The Effect of Sagittal STIR and FLAIR Sequences Compared to Sagittal T2-W for Characterizing MS Lesions in Cervical Spine MRI

Karim Sharifi 1, Daem Roshani 2, Bakhtiar Moradi 3, Jamil Abdolmohammadi 4, Shadi Parvizpour 4, Neda Charekhah 4, Somaye Moloudi 4, Mozaffar Mahmoodi 5*

1 Department of Radiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
2 Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
3 Shahid Ghazi MRI Center, Sanandaj, Iran
4 Department of Radiology, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
5 Department of Molecular Medicine and Medical Biotechnology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran

*Corresponding Author: Mozaffar Mahmoodi
Email: m.mahmoodi@muk.ac.ir

Received: 09 July 2022 / Accepted: 11 August 2022

Abstract

Purpose: Multiple Sclerosis (MS) is an acute, autoimmune, and inflammatory disease in the central nervous system. This study investigated the effect of sagittal Short Tau Inversion Recovery (STIR) and T2-W Fluid Attenuated Inversion Recovery (FLAIR) sequences rather than sagittal T2-W as complementary sequences in patients with cervical spinal cord lesions and suspected MS.

Materials and Methods: This cross-sectional study was performed on all individuals referred to the Shahid Ghazi MRI center in Sanandaj for six months. Sixty patients with a cervical spine MRI request that were suspected of having MS were examined. The number of MS plaques in the sagittal T2-W FSE, sagittal STIR, and sagittal T2-W FLAIR were recorded separately. A comparison between routine sequences and sequence supplementation has been made for characterizing MS plaque in the spine.

Results: Results showed that the greatest agreement was related to sagittal STIR, and sagittal FLAIR (Cohen’s kappa = 0.56). Whereas the least agreement values were from sagittal T2-W and sagittal FLAIR, STIR and FLAIR, T2-W and FLAIR, T2-W and STIR (Cohen’s kappa = 0.20, 0.33, 0.48, 0.55), respectively. Sagittal STIR and sagittal FLAIR were excellent predictors for MS plaques diagnosis due to the area under the ROC curve = 0.56; sensitivity (95% CI) = [0.85 (0.73426 to 0.929044)] and specificity (95% CI) = [0.46 (0.336699 to 0.600035)].

Conclusion: Results show that FLAIR T2-W images in sagittal sequence are appropriate for detecting lesions around spinal cord lesions. Furthermore, using thresholds obtained via statistical analysis, plaques in the cervical spinal cord can be identified in sagittal STIR images.

Keywords: Magnetic Resonance Imaging; Multiple Sclerosis; Cervical Spinal Cord Lesion; Short Tau Inversion Recovery; Fluid Attenuated Inversion Recovery.
1. Introduction

Multiple Sclerosis (MS) is an acute, autoimmune, and inflammatory disease in the Central Nervous System (CNS) that results from demyelination, often resulting in synaptic dysfunction in the brain and spinal cord [1-3]. MS is the main cause of non-traumatic disability in young adults and leads to irreversible, progressive sensory and motor function impairment [4-5]. Although this progressive disease may occur at any age, diagnosis typically occurs from 20 to 50 years [3, 6, 7]. Although the cause of MS remains unknown, the transmission of peripheral immune cells and their access to CNS through disruption of the Blood-Brain Barrier (BBB) plays a crucial role in MS incidence [8]. As a result, a range of mild to severe symptoms occurs, including visual problems, sensory disturbances, muscle cramps, cerebellar disorders, urinary problems, and speech disorders. Mortality due to this disease is limited. In most cases, the cause of death is due to marginal reasons, such as infection and bed sores [9-10]. In general, no specific clinical signs or laboratory tests can confirm or eliminate MS as the causative disease. Currently, diagnosis is achieved by evaluating a combination of accurate health history, neurological examination, Magnetic Resonance Imaging (MRI), Visual Evoked Potentials (VEP) and analysis of Cerebrospinal Fluid (CSF), review and history of neurology and psychiatric counseling in cases of psychological or cognitive symptoms, and evaluation of immune system proteins present in the blood [11-12]. Because the effectiveness of treatment depends on early implementation, an accurate and fast diagnosis of multiple sclerosis is critical. Studies have shown that misdiagnosis of multiple sclerosis can have serious consequences, including the need for subsequent aggressive immunosuppressive therapy [13]. In addition, the association of atypical manifestations of MS with non-specific white matter lesions in MRI images can lead to a misdiagnosis of MS [14-16]. In previous studies, MRI was strongly emphasized, resulting in early detection with high specificity and sensitivity which allowed timely treatment [17]. Currently, MRI is the preferred diagnostic method for all soft tissue lesions and for diagnosing MS plaques in the brain and spinal cord [18-20]. MR images are obtained using a variety of pulse sequences, including T1-weighted, T2-weighted, Inversion Recovery (IR), and Gradient Echo (GE), and by measuring the signal generated by the nucleus of hydrogen in response to a magnetic field [21]. MR images using different pulse sequences, including T1-weighted, T2-weighted, Inversion Recovery (IR), and Gradient Echo (GE), and measuring the signal produced by the hydrogen nucleus in response to the magnetic field to detect different types of the spinal cord and soft tissue lesions are obtained.

In patients with MS, there are numerous plaques (various sizes, sharp edges, round, oval, or irregular shapes) due to demyelination. MRI is helpful in differential diagnosis. Identifying the exact location of MS lesions is often difficult, as approximately 80% of cases involve the spinal cord, most often within the cervical region [22]. MS plaques may be present in the spinal cord. Approximately 80% of patients with MS are more involved in the spinal cord, especially the cervical spinal cord. For this reason, an MRI of the spinal cord is required in patients with relevant symptoms and when multiple sclerosis is diagnosed after a brain MRI [23-24]. The standard MRI protocol for MS diagnosis includes T1 weighted (T1-W), T2 weighted (T2-W), and Fluid Attenuated Inversion Recovery (FLAIR) images [25]. A key problem in assessing spinal cord injury due to MS is the occurrence of artifacts that are presented as small shadows of the spinal cord and surrounding tissue.

Sagittal T2-W and T1-W sequences are routinely evaluated; however, some plaques may not be seen with these sequences and detection may be difficult. Therefore, the present study assessed the effect of evaluating sagittal STIR and T2-W FLAIR sequences in addition to sagittal T2-W in patients with suspected MS on disease diagnosis.

2. Materials and Methods

2.1. The Study Design

This cross-sectional study was approved by the Kurdistan University of medical sciences. The present study was performed on all individuals who were referred to the Shahid Ghazi MRI center in Sanandaj for a period of six months. Data from sixty patients with suspected MS and cervical spine cord MR images were examined. Written informed consent was
obtained from all patients before entering the study. The exclusion criteria comprised MRI contraindications, including severe claustrophobia and the presence of a pacemaker (Figure 1). This study results from an approved research project in Kurdistan University of Medical Sciences No. 1395/100.

Figure 1. Demonstration of MS plaques using sagittal STIR (A), sagittal T2-W (B); as you can see, the cervical spinal cord plaques are more evident in the FLAIR sequence

2.2. MR Image Acquisition

A radio technologist performed the MRI with a GE HDxt 1.5T system embedded with an eight-channel coil (HD 8-channel CTL Array coil by GE). Routine cervical MRI sequences were performed, including sagittal T2-W FSE, sagittal T1-W FSE, and axial Multiple Echo Recombined Gradient Echo (MERGE), followed by sagittal STIR and sagittal T2-W FLAIR sequences; images were interpreted by two radiologists (Table 1). The number of MS plaques present in routine sequences was compared to those present in the additional sequences, and the radiology report determined the effect of the use of the different sequences on the identification of the presence of MS plaques.

A comparison between routine sequences (the gold standard of MS diagnosis) and sequences supplementation is made for greater clarity of MS plaque in the spine. We used the Nayak study to analyze the results and clarify the standard Cohen's Kappa criteria [26]. Finally, the relevant radiologist, after thoroughly examining the sequences and reporting the images, announces the effect of these sequences in identifying MS plaque in the spine.

2.3. Sampling Method Calculation

The sample size was collected for six months. We used the mean comparison formula with 95% confidence and 80% power to determine the sample size. According to the correlation coefficient of the correlation studies, the number of samples is 60. It should be noted that in this study, the sample size was considered as a six-month period, and the samples were included in the study from September to March in 2016 when they referred to Shahid Ghazi Sanandaj MRI Center.

2.4. Statistical Analysis

Data was analyzed using the Receiver Operating Characteristic (ROCs) curve using a complete set of 6 parameters and statistical calculations were performed using STATA software. The agreement index between categories was reported by Cohen's kappa (Fleiss-Cusick extension). Disagreement over any category and asymmetry of disagreement was analyzed using

Table 1. MRI imaging protocol for Multiple Sclerosis according to the type of sequences and physical parameters

<table>
<thead>
<tr>
<th>Sequence name</th>
<th>Protocol</th>
<th>Matrix size</th>
<th>Projection</th>
<th>Number of slices</th>
<th>TR (ms)</th>
<th>TE (ms)</th>
<th>Flip angle</th>
<th>Slice width (mm)</th>
<th>FOV (mm)</th>
<th>TI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagittal T2-W</td>
<td>FSE</td>
<td>320 x 224</td>
<td>Sagittal</td>
<td>9</td>
<td>2520</td>
<td>85</td>
<td>90</td>
<td>3.5</td>
<td>240</td>
<td>-</td>
</tr>
<tr>
<td>Sagittal T1-W</td>
<td>FSE</td>
<td>326 x 224</td>
<td>Sagittal</td>
<td>9</td>
<td>840</td>
<td>20</td>
<td>90</td>
<td>3.5</td>
<td>240</td>
<td>-</td>
</tr>
<tr>
<td>Axial MERGE</td>
<td>GRE</td>
<td>256 x 192</td>
<td>Axial</td>
<td>16</td>
<td>300</td>
<td>5</td>
<td>15</td>
<td>3</td>
<td>240</td>
<td>-</td>
</tr>
<tr>
<td>Sagittal STIR</td>
<td>STIR</td>
<td>256 x 192</td>
<td>Sagittal</td>
<td>9</td>
<td>2000</td>
<td>50</td>
<td>180</td>
<td>3.5</td>
<td>240</td>
<td>150</td>
</tr>
<tr>
<td>Sagittal T2-W FLAIR</td>
<td>FSE</td>
<td>256 x 192</td>
<td>Sagittal</td>
<td>9</td>
<td>6000</td>
<td>100</td>
<td>180</td>
<td>3.5</td>
<td>240</td>
<td>1250</td>
</tr>
<tr>
<td>Axial T2-W</td>
<td>FSE</td>
<td>256 x 192</td>
<td>Axial</td>
<td>16</td>
<td>2000</td>
<td>80</td>
<td>90</td>
<td>3.5</td>
<td>240</td>
<td>-</td>
</tr>
<tr>
<td>Sagittal T2-W + C</td>
<td>FSE</td>
<td>324 x 192</td>
<td>Sagittal</td>
<td>9</td>
<td>840</td>
<td>20</td>
<td>90</td>
<td>3.5</td>
<td>240</td>
<td>-</td>
</tr>
<tr>
<td>Axial T2-W + C</td>
<td>FSE</td>
<td>256 x 192</td>
<td>Axial</td>
<td>16</td>
<td>800</td>
<td>20</td>
<td>90</td>
<td>3</td>
<td>240</td>
<td>-</td>
</tr>
</tbody>
</table>
the Maxwell chi-square (Marginal homogeneity) and generalized McNamar chi-square (Symmetry). P values below 0.001 were considered statistically significant (Table 2).

The Receiver Operating Characteristic (ROC) was analyzed to compare the detection ability, sensitivity, and accuracy of all categories to determine the optimum cut-off point with the maximum ability to detect plaques. The area under the ROC curve was estimated by Wilcoxon (Figure 2-7).

Table 2. The agreement index between T2-W and STIR

<table>
<thead>
<tr>
<th>Plaque not identified in STIR</th>
<th>Plaque identified in STIR</th>
<th>Cohen’s kappa</th>
<th>95% confidence interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaque not identified seen in T2-W</td>
<td>9</td>
<td>10</td>
<td>0.55</td>
<td>0.32 to 0.77</td>
</tr>
<tr>
<td>Plaque identified in T2-W</td>
<td>0</td>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. ROC curve analysis for T2-W and STIR, sensitivity, and specificity were 0.31 and 0.85, respectively

Figure 3. ROC curve analysis for T2-W and FLAIR, sensitivity, and specificity were 0.68 and 0.46, respectively

Figure 4. ROC curve analysis for STIR and FLAIR, sensitivity, and specificity were 0.85 and 0.46, respectively

Figure 5. ROC curve analysis for sagittal T2-W and sagittal FLAIR, sensitivity, and specificity were 0.9 and 0.26, respectively

3. Results

Of the 60 patients studied, 25 (41.66%) were male (mean age, 35 years), and 35 (58.33%) were female (mean age, 33 years).

The agreement index between T2-W and FLAIR sequences evaluation (Table 3) was 0.48 with a 95% CI (0.24, 0.72; p < 0.001).
The agreement index between sagittal T2-W and sagittal FLAIR sequences evaluation (Table 5) was 0.20 with a 95% CI (0.08, 0.32; p = 0.0004). As seen from Table 5, the degree of matching of the sequence FLAIR and T2-W in the visualization of MS plaques was different in various situations. For instance, 16 cases of plaques were not observed in both sequences, while there were only two cases where the plaques can be seen in FLAIR but not observed in T2-W.

Similarly, other situations are also reported in this Table.

A comparison of the ability to detect plaques in different sequences, as indicated by the agreement index between categories, is summarized (Tables 2-6). The agreement index between T2-W and STIR sequences evaluation (Table 2) was 0.55 with a 95% CI (0.32, 0.77; p < 0.001).

The agreement index between STIR and FLAIR sequences evaluation (Table 4) was 0.33 with a 95% CI (0.14, 0.52; p = 0.0003).

The agreement index between sagittal STIR and sagittal FLAIR sequences evaluation (Table 6) was 0.56 with a 95% CI (0.45, 0.68; p < 0.0001). As can be seen from Table 6, the degree of matching of the sequence FLAIR and STIR in the visualization of MS plaques was different in various situations. For instance, 9 cases of plaques were not observed in both sequences, while there were no cases where the plaques can be seen in FLAIR but not in STIR. Similarly, other situations are also reported in this Table.

The results showed that the highest agreement was related to sagittal STIR, and sagittal FLAIR, T2-W and STIR, respectively [Cohen’s kappa = 0.56, 0.55 (moderate agreement)], and the lowest values were related to sagittal T2-W and sagittal FLAIR, STIR and, FLAIR, T2-W and, FLAIR, (Cohen’s kappa = 0.20, 0.33, 0.48), respectively.

ROC curve analysis further investigated the amount of agreement between different sequences to diagnose MS plaques. The area under the ROC curve was found 0.56 for sagittal STIR and sagittal FLAIR suggesting that these combinations with sensitivity of (95% CI) = [0.85 (0.73426 to 0.929044)] and specificity of (95% CI) = [0.46 (0.336699 to 0.600035)] were excellent predictors for diagnosis of MS plaques. In addition, the optimum cut-off point selected for sagittal STIR and sagittal FLAIR was 1.

Table 3. The agreement index between T2-W and FLAIR

<table>
<thead>
<tr>
<th>Plaque not identified in FLAIR</th>
<th>Plaque identified in FLAIR</th>
<th>Cohen’s kappa</th>
<th>95% confidence interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaque not identified in T2-W</td>
<td>16</td>
<td>3</td>
<td>0.48</td>
<td>0.24 to 0.72</td>
</tr>
<tr>
<td>Plaque identified in T2-W</td>
<td>12</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. ROC curve analysis for sagittal STIR and sagittal FLAIR, sensitivity, and specificity were 0.85 and 0.46, respectively.

Figure 7. ROC curve analysis for sagittal T2-W and sagittal STIR, sensitivity, and specificity were 0.7 and 0.63, respectively.
Table 5. The agreement index between sagittal T2W and sagittal FLAIR

<table>
<thead>
<tr>
<th>Plaque identified in sagittal FLAIR</th>
<th>StIR identified in sagittal FLAIR</th>
<th>Cohen's kappa</th>
<th>95% confidence interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaque not identified</td>
<td>StIR and sagittal FLAIR</td>
<td>0</td>
<td>0.45 to 0.68</td>
<td><0.0001</td>
</tr>
<tr>
<td>Two plaque identified</td>
<td>StIR and sagittal FLAIR</td>
<td>0.56</td>
<td>0.45 to 0.68</td>
<td><0.0001</td>
</tr>
<tr>
<td>Three plaque identified</td>
<td>StIR and sagittal FLAIR</td>
<td>0.76</td>
<td>0.56 to 0.96</td>
<td><0.0001</td>
</tr>
<tr>
<td>Four plaque identified</td>
<td>StIR and sagittal FLAIR</td>
<td>0.90</td>
<td>0.76 to 0.96</td>
<td><0.0001</td>
</tr>
<tr>
<td>Five plaque identified</td>
<td>StIR and sagittal FLAIR</td>
<td>0.95</td>
<td>0.84 to 0.98</td>
<td><0.0001</td>
</tr>
<tr>
<td>Plaque identified in sagittal STIR</td>
<td>Five Plaque identified in sagittal FLAIR</td>
<td>Four Plaque identified in sagittal FLAIR</td>
<td>Three Plaque identified in sagittal FLAIR</td>
<td>Two Plaque identified in sagittal FLAIR</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Not identified</td>
<td>Plaque identified</td>
<td>Plaque identified</td>
<td>Plaque identified</td>
<td>Plaque identified</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6. The agreement index between sagittal STIR and sagittal FLAIR.
4. Discussion

This study aimed to evaluate the diagnostic value of sagittal STIR and sagittal FLAIR MRI sequences of the spinal cord versus these sequences with the standard MRI protocol for MS diagnosis. Results demonstrate that the sagittal STIR and T2-W FLAIR with a 1.5 Tesla system successfully identify MS plaques because Cohen’s kappa showed high agreement in statistical analyses.

In the present study, all plaques in sagittal STIR and T2-W FLAIR images had greater signal intensity than the background. Therefore, T2-W FLAIR images in sagittal view are appropriate for detecting lesions around the ventricles and the cortex. In addition, using threshold values obtained, plaques in the spinal cord, especially the cervical spinal cord, can be identified in sagittal STIR and T2-W FLAIR images.

Alcaide-Leon et al. compared sagittal FSE T2-W, STIR, and T1 phase-sensitive inversion recovery sequences in the detection of cervical spinal lesions by the 3 Tesla scanners. Results showed that STIR and PSIR to detect cervical cord plaques are much more significant than FSE T2-W (P <0.05), and no significant differences were observed in the sensitivity between PSIR and STIR.

In cervical and thoracic segments, the value of agreement index among the interpreters for the STIR sequence was greater than that of the FSE T2-W and PSIR [27].

In comparing MS patients to healthy controls, Absinto and co-workers [28] demonstrated that spinal cord lesions in the STIR were three times clearer than in other sequences. The total damage volume was two times larger in this sequence when including T2-W FSE, STIR, and T1-W GRE protocols at the sagittal and axial planes in the presence of MS plaque identification, spatial and contrast resolution, thereby demonstrating the importance of STIR sequence evaluation [28].

In another study to examine MS plaques using MRI imaging by Cristina Philpott et al. in 2010, 12 patients were reviewed in Australia using T2-W FSE and T1-W STIR at the sagittal plane to evaluate contrast and image quality. Similarly, approximately 28% of MS lesions were evident in the STIR but absent in the T2-W sequence when contrast and image quality of T2-W FSE and T1-W STIR at the sagittal plane were compared [29].

Foroghi et al. from different sequences such as; used T2-W, STIR, and Phase-Sensitive Inversion Recovery (PSIR) to detect MS plaques. The MRI machine used was a 1.5 T Siemens MR scanner. Consistent with the results of our study, they stated that recovery inversion sequences were more sensitive than other sequences in detecting MS plaque lesions in the cervical spinal cord [30].

A limitation in the present study was the use of the low-power 1.5 Tesla MRI system, resulting in reduced image quality. It is recommended that future work be performed with a 3 Tesla MRI system, as the increased magnet power reduces acquisition time, increases Signal-to-Noise Ratio (SNR), and improves resolution, thereby increasing image quality.

5. Conclusion

The present study shows that when used as complementary sequences for the identification of MS plaques, sagittal STIR and T2-W FLAIR MRI sequences provide more sensitive, specific, and accurate results than the use of sagittal T2-W in cervical spinal cord lesions. In addition, our findings reveal that the sagittal STIR and T2-W FLAIR using a 1.5 Tesla system, regardless of the lower available power, can be used to identify MS plaques successfully.

Acknowledgments

The financial and credit resources of the project are provided by the Research Assistant of Kurdistan University of Medical Sciences. In addition, we would like to thank the management and radiotechnologists of Shahid Ghazi MRI center in Sanandaj who have contributed to the manuscript.

References

20- Karim Sharifi et al., "Investigation of the frequency of meniscal ligament injuries and other abnormal knee injuries in the patients referring to MRI Center of Shahid Ghazi Clinic in Sanandaj." Scientific Journal of Kurdistan University of Medical Sciences, Vol. 21 (No. 6), (2017).

effect of sagittal STIR and FLAIR in the characterization of MS cervical lesions

