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A B S T R A C T
Purpose- Although in the external beam radiotherapy tumor motionis a crucial and 
challenging issue due to respiration  motion, temporal changes in anatomy during 
imaging cause considerable problems. Moreover, the Four Dimensional Computed 
Tomography (4DCT) imaging has been proposed to track these changes at the 
different breathing phases. Also at real time tumor tracking, the accuracy of motion 
tracking models that are necessary can be increased by constructing virtual images 
due to obtaining additional motion data.

Methods- In this study, the 4DCT data set of five real patients who have had lung 
cancer were provided by DIR-lab site in addition to deformable image registration 
algorithms presented in MATLAB software and DIRART software respectively to 
calculate 2D and 3D vector felids between two respiratory volumes. Moreover, the 
2D and 3D displacement vector were calculated by optical flow based on Horn-
Schunck method, these vector fields were used to generate an interpolated image 
at the desired time by 2D and 3D interpolation methods. Although 2D interpolation 
methods included nearest, cubic, linear, and B-spline, the 3D interpolation method 
was based on the 3D spatial interpolation. In this study, the reconstructed image at 
the desired time by two methods was compared with real image at the same time. 
Considering Roots Mean Square Error (RMSE) between actual and interpolated 
imageis used to measure the accuracy of interpolated images. Also the accuracy of 
our reconstruction images depends on the accuracy of displacement field. 

Results- All of the methods are able to generate images at the desired time with 
less RMSE and high correlation coefficient. While the 2D interpolation methods 
that include nearest, cubic, linear, and B-spline were able to generate an image 
with less errors, the performance of the 2D interpolation method is less efficient 
than other methods.

Conclusion- The behavior and capability of the algorithmsare demonstrated by 
synthetic image examples. Furthermore, to compare 2D and 3D optical flow based 
interpolation methods, the RMSE quantitative measures are calculated. Results 
indicate that both 2D and 3D interpolation presented methods are outperformed 
significantly, and the patient is kept away from re-scanning for getting new images.
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1. Introduction

I n the modern radiotherapy, the study of organ 
motion was significant in the external beam 
radiotherapy, but to acquire temporal image 

sequences, modern tomographic imaging devices 
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were enabled [1, 2]. Tumor located in the thorax, 
abdomen and liver region move due to patient 
respiration. Due to the respiratory motion, the 
accuracy of the dose delivery on the tumors and 
surrounding tissue may not be according to the 
principle of the ALARA that maybe over and/or under 
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dosage received by tumors and surrounding tissue 
[3-6]. Although in the external beam radiotherapy 
many techniques such as gated radiotherapy [7] 
and real time tumor tracking [8] are used to reduce 
the effect of respiratory motion on the accuracy of 
the dose delivery, the problems of dose delivered 
at the tumors and surrounding tissue are not yet 
satisfactorily solved.To overcome tumor motion 
caused by respiration, the Four-Dimensional (4D) 
treatment planning dose delivery has been proposed 
[4]. For the 4D treatment planning and modelling 
organ motion during the respiratory cycle, the 
4DCT data sets have been required [5]. However, 
the acquisition of the 4DCT data sets which have 
included time, spatial resolution, and temporal 
resolution of imaging devices are limited [1, 2, 5]. 
Moreover, temporal resolution refers to the precision 
of a measurement with respect to time. Often there 
is a trade-off between temporal resolution of a 
measurement and its spatial resolution. In some 
contexts such as particle physics, this trade-off can 
be attributed to the finite speed of light and the fact 
that it takes a certain period of time for the photons 
carrying information to reach the observer [9]. On 
this occasion, the system might have undergone 
changes itself. Thus, the longer the light has to 
travel; the lower is the temporal resolution.

In the previous study of image processing tasks, 
image registration algorithms can be classified into 
intensity (dense) based and feature based. Intensity-
based methods compare intensity patterns in images 
via correlation metrics, while feature-based methods 
find a correspondence between image features such as 
points, lines, and contours. Intensity-based methods 
register entire images or sub-images. If sub-images are 
registered, centers of corresponding sub images are treated 
as corresponding feature points [10, 11]. Feature-based 
methods establish a correspondence between numbers 
of especially distinct points in images. Knowing the 
correspondence between a number of points in images, 
a geometrical transformation is then determined to 
map the target image to the reference images, thereby 
establishing point-by-point correspondence between 
the reference and target images [10, 11]. A spatial and 
temporal interpolation of data sets is used to calculate 
the intensity (dense) motion models [12]. However, in 
processing sequences of images there is great anxiety 
and a basic problem that the calculated computation 
of optical flow velocities of the surface points onto 
the imaging plane of a visual sensor (a type of Opto 
electronic system to monitoring displacement) an 

approximation image motion. In particular, optical 
flow is often a convenient and useful method, but in 
general there are other motion descriptor methods 
sometimes more than optical flow [13]. To generate 
images at predefined phases, a temporal interpolation 
of the image data is necessary. Moreover, in medical 
image processing, interpolation is commonly used and 
is required. In conventional medical image processing, 
there are numerous techniques for the interpolation 
of images such as: Grevera and Udupa [14] who 
divide spatial interpolation methods into two groups: 
intensity based methods and shape based methods. 
While See Lehmann et al. [15] and Meijeriing [16] 
tried to compare different intensity based methods, 
Grevera and Udupa [14] tried to compare the intensity 
and shape based interpolation methods. On the other 
hand, for 3D spatial interpolation, other registered 
interpolation methods based on image volumes were 
already presented [17, 18]. Goshtasby et al. [17] 
presented a registration based method to interpolate 
between neighboring slices in tomographic images. 
While the slices were registered to calculate the 
intensity values of the interpolated slice from the 
resulting displacement field by using intensity and 
gradient features, to identify corresponding points in 
two adjacent original slices, interpolation lines were 
calculated. However, to calculate correspondences 
between neighboring slices Penney et al. [18] applied 
voxel–based registration by using B–spline regularization 
and the normalized mutual information similarity 
measure. The interpolation step is a similar method used 
by Goshtasby [17]. While in particular to consecutive 
slices, both of the methods were limited, and to the 
registration algorithm, no theoretical motivations were 
used. Moreover, the use of  the mutual information 
similarity measure was not motivated by Penney, 
the concept of interpolation lines were given [18].

Although in this study to interpolate between 
frames of a temporal image sequence, we used 
4DCT sequences images of different patients, 
the two types of interpolation based on 2D and 
3D spatial interpolation were used. Although the 
2D interpolation methods included linear, cubic, 
spline and nearest methods were used, the 3D 
interpolation was based on 3D spatial interpolation. 
In addition to calculating 2D and 3D velocity and 
vector fields at definite time between frames of 
a temporal image sequence, the Horn-Schunck 
method basic MATLAB software and the DIRART 
software respectively were used. To considerate the 
accuracy of implemented interpolation methods, 
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the Horn and Schunck’s gradient-based algorithm 
was chosen. In this study, to determine velocity 
and vector; fields, the first optical flow between the 
temporal images is determined, and then, velocity 
is calculated and vector field is used to generate 
an interpolated image at the desired time. Finally, 
the results of the two methods of the interpolation 
are compared with real images at the desired time. 
Moreover, all of the methods are able to generate 
images at a predefined phase with less RMSE and 
high correlation coefficient. While 2D interpolation 
methods that included nearest, cubic, linear, and 
B-spline were able to generate images with less 
errors, the performance of the 2D interpolation 
method is less efficient than other methods.

2. Material and Methods
2.1. The Properties of the Software and Data 

DIRART, deformable image registration (DIR) 
plus adaptive radiotherapy (ART) research is a 
large set of programs developed using MATLAB 
that has implemented in IGRT technology and 
has potential possibilities for adapting treatment 
planning on a daily basis. DIRART is designed in 
a data oriented style with a focus on ability, user-
friendliness, performance, accuracy, flexibility, 
features, configurability and stability. It has a great 
potential for the ART and DIR research [19-22]. It 
contains DIR algorithms, common ART functions, 
integrated graphics, visualization features, and dose 
metrics analysis functions [19, 23]. In addition to 
offer more functions, it complementarily works 
together with CERR (Computational Environment 
for Radiotherapy Research) [24]. Also DIRART 
is designed around the concepts of the interactive 
radiotherapy objects, including images, structures, 
doses and deformation vector fields (DVF) etc. On 
the other hand, DIRART provides a full featured 
working environment for ART related research tasks. 
It can also rescale, subtract, sum up the transformed 
doses, and convert iso-dose lines to structures [19, 
23 , 25 , and 26]. In this study, the DIRART software 
was used to calculate 3D velocity and vector field 
between frames of a temporal image sequence [19, 
23 , and 27].

MATLAB is a high-performance language for 
technical computing [28]. In the MATLAB software, 
an image registration technique is used widely in 
medical contexts [29, 30]. Moreover, image registration 

technique includes a variety of methods such as: 
interpolation technique, clustering technique, optical 
flow,  segmentation etc. [29, 31]. In this study, 2D 
and 3D optical flow methods based on Horn-Schunck 
and 2D and 3D interpolation methods based on the 
MATLAB software and DIRART software [32, 33] 
respectively were used to calculate 2D and 3D velocity 
and vector field between frames of a temporal image 
sequence and generate 2D and 3D an interpolated 
images at the desired time [34]. 

In this study, the data sets used included the 4DCT, 
of the five patients who have had lung cancer, 
from the University of Texas Medical Branch, the 
University of Texas M. D. Anderson Cancer Center, 
the Office of the Director of the National Institutes 
of Health through an NIH Director’s New Innovator 
Award, and through an NIH Research Scientist 
Development Award. Moreover, more information 
about the patients are shown in Table 1. 

Table 1. Shows the Information of the 4DCT Data of Patients.

Number label Image dims Voxels 
dimensions (mm3)

Patient 1 4DCT 512×512×128 0.97×0.97×2.5

Patient 2 4DCT 512×512×136 0.97×0.97×2.5

Patient 3 4DCT 512×512×128 0.97×0.97×2.5

Patient 4 4DCT 512×512×128 0.97×0.97 ×2.5

Patient 5 4DCT 512×512×120 0.97 ×0.97×2.5

2.2. The 2D/3D Optical Flow Methods
The initial hypothesis of 2D optical flow based 

method is that pixel intensities of time varying image 
regions remain constant. Moreover, the conservation 
of the intensity of points under motion is formulated 
in the expression that the total derivative of the 
image function is zero [30-32]. To calculate vector 
fields in two images, one must solve the equation 
(1) of the optical flow constraint equation:

0x y tI u I v I+ + =                                             (1)

In the optical flow equation u and v is 2D vector 
fields. Although to solve the optical flow equation 
numerous techniques such as Horn-Schuck and 
Lucas-Kanade Method is used, in this study the 
Horn-Schuck method is used to calculate velocity 
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and vector fields [32, 33]. In order to compute 
a velocity and vector fields matching a pair of 
consecutive images from a gray value sequence. The 
consistency of gray level intensity when moving 
along the flow was computed from the equation 
(2) of the derivatives in time and space:

( )
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of the optical velocity component, and ( )
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∫ ∫ ∫∫ scales the 
global smoothness term. Moreover, for each pixel in 
the image, the Horn-Schunck method minimizes is 
used in the previous equation to obtain the velocity 
field, [u v], which is given by the following (3) 
equation:
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In this equation , ,[ , ]k k
x y x yU V , is the velocity 

estimate for the pixel at (x, y), and , ,[ , ]k k
x y x yU V− −  

is the neighborhood average of , ,[ , ]k k
x y x yU V . For 

k=0, the initial velocity is 0.

To calculate the three-dimensional velocity and 
vector in the case, the optical flow constraint equation 
are extending [13]. With considering sequence of 
3D images with an intensity value in the volumetric 
image point (x, y, z) at time t is I (x, y, z, t) that 
represent intensity values [35, 36].  Moreover, 
the intensity values are supposed to be described 
by a differentiable function : *[0,T]I Ω →ℜ
, the 3Ω⊂ℜ is the imaging volume and T is a 
strictly positive scalar describing the final time. 
The partial derivatives of I in the direction of x, y, 
z and t are denoted by Ix, Iy, Iz and It, respectively. 

Furthermore, the underlying optical flow assumes 
that image objects keep the same intensity value 
under motion for at least a short period of time 
[36-38]. In terms of equations, this can be stated 
as a flowing question (4): 

I (x, y, z, t) = I (x + dx, y + dy, z + dz, t + dt)
 (4)  

The 
dx dy dz(u, v, w) = ( , , ) 
dt dt dt

 is the 3D velocity 

vector. For solving this equation denes an ill-posed 
problem regularization is proposed [38]. To smooth 
variations in the sense neighboring points, the optical 
flow is supposed to have almost the same velocity. 
The Optic Flow Constraint Equation (OFCE) is 
hence replaced by the equation (5) minimization 
problem:

2 2 22
(u;v;w) x y w tx y z

min [(I u + I v + I z + I ) ]+ ( u + + )]dx dy dzα ν ω∇ ∇ ∇∫ ∫ ∫                    

                                                                   (5)
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Moreover, for adjusting the smoothness constraint 
between the data and the additional α  is a positive 
parameter, and in general to find the best value, it 
would be required to interactively adjustα .

To solve the equation (5) in the image registration 
technique, when displacements between the reference 
and template images are expected to be very large, 
considering this circumstance the data term to 
be the squared the difference of the two images 
without using the 1st order Taylor expansion. The 
corresponding minimization problem will be then 
as question (6):

2 2 22
(u;v;w) x y z

min [I(x, y, z, t) (x+u , y+v, w+z , t+1) )+ ( u + + )]dx dy dzI α ν ω− ∇ ∇ ∇∫ ∫ ∫    

               (6)
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Euler-Lagrange equations derived from the 
minimization problem (5) define a system of 
three elliptic PDEs with non-constant coefficients 
depending on the volumetric image data for the 
zero-order terms. Iterative Gauss Seidel equations 

×
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that minimize the Euler-Lagrange equations based 
on this integral are:

x y w t

x y w t

x y w t
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This system is symmetric with respect to the three 
components of the velocity u, v and w. Thus, a 
standard way to solve it is the block Gauss-Seidel 
relaxation as a question (7):
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Where ( . , )u resp wν  denotes an average of the 
neighboring points to u( .v, w)resp u( .v, w)resp . This relaxation 
scheme is known to have slow convergence if the 
discussion term dominates. We propose then to use 
a multi grid method to speed up the convergence 
[35-38]. The u , , wk k kν  are 5 × 5 × 5 averages 
of neighborhoods of velocities at iteration k. We 
perform a fixed number of iterations as specified 
by the user (the default is 50 but we usually used 
100 or 200).

2.3. The 2D-3D Interpolation Methods
In this study, while the 2D interpolation method 

included cubic, spline, nearest, and B-spline, the 
3D interpolation method was used based on 3D 
spatial interpolation. 3D spatial interpolation (Non-
adaptive interpolation techniques) and 2D interpolation 
techniques are based on direct manipulation on 
pixels instead of considering any feature or content 
of an image [39]. Moreover, for all pixels these 
techniques follow the same pattern, easy to perform, 
and have less calculation cost [40].

Nearest interpolation: While this is the simplest 
and requires the least processing time of all the 
interpolation algorithms, the nearest neighbor or 

nearest selects the value of the nearest pixel by 
rounding the coordinates of the desired interpolation 
point. Besides, using this  method one finds the 
closest corresponding pixel in the source (original) 
image for  each pixel in the destination image [41]. 
In addition, new pixels are made the same as others, 
the pixels or dots of color are duplicated to create 
new pixels as the image grows. It creates edges 
that break up curves into steps or jagged edges. 
This form of interpolation  suffers from normally 
unacceptable effects for both enlargement and 
reduction of images [42].

Linear Interpolation: To calculate its final interpolated 
value linear, interpolation takes a weighted average 
of the 4 neighborhood pixels. Furthermore, the 
result is a much smoother image than the original 
image, when all known pixel distances are equal; the 
interpolated value is simply divided by four. This 
technique performs interpolation in both directions, 
horizontal and vertical [40].

Cubic Interpolation: Cubic goes one step beyond 
linear by considering the closest 4*4 neighborhood 
of known pixels for a total of 16 pixels. Since these 
are at various distances from the unknown pixel, 
closer pixels are given a higher weighting in the 
calculation. Moreover, perhaps cubic produces 
noticeably sharper images than the previous two 
methods, the ideal combination of processing time 
and output quality [40].

B-Spline interpolation: B-spline interpolation 
algorithm also interpolates from the nearest sixteen 
source pixels. However, this algorithm uses B-spline 
interpolating functions instead of cubic splines, 
which in general yield quite smooth results. Also 
it performs a convolution with a two-dimensional 
non separable filter, so its complexity is increased. 
Despite this performance difference, cubic B-spline 
has interesting characteristics of smoothness that 
make it a good option in some cases. In contrast, cubic 
interpolation uses a convolution with a separable 
filter, and hence has less complexity [41].

3D spatial interpolation: 3D spatial modeling 
permits the flexibility to create vertical and horizontal 
cutting planes. It also provides a better insight to 
spatial variations than 2D representations. Besides, 
3D spatial modeling with geo-statistical methods 
is appropriate for representation and analyses of 
pelagic variables, the 3D spatial interpolation method 
also gives a more comprehensive picture of the 
phenomena [43-46].
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3. Results
To test and evaluate the performance of the methods, 

the correlation coefficient (R) and Root Mean Square 
Error (RMSE) were expressed between images at 
desired time and interpolation image according the 
(8) following metric equation:

       
2

1

1 ( )
N

i i
i

RMSE A P
N =

= −∑            (8)

where, N is the number of samples, Ai is the ith actual 
image in the dataset, and Pi is the ith interpolation image. 

To generate images at predefined phases, the five 
frames of each patient were considered to evaluate the 
performance and compare results of the 2D and 3D 

interpolation methods. Moreover, the 2D interpolation 
methods included four methods (nearest, linear, 
spline, and cubic), the 3D interpolation method was 
based on 3D spatial interpolation. To calculate 2D 
and 3D velocity and vector fields, the optical flow 
method based on the Horn-Schuck was available, 
and to evaluate the performance of each method the 
correlation coefficient and RMSE was considered. 
Also more information about the amount of  the RMSE 
and correlation coefficient is shown in the Table 2.

The results of interpolation, frames, and RMSE of 
patient images are shown in Figure 1. Furthermore, the 
results of the interpolation images which are shown 
in Figure 1 respectively are Cubic, Spline, Linear, 
Nearest, and Spatial, real images interpolation images 
and RMSE between two images are shown in each 
column. In addition, these images were considered 
in the middle frame of the 4DCT sequence images.

Table 2. The RMSE and correlation coefficient for each 2D and 3D interpolation methods were calculated.

Methods
DIRART softwareOptical flow (script MATLAB)

RMSE (mm)correlationRMSE (mm)correlationPhasePatient

6.07380.9906

5.53910.99227nearest

T50 and T70Patient one
5.46550.99245linear
5.61750.99208Spline
5.57120.99204cubic

4.41400.9953

4.31920.99551nearest

T50 and T70Patient two
4.32160.99553linear
4.40570.99533Spline
4.37620.99533cubic

15.61840.9239

4.157020.99465nearest

T50 and T70Patient three
3.930370.99520linear
4.035250.99496Spline
4.011360.99493cubic

2.17840.9990

2.901170.99802nearest

T50 and T70Patient four
2.999910.99789linear
3.063890.99778Spline
3.032380.99778cubic

6.40270.9890

6.13380.98935nearest

T50 and T70Patient five
6.218010.98906linear
6.292490.98876Spline
6.266840.98876cubic
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Figure 1. Shows the frames of patient images, the results of interpolation of the middle image, and RMS that considered 
between two sequence images. 

4. Discussion
Although in the image registration technique 

many methods and strategies have been appeared 
to estimate image motion, image motion remains 
a challenging task and no techniques are able to 
generate accuracy sufficiently. To recover the motion 
and scene parameters in a realistic environment, 
the optical flow vector fields are proposed. In fact, 
to carry useful 3D and 2D motion and structure 
computations, motion and structure algorithms with 
high accuracy and less error are needed. In this study, 
a method has been available to computing optical 
flow from a sequence of images. The optical flow is 
based on the Horn-Schuck with the smoothness of 

the flow. To calculate the velocity and vector fields 
an iterative method was considered. After calculating 
velocity and vector fields, the interpolating temporal 
image sequences were represented. Moreover, the 
interpolation algorithm was theoretically derived 
from the optical flow equation; the performance 
of the algorithm was evaluated qualitatively and 
quantitatively. The quantitative results show that the 
optical flow based method clearly outperforms the 
linear and shape based interpolation. The presented 
method is also applicable to interpolate between 
neighboring slices in spatial tomographic images. 
An evaluation of this approach is accomplished at 
present. 
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To calculate 2D and 3D velocity and vector fields, 
the MATLAB and DIRART software were used 
respectively. The 2D and 3D velocity and vector 
fields based on the 2D and 3D interpolation methods 
were used to generate an image at the desired time. 
In this study although 2D interpolation method 
included linear, spline, nearest, cubic was used, 3D 
interpolation was based on 3D spatial interpolation. 
Moreover, results of the interpolation are shown in 
the Figure 1 and Table 2. As seen in the Table 2, 
all of the methods were able to generated images 
at a predefined phase with less RMSE and high 
correlation coefficient. Also the 2D interpolation 
methods were able to generate an image with less 
error than the 3D interpolation method. Thus, if 
the velocity and vector field is known, we can 
interpolate the image at the predefined frame. But 
in general the intensity conservation assumption 
might not be fulfilled and structures may appear 
or disappear between two time steps. Therefore, 
we use a weighted average between corresponding 
voxels in the adjacent timeframes. 

Furthermore, in our experiments the 2D and 3D 
interpolation methods were computationally less 
expensive than the shape based interpolation. The 
performance of the shape based method strongly 
depends on the implementation of the distance 
transformation. In this study we used the algorithm 
of Danielsson [47], but faster algorithms exist [48]. 
Although in contrast performance of the optical 
flow based interpolation, the shape based method 
is independent of the dynamic range of the images, 
the Goshtasby et al. [17] and Penney et al. [18] 
algorithm shows a symmetric behavior. As a drawback 
of our method, the Gaussian regularization is not 
guaranteed and the inverse applies to all points. 

A deformable image registration matrix, describing 
the deformation of a 4DCT image data set from one 
phase of the respiratory cycle to the other, obtained 
by the use of an optical flow algorithm can be used 
to generate 4DCT image data set at the desired time 
that provided a set of contours of normal anatomic 
structures and the GTV in all phases of a 4DCT image 
data set. Therefore, further research will address 
the integration of other regularization techniques 
and other techniques. Moreover, to generate 4DCT 
image data set at the desired time, an evaluation 
performance of different strategies of the optical flow, 
and interpolation method to calculate the velocity 
and victors’ field is needed.
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