𝐵(𝜃𝑖
𝑘; 𝛼, 𝑇𝑅) for k=1,…, P and          

𝜃𝑖
𝑘 = {𝑇1,𝑖

𝑘 , 𝑇2,𝑖
𝑘 , 𝑃𝐷𝑖

𝑘}. An LUT is constructed to 

provide an inverse for 𝐷𝑓 such that: 𝜃𝑖
𝑘 = 𝐿𝑈𝑇𝐵(𝑘𝑖). 

The parameter �̂�𝑖, is the matching dictionary index. 

Thus, for each �̂�𝑖, the tissue parameter maps are 

extracted from LUT. 

In this approach, the computational complexity is a 

major drawback of the large dictionary that leads to 

Figure 2. Slice 45 of the digital brain phantom [10] 

colored by index: 0 = Background, 1 = Skin/Muscle, 

2 =Fat, 3 = White Matter (WM), 4 = Grey Matter 

(GM), 5 = Cerebrospinal Fluid (CSF) [14] 

 
Table 1. Tissue types of digital brain phantom used 

from the BrainWeb website [14]  

Tissue Index 𝑻𝟏 (s) 𝑻𝟐 (s) PD 

Background 0 0 0 0 

Muscle/Skin 1 1.1 0.035 0.7 

Fat 2 
Only consider water 

protons here 

WM 3 0.6 0.08 0.65 

GM 4 0.95 0.1 0.8 

CSF 5 4.5 2.2 1 

Note: the 𝑇1, 𝑇2, and PD maps of the numerical brain 

phantom were known as the reference parameters in this 

study. 

Table 2. The ranges and step sizes of 𝑇1 and 𝑇2 in the 

FISP dictionary 

FISP Sequence Range (ms) Step Size (ms) 

𝑇1 
[20, 3000] 

[3000, 5000] 

20 

200 

𝑇2 

[10, 300] 

[300, 500] 

[500, 900] 

5 

50 

200 

Note: we computed the dictionary once, before the data 

acquisition, so there are no worries for time that spent in this 

step. 
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inaccuracy of tissue parameters estimation. Moreover, 

the estimation accuracy highly depends on the 

accuracy of the approximate projection operator. To 

overcome these problems, in the next section, we 

offered an approach based on the accelerated distance 

metric learning algorithm. 

2.5.5. Proposed Approach 

The proposed pattern-matching framework is 

described in Algorithm 3. First, the dictionary or D is 

projected into the lower-dimensional space or the 

SVD space [8] by the first singular vectors or K. Now, 

the compressed dictionary is called 𝐷𝑘. 𝐹𝐻{. } is again 

the 2D inverse NUFFT operator that gives us observed 

synthetic MR signal, or �̂�𝑖. Subsequently, we 

projected �̂�𝑖 to the same SVD space, resulting in K 

“singular images”, from which we obtained 

compressed fingerprints, or �̂�𝑘. Then, the �̂�𝑘 is 

matched to the nearest neighbors in the dictionary with 

the help of a learned Mahalanobis distance metric A 

that is described in Algorithm 1. A captures fingerprint 

dimensions in the time domain. By measuring the 

dictionary index, or k𝑖, LUT extracted the tissue-

related parameters, or 𝜃𝑖 and the proton density �̂�𝒊. 

2.6. Performance with Different Noises 

To evaluate the noise robustness of the proposed 

method, we added complex Gaussian distribution 

zero-mean noise with different standard deviations      

σ = {0.3, 0.4, 0.5, 0.6, 0.7} to the undersampled            

k-space of all the frames. 

2.7. Statistical Analysis  

To assess the estimation accuracy of reconstructed 

parameter maps, we used following metrics: 

2.7.1. Pixel-Wise Mean Absolute Relative Error 

(MARE) Metric 

MARE metric is defined below [14]: 

𝑀𝐴𝑅𝐸 =
1

𝑛
∑ |

𝐴𝑗 − 𝑃𝑗

𝐴𝑗
|

𝑛

𝑗

 

Where Aj and Pj denote the actual (or reference) and 

predicted tissue properties, respectively, at pixel jth. 

Note that the reference data are the T1, T2, and PD 

maps of digital brain phantom. 

2.7.2. Structural Similarity Index (SSIM) Metric 

To measure the similarity between two quantitative 

maps of estimation and reference, the SSIM metric is 

applied [16]. The SSIM metric is based on visible 

structures in the image that looks at groups of pixels, 

since then not all of those small changes in noise and 

variation tend to affect groups of pixels than they do 

with individual pixels. The SSIM index is a decimal 

value between “-1” and “1”, and the value of “1” is 

only reachable in the case of two identical sets of data 

(images). 

3. Results 

3.1. Visual Comparison 

The T1, T2, and PD maps obtained by the MRF 

matching algorithm, and proposed MRF matching 

algorithms and their corresponding relative error maps 

Algorithm 3. Distance Metric Learning algorithm in the 

SVD space 

Inputs: 

• Undersampled images: Y 

• Pre-calculated dictionary: D (𝒏 × 𝒕)   
• Matrix 𝑽𝒌 (𝒕 × 𝒌) including the first k right 

singular vectors of the dictionary 

• Learned Metric: A (from algorithm 1) 

Outputs: 

• Tissue-related parameter maps: 𝑻𝟏, 𝑻𝟐, and PD. 

Compute:  

Dictionary projection to the SVD space: 

𝑫𝒌 = 𝑫𝑽𝒌 

𝑿: �̂� = 𝑭𝑯{𝒀:,𝒋} 

Project X to the SVD space: 

X: 𝑿𝒌 = 𝑿𝒗𝒌 

for i=1: N do 

�̂�𝒊 = 𝒂𝒓𝒈𝒎𝒊𝒏𝒌||𝑿𝒊/||𝑿𝒊||𝟐

𝟐
− 𝑫𝒌

𝒌||𝑨   

�̂�𝒊 = 𝐋𝐔𝐓 (�̂�𝒊) 

�̂�𝒊 = 𝐦𝐚𝐱  {𝒓𝒆𝒂𝒍 < 𝑿𝒊, 𝑫�̂�𝒊
>, 𝟎} 

𝑿𝒊 = �̂�𝒊𝑫�̂�𝒊
 

end for 

Return 𝜽,̂ �̂�. 

Note that, although we added a new step as projecting the 

observed signals into the SVD space in algorithm 3 

compared to the algorithm 2, the amount of computation 

time can be significantly reduced by choosing an 

appropriate k. 
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are shown in Figure 3, Figure 4, and Figure 5 

respectively. The MRF matching algorithm is related 

to the correlation algorithm, which is used in the 

seminal paper [1]. In MRF-RCA, we applied the RCA 

algorithm [5] but it differs from the work that has been 

done by Wang et al. [4], since we used IR-FISP with 

undersampled spiral trajectory, while they used IR-

bSSFP with undersampled Cartesian. The accelerated 

MRF-RCA is referred to as the RCA algorithm [5] that 

matches the fingerprints in the SVD space with a 

compressed dictionary in the same SVD space. To 

provide benchmarks for proposed algorithm, we also 

used fully sampled or noise free data for MRF 

reconstruction correlation algorithm. 

3.2. The MARE Values Comparison 

The MARE values of the T1, T2, and PD estimated 

by fully-sampled MRF, undersampled MRF,        

MRF-RCA, and accelerated MRF-RCA are shown in 

 

 

 

 

 

 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. 

The results from Tables 3 illustrates that the 

proposed method has substantial gains in accuracy of 

reconstruction over the other [1], which better matches 

the reference maps. The error of fully sampled MRF 

results makes sense that the dictionary is quantized, 

while the real quantitative parameters are continuous. 

According to Figure 5 and Table 3, in all algorithms, 

T2 results show visible difference, which is related to 

CSF region. The Underestimation of T2 value in CSF 

region was also reported in the original MRF 

experiment [1] and was justified as out-of-plane flow 

in this 2D experiment. A similar effect can be 

observed in conventional T2 mapping techniques as 

well [17]. It can be seen that for T1 and PD, the 

proposed algorithm (accelerated MRF-RCA) provides 

a better quantitative map and relative error map 

compared to reference map, while there is a visible 

difference in CSF part of T2 relative error map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Reconstructed 𝑇2 maps and corresponding relative error maps from the fully 

sampled MRF reconstruction, the undersampled MRF reconstruction (MRF), the MRF-RCA 

reconstruction, and the accelerated MRF-RCA 

 

Figure 3. Reconstructed 𝑇1 maps and corresponding relative error maps from the fully 

sampled MRF reconstruction, the undersampled MRF reconstruction (MRF), the MRF-RCA 

reconstruction, and the accelerated MRF-RCA 
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3.3. The SSIM Values Comparison  

Table 4 illustrates the SSIM values of T1, T2, and 

PD estimated by MRF, MRF-RCA, and accelerated 

MRF-RCA algorithms. 

The results of Table 4 show that accelerated MRF-

RCA has a substantial enhancement of the accuracy of 

tissue parameters estimation, which more desirably 

matches the reference maps. MRF-RCA exhibits a 

high level of accuracy compared to undersampled 

MRF. However, its performance is slower than the 

MRF. 

3.4. Results in the Presence of Different 

Noises 

Here we focus on the performance of proposed 

method in the presence of Gaussian noise on 

estimation of quantitative maps. The SSIM values of 

T1, T2, and PD have been illustrated in Table 5, for 

different standard deviations and mean of 1. Note that 

the results in parts 3.1-3.3 are reported in the presence 

of the same noise with σ=0.5. Table 5 illustrates the 

robustness of the proposed method in the presence of 

noise. 

3.5. Computation Time  

Computation time (Sec) of the proposed algorithm 

for 5 selected number of k singular values are shown 

in Table 6. 

As expected, it is perceivable from Table 6 that the 

computation time increases in speed as the k value 

decreases. Therefore, the efficiency of the proposed 

algorithm in terms of speed of tissue parameters 

estimation is improved compared to [1]. In fact, the 

advantage of our proposed method is in the reduced 

computation time which is about 3.2 times faster than 

the correlation algorithm, using k=25 singular vectors. 

Taken together, these results show the success of our 

Figure 5. Reconstructed PD maps and corresponding relative error maps from the fully 

sampled MRF reconstruction, the undersampled MRF reconstruction (MRF), the MRF-RCA 

reconstruction, and the accelerated MRF-RCA 

 
Table 3. The MARE values of 𝑇1, 𝑇2, and PD achieved by the MRF, MRF-RCA, and accelerated MRF-RCA 

 Fully Sampled MRF Undersampled MRF MRF-RCA Accelerated MRF-RCA 

𝐓𝟏 0.0212 0.49765 0.41554 0.05601 

𝐓𝟐 0.0871 0.78262 0.72071 0.10922 

PD 0.0182 0.51865 0.44724 0.03406 

 

Table 4. The SSIM values of  𝑇1, 𝑇2, and PD achieved by the MRF, MRF-RCA and accelerated MRF- RCA 

 Fully Sampled MRF Undersampled MRF MRF-RCA Accelerated MRF-RCA 

𝐓𝟏 0.99 0.90 ± 0.03 0.93 ± 0.04 0.98 ± 0.02 

𝐓𝟐 0.99 0.86 ± 0.03 0.89 ± 0.05 0.95 ± 0.02 

PD 1 0.88 ± 0.04 0.90 ± 0.04 0.97 ± 0.01 
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algorithm at reducing the computation time while 

producing accurate tissue parameter maps. 

 

 

 

4. Discussion  

The MRF method is a new approach to magnetic 

resonance and not fully exploited yet. In this work, we 

proposed an accelerated distance metric algorithm to 

reconstruct the undersampled data and estimate the 

MR parameters. It projects the signal evolution to the 

Bloch response manifold with a learned distance 

metric. We learned the distance metric from the data 

instead of a pre-defined one, which allows to better 

match the fingerprints to the dictionary entries. We 

conducted numerical simulations to demonstrate the 

effectiveness of our framework. We simulated an IR-

FISP MRF pulse sequence with EPG formalism and 

implemented a distance metric learning as an MRF 

reconstruction algorithm, named accelerated MRF-

RCA. In addition, we used the SVD based 

compression framework in the time domain for both 

the dictionary and the signal evolution compression to 

enable accurate MRF parameter estimates from highly 

undersampled data. Although works that use the low-

rank structure of MRF sequences have been published 

in the past [8, 17-23], our technique is unique mainly 

in using the SVD for a distance metric reconstruction 

algorithm.  

Our quantitative results show that in comparison to 

the conventional MRF matching algorithm, the 

distance metric learning algorithm accompanied by a 

compressed dictionary and signal is capable of 

achieving more accurate parameter map 

reconstruction [1, 9]. The most remarkable result to 

emerge from the data is that implementing an efficient 

technique for the dictionary compression reduces the 

computation time for the distance metric learning 

algorithm to estimate tissue parameter maps. This 

underlines just how important dictionary size is. 

Therefor the accelerated MRF-RCA outperforms 

MRF-RCA [4] in terms of speed. Note that the 

computation times reported in Table 6 were computed 

using the SVD approach implemented in MATLAB. 

The most successful perspective of using metric 

learning to MRF is that some dimensions for matching 

may be more useful than the others. Correlations exist 

between each dimension of MR fingerprints and the 

compressed dictionary entries. Therefore, learning a 

distance metric can provide us important information. 

Furthermore, the proposed method is able to recover 

tissue parameter maps accurately in the presence of 

different noise levels. In summary, as anticipated, our 

results outperformed the original MRF study in term 

of accuracy and speed [1]. However, quantification of 

tissues with long T2 such as CSF remains a challenge 

(due to out-of-plane flow in this 2D experiment), so 

another study is needed to design acquisition 

parameters to quantify tissues with long T2 values. 

Although our results show benefits of using a 

compressed dictionary during distance metric learning 

algorithm, the limitation of our study is that we 

proposed our approaches on the synthetic data; 

therefore, further experimental investigations are 

needed to estimate the tissue parameters with the 

proposed method.  
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