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Abstract 

Purpose: For Whole-Body (WB) kinetic modeling based on a typical PET scanner, a multi-pass multi-bed 

scanning protocol is necessary given the limited axial field-of-view. Such a protocol introduces loss of early-

dynamics in Time-Activity Curves (TACs) and sparsity in TAC measurements, inducing uncertainty in parameter 

estimation when using Least-Squares Estimation (LSE) (i.e., common standard), especially for kinetic 

microparameters. We present a method to reliably estimate microparameters, enabling accurate parametric 

imaging, on regular-axial field-of-view PET scanners 

Materials and Methods: Our method, denoted Parameter Combination-Driven Estimation (PCDE), relies on the 

generation of reference truth TAC database, and subsequently selected, the best parameter combination as the 

one arriving at TAC with the highest Total Similarity Score (TSS), focusing on the general image quality, overall 

visibility, and tumor detectability metrics. Our technique has two distinctive characteristics: 1) improved 

probability of having one-on-one mapping between early and late dynamics in TACs (the former missing from 

typical protocols), and 2) use of multiple aspects of TACs in the selection of best fits. To evaluate our method 

against conventional LSE, we plotted trade-off curves for noise and bias. In addition, the overall Signal-to-Noise 

Ratio (SNR) and spatial noise were calculated and compared. Furthermore, the Contrast-to-Noise Ratio (CNR) 

and Tumor-to-Background Ratio (TBR) were also calculated. We also tested our proposed method on patient data 

(18F-DCFPyL PSMA PET/CT scans) to further verify clinical applicability. 

Results: Significantly improved general image quality performance was verified in microparametric images (e.g. 

noise-bias trade-off performance). The overall visibility and tumor detectability were also improved. Finally, for 

our patient studies, improved overall visibility and tumor detectability were demonstrated in mico parametric 

images, compared to the use of conventional parameter estimation. 

Conclusion: The proposed method provides improved microkinetic parametric images compared to the common 

standard in terms of general image quality, overall visibility, and tumor detectability. 

Keywords: Whole-Body Kinetic Modeling; Microparameters; Least Squares Estimation; Parametric Imaging; 

Image Quality; Tumor Detectability. 
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1. Introduction  

Clinical diagnosis and treatment response 

monitoring of localized and metastatic cancers have 

benefited remarkably from Whole-Body (WB) 

Positron Emission Tomography/Computed 

Tomography (PET/CT) Imaging [1–7]. Currently, the 

standardized uptake value (SUV) is the metric used to 

measure metabolic activity from quantitative images. 

PET tracer distribution is a dynamic process altered by 

several factors that vary considerably depending on 

the organ, Region Of Interest (ROI), patient, and time 

of scan [1,8]. Hence, static SUV images are time-

dependent, which is undesirable for use in quantitative 

studies. With the additional use of tracer kinetic 

modeling techniques that require dynamic PET 

scanning, there is the potential for substantially 

improving the type and quality of information of the 

biological and physiological processes in tissue1,2 

which is not time-dependent. This can enable further 

clinical benefits from PET images through 

quantitative analysis. Many studies have shown that 

kinetic compartment modeling can improve both 

tumor characterization and treatment response 

monitoring [2,9–13].  

Nonetheless, dynamic PET protocols have been 

confined to a single-bed position, limiting the axial 

field-of-view of parametric images to ~15-25 [cm], 

and have not been translated to multi-bed positions 

(i.e., WB). However, it is more desirable to inspect 

disseminated diseases and this has been gaining 

increasing attention [3–7].  

To achieve four-Dimensional (4D) WB PET 

acquisition, the following three challenges present 

themselves: (1) long acquisition times, (2) few 

dynamic frames at each bed (i.e., sparsity of data), and 

(3) noninvasive quantification of rapid early kinetics 

in the plasma. Karakatsanis et al. optimized the 

scanning protocol through extensive Monte Carlo 

simulation studies [8, 14]. They proposed an optimal 

protocol for input function estimation and dynamic 

WB dataset generation, which comprises two 

sequential scanning steps: (1) an initial 6 min single-

bed dynamic scan over the cardiac region to generate 

an image-derived input function (addressing challenge 

number 3) and (2) a sequence of six multi-bed multi-

pass WB scans to capture the late dynamics of the 

tracer in the blood plasma and tissue.  

Although the optimal protocol allows for WB 

kinetic modeling, it was optimized for the 

measurement of macro parameters, specifically the net 

influx rate from the plasma into the 2nd compartment 

in the two-tissue compartment model (i.e., Ki).; macro 

parameters are lumped constants comprised of several 

microparameters. Hence, this method is not the most 

appropriate protocol for microparameter estimation if 

Least Squares Estimation (LSE) is exploited.  

Two factors can contribute to uncertainty in micro 

parameter estimation: (1) the loss of early dynamics of 

time activity (i.e., the loss of near-peak data), except 

for the chest region in the FOV of the first 6 minutes 

of the acquisition, and (2) sparsity of measured data 

(i.e., 5-6 min between scans of the same anatomical 

region). Due to these factors, the estimation of 

microparameters for WB kinetic modeling has not 

been fully implemented in cases where a typical PET 

scanner (i.e. axial FOV between 15-30 cm) is the only 

available option for dynamic scans. However, the 

detailed explanatory power of microparameter 

estimation in assessing the biochemical status of 

tissues can significantly enhance effectiveness and 

flexibility in clinical applications, surpassing the 

capabilities of macroparameters. 

We aimed to develop a novel method to enable 

accurate kinetic modeling including the estimation of 

the microparameters using multi-pass protocols in 

typical PET scanner-based WB imaging. We refer to 

this new method as Parameter Combination-Driven 

Estimation (PCDE). We evaluated the methods in 

terms of image quality, overall visibility, and tumor 

detectability compared to LSE (i.e., common 

standard). 

2. Materials and Methods  

2.1. Generating Simulated Data 

2.1.1. Noise Free Images 

To generate ground-truth PET images, we 

employed the 4D extended Cardiac-Torso (XCAT) 

phantom [15], which is well-validated and widely used 

for performance testing of new algorithms or 

approaches in numerous areas of medical imaging. 

The dynamics of the activity distribution assigned to 

each ROI in the XCAT phantom were based on 

PROOF



 K. Nam Lee, et al. 

FBT, Vol. 13, No. 1 (Winter 2026) XX-XX XX 

realistic fluorodeoxyglucose (FDG) kinetic 

microparameters, as reported in the literature [8, 16] 

and presented in Tables 1 and 2. Volumes of organs 

are also shown in Table 1 (note that for quantitative 

analysis, entire ROI volumes equal to organ sizes were 

used). In this study, the reversible uptake process rate 

𝑘4 was assumed to be zero. 

A plasma input function was created based on 

Feng’s model [17], and the basic formula of the two-

tissue compartment model (2TCM) was used to 

calculate true activities over time as follows 

(Equations 1, 2): 

𝐶𝑃𝐸𝑇(𝑡) =
𝐾1

𝛼2 − 𝛼1

[(𝑘3 + 𝑘4 − 𝛼1)𝑒−𝛼1𝑡

+ (𝛼2 − 𝑘3

− 𝑘4)𝑒−𝛼2𝑡]⨂𝐶𝑝(𝑡) 

(1) 

𝛼1,2

=
𝑘2 + 𝑘3 + 𝑘4  ∓  √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
 

(2) 

where 𝐶𝑃𝐸𝑇 and 𝐶𝑝 denote the measured PET 

concentration and plasma concentration input 

function, respectively, and ⨂ is the convolution 

operator. 𝐾1 and 𝑘2 are the influx and efflux rate 

constants between the plasma and first tissue 

compartments, and 𝑘3 and 𝑘4 represent the influx and 

efflux rate constants between the first and second 

tissue compartments, respectively. In the above 

formulas and the present investigation, blood volume 

is not included, but it can be easily added in future 

efforts within the framework proposed in this work. 

To alleviate the long scan time (i.e., one of the 

disadvantages of dynamic acquisition), we limited the 

total acquisition duration to 40 min after injection. We 

also only used the data between 10-40 min post-

injection (PI) to simulate the loss of early dynamics 

due to first-phase scanning of the cardiac region. 

Based on true kinetic parameters (i.e., Tables 1 and 2) 

and the predefined scanning protocol for the virtual 

dynamic set (i.e., Table 3), the calculated 

concentrations with time were assigned for each ROI 

in the XCAT input files to generate noise-free XCAT 

phantom images. 

2.1.2. Noise Realizations 

To add realistic noise, we employed a Dynamic 

PET Simulator of Tracers via Emission Projection [18, 

19] (dPETSTEP), which is a fast and simple tool to 

simulate dynamic PET as an alternative to Monte 

Carlo simulation. Noise-free XCAT phantom images 

and attenuation maps were used as input data to 

generate a realistic (i.e., noisy) dynamic PET dataset. 

The validated settings for the GE Discovery LS 

Scanner [18] were used with the Ordered Subset 

Expectation Maximization (OSEM) algorithm. Table 

4 summarizes the reconstruction settings for dPETSTEP. 

Table 1. Ground truths of kinetic micro parameters for 

normal whole-body organs 

 K1 k2 k3 

Brain 

(vol.: 129.8 ml) 
0.13 0.63 0.19 

Thyroid 

(vol.: 25.1 ml) 
0.97 1.00 0.07 

Myocardium 

(vol.: 159.8 ml) 
0.82 1.00 0.19 

Spleen 

(vol.: 170.4 ml) 
0.88 1.00 0.04 

Pancreas 

(vol. 138.6 ml) 
0.36 1.00 0.08 

Kidney 

(vol.: 325.2 ml) 
0.70 1.00 0.18 

Liver 

(vol.: 1767.9 ml) 
0.86 0.98 0.01 

Lung 

(vol.: 2757.7 ml) 
0.11 0.74 0.02 

 

Table 2. Ground truths of kinetic macro parameters for 

tumors 

 K1 k2 k3 

Lung 0.3 0.86 0.05 

Liver 0.24 0.78 0.1 

*Tumor shape and size: sphere with 1.5 cm diameter 

Table 3. Scanning protocol for the virtual dynamic 

dataset 

Item Value 

Total acquisition time (cardiac + WB) 40 min 

Image acquisition for WB *10-40 min 

Time interval 5 min 

# of passes 7 

# of beds 5 

*10 min was assumed to simulate a scenario worse than 

that of the protocol proposed by Karakatsanis. Time: 

Post-injection time 
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2.2. Proposed Parameter Combination-Driven 

Estimation Method 

2.2.1. Basic Concepts and Assumptions 

PCDE is a novel method for microparameter 

estimation. This method has two distinctive 

characteristics compared to LSE: 1) the allowance of 

one-on-one mapping between early (e.g., ≤10 min PI) 

and late (e.g., >10 min PI) dynamics in TACs by 

limiting the precision of the estimated kinetic 

parameter (e.g., up to 2nd decimal place), and 2) 

employment of multi-aspect time-activity curve 

(TAC) in the selection of best fits. We elaborate more 

on these next. 

The first characteristic is based on two assumptions: 

1) each microparameter has a finite range [8, 16], and 

2) the imaging system has a finite level of precision in 

the determination of a micro parameter (i.e., step size 

of a microparameter). Under these assumptions, only 

a finite number of TACs are available for a given 

range and precision, which enables to improve the 

probability of having a one-on-one relationship 

between early and late dynamics by filtering out 

similar TACs. Indeed, with a kinetic parameter 

precision of 2nd decimal place (i.e., step size: 0.01), 

almost all TACs from 2TCM are likely to be unique 

and thus have a higher probability of correct one-to-

one mapping between early and late dynamics for 

TACs. This improved uniqueness enables us to predict 

a full TAC (i.e., early + late) in situations where the 

early dynamics are missing. 

The second characteristic is a finer and more 

consistent comparison between the measured and 

reference truth TACs, compared to LSE. Inherently, 

the Sum of Squared Error (SSE) cannot account for 

positive and negative errors differently [20–24]. 

Therefore, minimizing the SSE of 

concentration/activity (i.e., LSE) might not capture 

very small TAC trends well; something critical for 

microparameter estimation. Instead, other aspects of 

TAC (e.g., its 1st and 2nd derivatives) can be effective 

criteria for further finely assessing curve trends. 

Additionally, a comprehensive comparison of various 

aspects of TACs would yield more stable and balanced 

results. Relying solely on a single aspect for 

comparison could lead to significantly varied and 

unstable outcomes, influenced by factors such as noise 

level, type, number of passes in WB scans, 

measurement time intervals, and voxel positions 

within the body [25–27]. Thus, a comprehensive 

consideration of the multiple aspects of TAC would 

allow for a more consistent comparison. The details 

are presented in the next section. 

2.2.2. Workflow and Similarity Measure 

The workflow of the proposed method comprises 

three steps: 1) building a reference truth TAC database 

by setting micro parameter range and precision of 

estimated parameters, 2) selecting the top-300 optimal 

parameter combinations with respect to SSE in 

ascending order, and subsequently, selecting the top-

10 using the absolute difference of Area Under the 

Curve (AUC) between the measured and ground truths 

in ascending order, and finally 3) selecting the best 

parameter combination using a comprehensive 

comparison based on multiple TAC aspects. Figure 1 

shows the workflow of the proposed method. 

For the comprehensive comparison, towards 

picking the best parameter combination as the one 

arriving at TAC with the highest total similarity score 

(TSS), TSS was defined as follows (Equation 3): 

𝑇𝑆𝑆𝑐𝑜𝑚𝑏.
𝑖 =

1

𝑁 ∙ 𝑆𝑚𝑎𝑥
∙ 𝑊𝑐𝑜𝑚𝑏.

𝑖 ∙ ∑ 𝑆𝑃𝑓 ∙ 𝑆𝑓
𝑖

𝑁

𝑓=1

 (3) 

 

Table 4. Summary of reconstruction settings 

Item Value 

Radial bins 283 

Projection angles 336 

OSEM iterations 1-5 

OSEM subsets 24 

PSF 5.1 mm 

Post-filter XY 6 mm Gaussian 

Post-filter Z [1 2 1]/4 

*Reconstructed matrix per bed 165 x 165 x 35 

Reconstructed voxel size 2 x 2 x 4.25 mm3 

Noise realizations 10 

*Reconstructed matrix for the entire body: 165 × 165 × 

175 
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where i, f, and N denote an index for a parameter 

combination in the top-10 list, an index for an aspect 

of TAC, and the total number of aspects considered, 

respectively. 𝑊𝑐𝑜𝑚𝑏.
𝑖 , 𝑆𝑃𝑓, 𝑆𝑓

𝑖 , and 𝑆𝑚𝑎𝑥 represent the 

relative weight of the ith combination, selection power 

for aspect f, a scaled score of the ith combination for 

aspect f, and the maximum scaled score, respectively 

(further elaborated in subsequent paragraphs). Table 5 

shows the eight similarity metrics (aspects considered) 

and the order (ascending vs. descending) for assigning 

the scaled scores to each parameter combination set. 

Depending on the raw score ranking in the top-10 list, 

scaled scores for each combination were assigned 

from 10 to 1 in descending order (i.e., maximum score: 

10, step size: 1). 

As seen in Table 5, in our work we considered 8 

physical and statistical aspects of TAC: 1) 

concentration/activity, 2) slope and 3) acceleration of 

TAC to consider a fine TAC trend, 4) AUC, 5) ratio of 

overlapped area (ROA) to compensate for a limitation 

of simple AUC comparison, continuities of 6) 

concentration and 7) slope at the earliest measurement 

time between true and measured quantities for each to 

account for the relatively higher importance of data at 

an early time after injection, and 8) mutual 

information as a statistical similarity measure [28, 29].  

In addition, to quantitatively account for the 

different capabilities of each TAC aspect in how well 

an aspect can distinguish parameter combinations in 

the top-10 list separately, we defined the relative 

selection power (𝑆𝑃𝑓) as follows (Equation 4): 

𝑆𝑃𝑓 ≡
𝐶𝑉𝑓

∑ 𝐶𝑉𝑓
𝑁
𝑓=1

 (4) 

where f and N denote the index for an aspect of the 

TAC and a total number of aspects considered, 

respectively, and 𝐶𝑉𝑓 represents the coefficient of 

variation for aspect f. Supplemental Figure 1 shows 

the calculation process for the relative selection 

powers.  

Furthermore, we defined a parameter combination 

weight (i.e., 𝑊𝑐𝑜𝑚𝑏.
𝑖 ) to account for the relative 

occurrence probability of a parameter combination in 

the top-10 list so that the more probable combination 

can contribute more to the TSS, assuming that each 

micro parameter is independent of the others. The 

formulas are as follows (Equations 5, 6): 

 

Figure 1. PCDE workflow. (a): Building a reference truth TAC database. (b): Selecting the top 300 combinations 

followed by the top 10 by comparing measured and reference TAC databases. (c): Selecting the optimal 

combination using comprehensive comparison based on multi-aspect of TAC 

Table 5. Similarity measure and order to assign scaled 

scores to each combination 

Aspect Similarity Metric Order 

Ct SSE Ascending 

Slope SSE Ascending 

Acc. SSE Ascending 

AUC AD Ascending 

ROA Itself Descending 

Continuity (Ct) SE Ascending 

Continuity (slope) SE Ascending 

MI Itself Descending 

Ct, concentration; Acc., acceleration; ROA, ratio of 

overlapped area; MI, mutual information; SSE, sum of 

squared error; SE, squared error; AD, absolute difference; 

Scaled score: 10 to 1 depending on the ranking among the 

top-10 lists (step size: 1).  
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𝑊𝑐𝑜𝑚𝑏.
𝑖 ≡

𝑃𝑐𝑜𝑚𝑏.
𝑖

∑ 𝑃𝑐𝑜𝑚𝑏.
𝑖.10

𝑖=1

 (5) 

𝑃𝑐𝑜𝑚𝑏.
𝑖 ≡ 𝑃𝐾1

𝐾1 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.
∙ 𝑃𝑘2

𝑘2 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.

∙ 𝑃𝑘3
𝑘3 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.

 
(6) 

where i denotes an index for a parameter 

combination, and 𝑃𝐾1
𝐾1 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.

, 𝑃𝑘2
𝑘2 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.

 and 

𝑃𝑘3
𝑘3 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑜𝑚𝑏.

 represent the probabilities of having 

K1, k2, k3 for the ith combination, respectively. 𝑃𝑐𝑜𝑚𝑏.
𝑖  

is the probability of occurrence of the ith combination. 

Supplemental Figure 2 shows the calculation process 

for the parameter combination weights.  

2.3. Kinetic Parameters of Interest for 

Comparison Study 

On the noisy virtual dynamic dataset, kinetic 

modeling was performed through each method (i.e., 

LSE and PCDE), and the kinetic parameters of interest 

for comparison are defined as follows. 

2.3.1. Kinetic Microparameters  

For the microparameters, we compared the LSE-

based 2TCM [30], implemented via the Levenberg-

Marquardt (LM) algorithm (function tolerance: 10-9, 

max iterations: 1000), against the proposed PCDE 

method. Because we focused on the irreversible 

uptake process, only parametric K1, k2, and k3 images 

were compared. 

2.3.2. Kinetic Macro Parameters 

For the macro parameters, we compared the 

parametric images of the LSE-based Patlak Graphical 

Analysis (PGA) [30, 31] with those of PCDE. 

Assuming an irreversible or nearly irreversible uptake 

process in 2TCM (i.e., 𝑘4 ≈ 0), the PGA formula can 

be derived as follows (Equation 7): 

𝐶𝑃𝐸𝑇(𝑡)

𝐶𝑝(𝑡)
= 𝐾𝑖 ∙

∫ 𝐶𝑝(𝜏)𝑑𝜏
𝑡

0

𝐶𝑝(𝑡)
+ 𝑉𝑑 ,   𝑡 > 𝑡∗ (7) 

where 𝑡∗ denotes the time required to reach 

equilibrium between the plasma and the first 

compartment in the 2TCM. 

Furthermore, assuming that the blood volume 

fraction was negligible (i.e., 𝑉𝑏 ≈ 0), we defined the 

net influx rate constant Ki and volume of distribution 

Vd as follows (Equations 8, 9): 

𝐾𝑖 =
𝐾1𝑘3

𝑘2 + 𝑘3
 (8) 

𝑉𝑑 =
𝐾1𝑘2

(𝑘2 + 𝑘3)2
 (9) 

2.4. Quantitative Evaluation Criteria 

2.4.1. General Image Quality 

Normalized Bias (NBias). As a measure of 

accuracy, NBias is determined by first calculating 

NBiasi for the ith voxel of an ROI over all R noise 

realizations and subsequently averaging over all 

voxels of that ROI as follows (Equation 10): 

𝑁𝐵𝑖𝑎𝑠 =
1

𝑛
∑ (

|𝑓𝑖̅ − 𝜇𝑖|

𝜇𝑖
)

𝑛

𝑖=1

=
1

𝑛
∑ 𝑁𝐵𝑖𝑎𝑠𝑖

𝑛

𝑖=1

 (10) 

where 𝑓𝑖̅ = (1
𝑅⁄ ) ∑ 𝑓𝑖

𝑟𝑅
𝑟=1 ; 𝑓𝑖

𝑟denotes the ith voxel 

value from the rth noise realization, and 𝜇𝑖, n, and R 

represent the truth of the ith voxel, the number of 

voxels in an ROI, and the number of noise realizations, 

respectively. 

Normalized Standard Deviation (NSD). As a 

precision measure, the NSDi of the ith voxel was first 

calculated over all R realizations, followed by 

averaging over all n voxels of an ROI to calculate the 

NSD of the ROI as follows (Equation 11): 

NSD =
1

𝑛
∑

√ 1
𝑅 − 1

∑ (𝑓𝑖
𝑟 − 𝑓𝑖̅)

2𝑅
𝑟=1

𝑓𝑖̅

𝑛

𝑖=1

=
1

𝑛
∑ 𝑁𝑆𝐷𝑖

𝑛

𝑖=1

   

(11) 

Normalized Root Mean Squared Error (NRMSE). 

As a measure of comprehensive performance (i.e., 

combined measure of accuracy and precision), 

NRMSEi was first calculated for each ith voxel over all 

realizations, followed by spatial averaging over all 

voxels of an ROI to calculate the NMSE for an ROI as 

follows (Equation 12): 
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NRMSE =
1

𝑛
∑

√1
𝑅

∑ (𝑓𝑖
𝑟 − 𝜇𝑖)

2𝑅
𝑟=1

𝜇𝑖

𝑛

𝑖=1

=
1

𝑛
∑ 𝑁𝑅𝑀𝑆𝐸𝑖

𝑛

𝑖=1

               

(12) 

For each ROI of interest (Table 1), the calculations 

of all three quantities were repeated by changing the 

number of OSEM iterations, as listed in Table 4. To 

compare the general image quality between each 

estimation method (i.e., LSE vs. PCDE), we plotted 

the NBias-NSD trade-off curves. In addition, 

NRMSEs were plotted against the number of 

iterations. 

2.4.2. Overall Visibility and Tumor Detectability 

Signal-to-Noise Ratio (SNR). As a measure of the 

overall visibility relevant to the identification of 

suspicious lesions in WB (i.e., global inspection), the 

SNR of an ROI was determined by averaging the 

SNRs over all noise realizations as follows (Equation 

13): 

SNR =
1

𝑅
∑

𝑓𝑟̅

√ 1
𝑛 − 1

∑ (𝑓𝑖
𝑟 − 𝑓𝑟̅)

2𝑛
𝑖=1

𝑅

𝑟=1

=
1

𝑅
∑ 𝑆𝑁𝑅𝑟

𝑅

𝑟=1

 

(13) 

where 𝑓𝑟̅ = (1
𝑛⁄ ) ∑ 𝑓𝑖

𝑟𝑛
𝑖=1 . 

Spatial Noise (NSDspatial). As another measure of 

overall visibility, the NSDspatial of an ROI was 

calculated by averaging the NSDs over all realizations 

as follows Equation 14:  

𝑁𝑆𝐷𝑠𝑝𝑎𝑡𝑖𝑎𝑙 =
1

𝑅
∑

√ 1
𝑛 − 1

∑ (𝑓𝑖
𝑟 − 𝑓𝑟̅)

2𝑛
𝑖=1

𝑓𝑟̅

𝑅

𝑟=1

=
1

𝑅
∑ 𝑁𝑆𝐷𝑠𝑝𝑎𝑡𝑖𝑎𝑙

𝑟

𝑅

𝑟=1

 

(14) 

By comparing Equations 11 and 14, it should be 

noted that NSD quantifies the average level of noise 

across multiple realizations at each voxel for an ROI, 

whereas NSDspatial known as ROI roughness, measures 

the average of the spatial noise across multiple 

realizations for an ROI [8].  

Tumor-to-Background Ratio (TBR). As a measure 

of tumor detectability within a particular organ (i.e., 

local inspection), TBR was determined as follows 

(Equation 15): 

TBR =
1

𝑅
∑

𝑓𝑟
𝑇𝑢𝑚𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑓𝑟
𝐵𝐾𝐺.̅̅ ̅̅ ̅̅ ̅

𝑅

𝑟=1

 =
1

𝑅
∑ 𝑇𝐵𝑅𝑟

𝑅

𝑟=1

 (15) 

where 𝑓𝑟
𝑇𝑢𝑚𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑓𝑟

𝐵𝐾𝐺.̅̅ ̅̅ ̅̅ ̅ denote 𝑓𝑟̅ of tumor and 

background ROI, respectively. 

Contrast-to-Noise Ratio (CNR). As a measure of 

tumor detectability within a specific organ (i.e., local 

inspection), the CNR was calculated as follows 

(Equation 16): 

CNR =
1

𝑅
∑

|𝑓𝑟
𝑇𝑢𝑚𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑓𝑟

𝐵𝐾𝐺.̅̅ ̅̅ ̅̅ ̅|

𝜎𝑟
𝐵𝐾𝐺.

𝑅

𝑟=1

=
1

𝑅
∑ 𝐶𝑁𝑅𝑟

𝑅

𝑟=1

 

(16) 

where 𝜎𝑟
𝐵𝐾𝐺. = √ 1

𝑛−1
∑ (𝑓𝑖

𝑟 − 𝑓𝑟
𝐵𝐾𝐺.̅̅ ̅̅ ̅̅ ̅)

2
𝑛
𝑖=1  

Relative Error of TBR (RETBR). It is possible to have 

a misleading (i.e., erroneously higher) TBR and/or 

CNR originating from a high bias (i.e., the wrongly 

increased/decreased mean ROI) and/or zero-like noise 

(i.e., the noise is approximately zero), owing to the 

local minimum issue of the LSE. Hence, the RETBR 

was also calculated as an auxiliary measure (Equation 

17). 

𝑅𝐸𝑇𝐵𝑅 =
|𝑇𝐵𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑇𝐵𝑅𝑇𝑟𝑢𝑡ℎ|

𝑇𝐵𝑅𝑇𝑟𝑢𝑡ℎ
 (17) 

where 𝑇𝐵𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and 𝑇𝐵𝑅𝑇𝑟𝑢𝑡ℎ denote a 

measured and true TBR, respectively. 

2.4.3. Overall Performance Metrics 

To verify the overall performance of each 

parametric image, the overall NBias, NSD, NRMSE, 

SNR, and NSDspatial metrics were defined as the 

volume-weighted averages of the individual ROIs 

metrics [8]. 
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2.5. Patient Study 

In addition to performance testing on virtual 

dynamic datasets, the proposed method was also 

implemented on actual patient datasets to further 

verify clinical applicability. In this work, we focus on 

an anecdotal study for initial assessment, and a large-

scale patient study is the topic of an upcoming study 

(see discussion). Table 6 summarizes scanning 

protocols for two patients undergoing 18F-DCFPyL 

PET scans, involving prostate-specific membrane 

antigen (PSMA) targeted imaging.  

The quantitative evaluation of parametric images 

includes the analysis of: 1) overall visibility relevant 

to the identification of suspicious lesions in WB (i.e., 

SNRoverall), and 2) overall lesion detectability (i.e., 

CNRoverall, TBRoverall). The ROIs of all lesions for each 

patient were defined and confirmed by a nuclear 

medicine physician. 

3. Results  

3.1. NBias-NSD Trade-off Curves and NRMSE 

Results 

3.1.1. Kinetic Micro Parameters 

Supplemental Figures 3, 4, and 5 show the ROI-

based NBias-NSD trade-off curves and NRMSE 

results for the parametric K1, k2, and k3 images, 

respectively. Overall the proposed PCDE method 

showed lower NBias and NSD compared to the LSE-

based 2TCM, which allows much lower NRMSEs for 

all normal WB organs of interest; the common 

standard shows smaller NSDs in K1 images. However, 

significantly high levels of NBias result in larger 

NRMSEs for all ROIs.  

Figure 2 shows the overall NBias-NSD trade-off 

curves and NRMSE results. At five OSEM iterations, 

using our PCDE method, the overall NRMSEs were 

Table 6. Dynamic scanning protocols for 18F-DCFPyL 

Item Patient #1 Patient #2 

Injected activity 9.14 mCi 7.16 mCi 

Scanner GE Discovery MI GE Discovery MI 

Dimensions 256 x 256 x 409 256 x 256 x 409 

Voxel size 2.73 x 2.73 x 2.8 mm3 2.73 x 2.73 x 2.8 mm3 

Total acquisition time 

(cardiac + WB) 
87 min 92 min 

Image acquisition for WB 7-87 min 9-92 min 

Time interval 5 min 5 min 

# of passes 16 16 

# of beds 6 6 

 

 

 

Figure 2. Overall NBias-NSD trade-off curves (i.e., first row) and NRMSE results with increasing OSEM iterations 

(i.e., second row) for each parametric image. Micro parameters: first three columns; Macro parameters: last two columns 

PROOF



 K. Nam Lee, et al. 

FBT, Vol. 13, No. 1 (Winter 2026) XX-XX XX 

considerably reduced by 57.5, 71.1, and 56.1 [%] in 

the parametric K1, k2, and k3 images, respectively. 

3.1.2. Kinetic Macro Parameters 

Supplemental Figures 6 and 7 show the ROI-based 

NBias-NSD trade-off curves and NRMSE results for 

the parametric Ki and Vd images, respectively. No 

significant differences between the LSE-based PGA 

and PCDE were observed. For Vd, the PGA shows a 

slightly better performance, but the differences are less 

than 10 [%] in most cases. 

Figure 2 shows the overall NBias-NSD trade-off 

curves and NRMSE results. At five OSEM iterations, 

using our proposed PCDE method, the overall 

NRMSE for Ki was reduced by 0.4 [%]. However, the 

overall NRMSE for Vd was increased by 3.3 [%], 

indicating no significant difference between the two 

methods. 

3.2. Overall Visibility and Tumor Detectability  

3.2.1. Kinetic Microparameters 

The first three columns of Figure 3 show the overall 

visibility results for the parametric K1, k2, and k3 

images. After five OSEM iterations, the overall SNR 

increased by 0.2, 4.1, and 2.4, and the overall NSDspatial 

decreased by 0.2, 5.4, and 4.1 for the parametric K1, 

k2, and k3 images, respectively, indicating the 

excellent performance of our proposed method in both 

aspects simultaneously.  

The first three columns of Figure 4 show the tumor 

detectability results for each tumor in the parametric 

K1, k2, and k3 images. After five OSEM iterations, 

although there was no clear improvement in CNR in 

the k2 images from the proposed method, the CNR for 

a lung tumor increased by 1.3 and 1.0, and that for a 

liver tumor increased by 1.2, and 9.8 in the K1 and k3 

images, respectively. In addition, the RETBR of a lung 

tumor decreased by 17.5, 82.2, and 68.4, and that of 

the liver tumor decreased by 255.8, 1733.5, and 80.3 

[%] in the K1, k2, and k3 images, respectively. Figure 

5 shows an example of microparametric images. 

3.2.2. Kinetic Macroparameters 

The last two columns of Figure 3 show the overall 

visibility results for the parametric Ki and Vd images. 

There were no substantial differences between the two 

methods in either aspect. The last two columns of 

Figure 4 show the tumor detectability results for each 

tumor in the parametric Ki and Vd images. For both 

tumors, the differences in CNR were within 0.5, and 

the differences in RETBR were within 10 [%] in most 

cases, except for the case with a decrease in RETBR 

by 19.6 [%] for a liver tumor in the Vd images using 

the proposed method. Figure 6 shows an example of 

macroparametric images. 

 

 

Figure 3. Overall visibility in each parametric image. Micro parameters: first three columns; Macro parameters: last two 

columns. (OSEM iterations=5). Matrices: overall SNR and NSDspatial. 

 

 

Figure 4. Tumor detectability in each parametric image. Micro parameters: first three columns; Macro parameters: last 

two columns. Matrices: CNR [%] and RETBR [%]. (OSEM iterations=5) 
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3.3. Patient Study 

3.3.1. Overall Visibility 

The first three columns of Figure 7 show the overall 

visibility results of 18F-DCFPyL for microparametric  

 

images. The averaged overall SNR (i.e., average of 

individual patient’s metric) increased by 1.19±0.25, 

2.06±0.42, and 0.80±0.16 for the parametric K1, k2, 

and k3 images, respectively. Each first rows of Figures 

8 and 9 show examples of micro-parametric images 

for each patient. Overall, compared to 2TCM, better 

 

Figure 6. Parametric k3 images with five OSEM iterations. (a): Ground Truth. (b): LSE-based 2TCM. (c): PCDE. 

(OSEM iterations=5, Noise Realization index=1) 

 

 

Figure 5. Parametric Ki images with five OSEM iterations. (a): Ground Truth. (b): LSE-based PGA. (c): PCDE. 

(OSEM iterations=5, Noise Realization index=1) 

 

 

Figure 4. Overall visibility in each parametric image. Micro-parameters: first three columns; Macro-parameters: last two 

columns. PAT.=patient. Radiotracer: 18F-DCFPyL 
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definitions with less noise via PCDE in all micro-

parametric images were verified. 

In addition, the last two columns of Figure 7 show 

the overall visibility for macroparametric images. The 

averaged overall SNR increased by 0.09±0.03 and 

0.37±0.58 for the parametric Ki and Vd images, 

respectively. Each second row of the Figures 8 and 9 

shows examples of macro-parametric images for each 

patient. Overall, there were no visually significant 

differences between the two methods (i.e., PGA vs. 

PCDE). 

3.3.2. Lesion Detectability 

The first three columns of Figure 10 show the tumor 

detectability for microparametric images. The overall 

CNR increased by 2.54, 1.99, and 1.29, and the overall 

TBR increased by 1.21, 0.39, and 1.84 for the 

parametric K1, k2, and k3 images, respectively, 

 

Figure 8. Example of parametric images focusing on overall visibility. Micro-parameters (K1, k2, and k3): the first row. 

Macro-parameters (Ki and Vd): the second row. Radiotracer: 18F-DCFPyL (Patient #1). We showed results for the 

conventional 2TCM approach vs. our proposed PCDE approach 

 

Figure 7. Example of parametric images focusing on overall visibility. Micro-parameters (K1, k2, and k3): the first row. 

Macro-parameters (Ki and Vd): the second row. Radiotracer: 18F-DCFPyL (Patient #2). We showed results for the 

conventional 2TCM approach vs. our proposed PCDE approach 
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indicating the excellent performance of our proposed 

method in both aspects simultaneously. For instance, 

Figure 11 presents examples of parametric K1 and k3 

images. Compared to the reference method (i.e., 

2TCM), the enhanced lesion detectability was verified 

via PCDE. 

In addition, the last two columns of Figure 10 show 

the tumor detectability for macroparametric images. 

The overall CNR increased by 0.21 and -0.06, and the 

overall TBR increased by -0.49 and 0.16 for the 

parametric Ki and Vd images, respectively. The minus 

sign represents the decrease in the metric of interest. 

4. Discussion 

This study introduces our proposed method (i.e., 

PCDE) and compares it to the common standard 

parameter estimation method for kinetic modeling 

invoking LSE. The comparison study was performed 

on the virtual dynamic dataset focusing on two 

aspects:1) general image quality for major normal 

organs in WB, and 2) overall visibility and tumor 

detectability. 

First, we verified that PCDE could improve the 

quality of microparametric images (i.e., NBias, NSD, 

and NRMSE). For the K1 image, the LSE-based 

2TCM showed better results in terms of NSD. 

However, the considerably higher level of bias 

compared to PCDE resulted in a larger NRMSE, 

reducing the overall performance compared to PCDE. 

Moreover, because multiple local minima can cause 

variability (e.g., NSD or NSDspatial) with high bias, 

the lower level of NSD from the LSE-based 2TCM 

could be due to the local minimum issue of LSE [32–

34] instead of the actual benefit of LSE for K1 images. 

Supplemental Figure 8 shows the example of an 

erroneously lower level of NSDspatial with high bias 

in the K1 image generated from the LSE-based 2TCM. 

When considering that NBias through the LSE-based 

2TCM show an extremely high bias (i.e., 96.6 [%]), 

we can indirectly expect that the lower level of 

NSDspatial is caused by the local minimum issue 

rather than the improved performance of LSE. 

For macro parameters, there was no significant 

difference between the PCDE and LSE-based PGA. 

This was expected because the relative benefit of 

PCDE compared to the reference (i.e., LSE-based 

PGA) would not be significant because the macro 

 

Figure 10. Lesion detectability in each parametric image. Micro-parameters: first three columns; Macro-parameters: 

last two columns. Matrices: CNRoverall and TBRoverall (the # of lesions: 2). Radiotracer: 18F-DCFPyL 

 

Figure 9. Examples of parametric images focusing on lesion detectability. Micro-parameter: K1 (lesion #1) and k3 

(lesion #2). Radiotracer: 18F-DCFPyL (Patient #1) 
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parameter estimation from the reference method 

already has good accuracy (i.e., NBias) and precision 

(i.e., NSD) owing to the linearized fit-type function for 

PGA [30, 31]. 

In addition, we verified the improved overall 

visibility (i.e., overall SNR, overall NSDspatial) and 

tumor detectability (i.e., CNR, RETBR) in the 

microparametric images, except for CNRs in k2 

images. For k2 images, there was a negligible 

difference between the two methods (i.e., ≤0.5). 

However, a high positive bias of the tumor, high 

negative bias of the background, and erroneously zero-

like NSDspatial originating from the local minimum 

issue of LSE may highly mislead CNR value (i.e., 

erroneously high CNR), which cannot provide any 

actual benefit for tumor detectability on images. Thus, 

a comparison based solely on CNR may lead to 

incorrect conclusions regarding tumor detection 

capability.  

Supplemental Figure 9 shows the example of a 

misleading CNR and the necessity of RETBR for a fair 

comparison in this simulation study. Even though the 

CNR from the reference shows a slightly better CNR 

than that of PCDE (i.e., CNRref=1.8, 

CNRPCDE=1.5), there is no actual relative benefit 

from the reference method in terms of tumor detection. 

Moreover, the relatively better CNR originates from 

high levels of bias in the liver tumor and background 

(i.e., highly negative bias) as shown in the figure.  

Therefore, in this study, we included RETBR as an 

auxiliary measure to minimize the possibility of 

incorrect conclusions regarding tumor detection 

capability. Considering that PCDE showed much 

lower RETBR values even for cases where the CNRs 

were quite similar (due to the misleading CNR from 

the reference method), we expect improved tumor 

detectability through PCDE compared to that of the 

reference.  

With microparametric images from PCDE (e.g., 

Figure 5), improving the overall SNR and NSDspatial 

would help identify suspicious regions in WB globally 

(i.e., global inspection). The improved CNR and 

RETBR performance would directly lead to improved 

tumor detectability locally within a particular organ 

(i.e., local inspection). For macroparameters (e.g., 

Figure 6), there were no significant differences in the 

overall visibility and tumor detectability between the 

two methods. This is understandable because the two 

methods had no significant differences in general 

image quality (i.e., NBias, NSD, and NRMSE).  

Overall, our proposed PCDE method provides 

enhanced microparametric images on not only virtual 

dynamic datasets but also real patient data, supporting 

application to clinical studies, and the need for more 

exhaustive studies. 

4.1. Comparison with Other Studies 

Our study contributes to enabling reliable WB 

kinetic modeling in regular-axial field-of-view PET 

scanners (i.e., multi-pass protocols on a limited axial 

FOV), tackling 3 important points (as elaborated 

next): 1) minimization of adverse effects in previously 

proposed techniques, 2) potential applicability for 

shorter scan durations, and 3) avoidance of the local 

minimum issues discussed above.  

For the first point, the protocol proposed by 

Karakatsanis et al. [8, 14] was optimized based on 

macroparametric images (i.e., Ki) and was used 6 min 

after injection to scan the cardiac region. Because the 

macro parameters of PGA only require data after the 

mechanism reaches kinetic equilibrium [8, 35, 36], the 

loss of early dynamics of TAC would not adversely 

affect parameter estimation. However, unlike macro 

parameters, early dynamics are critical for 

microparameter estimation because they typically 

include near-peak data considerably influenced by 

microparameter combinations. Although the accuracy 

and precision of the microparameter estimation need 

to be improved further relative to those of the macro 

parameter (i.e., Figure 2), it offers increased 

improvements for each microparameter compared to 

the common standard. This indicates a substantial 

reduction in the adverse effects of the protocol 

favorably optimized for macro parameter estimation.  

In addition, for the second point, the comprehensive 

comparison based on the multi-aspect of TAC can 

offer more stabilized parameter estimation (i.e., less 

variation of performance) from various image 

acquisition-related factors (e.g., the number of passes, 

time interval, voxel position, noise level, and type), 

compared to the case considering only one single 

factor (e.g., SSE for LSE). Therefore, we expect our 

proposed method to perform better even when using a 

dynamic PET dataset scanned only for 30 min, 
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realistically achieving the shortest scan duration for a 

typical PET-based WB kinetic modeling for micro 

parameter estimation. 

All results reported in this study are based on a 

simulated dynamic dataset scanned only 40 min PI, 

which is 5 min shorter than the optimal acquisition 

length suggested by Dr. Karakatsanis (i.e., 45 min) and 

20 min shorter than the typical time required for 

dynamic PET acquisition [1] for kinetic modeling (i.e., 

60 min). Hence, we can expect the promising 

applicability of the proposed method to studies 

involving shorter scan duration. 

Moreover, the PCDE avoids the local minimum 

issue by systematically evaluating various aspects of 

TAC and selecting the best parameter combination, 

rather than relying on an iterative approach to find an 

optimal value. Consequently, unlike the LSE method, 

the PCDE does not necessitate an initial guess for 

parameter estimation. However, PCDE also uses 

curve fitting to model a measured TAC, but the later 

dynamics of TAC (e.g., >10 min after injection) can 

be well-fitted using a single exponential function (i.e., 

fit-type function: c − 𝑎 ∙ 𝑒−𝑏𝑡, fit parameter: a, b, c), 

which can be an automatic process without a manual 

initial guess because of its negligible dependence on 

the initial values.  

Tackling the local minimum issue is critical for the 

active use of kinetic modeling in clinics for two 

reasons. First, it is not necessary to set starting points 

for each voxel (i.e., voxel-wise computation) or ROIs 

(i.e., ROI-based computation). Compared to curve 

fitting for the later dynamics of TAC (i.e., a single 

exponential shape), curve fitting for the entire 

dynamics of TAC (i.e., a surge-like shape) is most 

likely to have starting point dependency, especially if 

near-peak data are missing either partially or 

completely. Thus, for clinical use, starting points must 

be set subtlety through repetition to minimize the 

adverse effects of the local minimum issue (i.e., 

finding a global minimum), which is time-consuming 

when performed for each voxel or ROI, preventing the 

routine application of kinetic modeling in the clinic. 

Second, by minimizing the starting point dependency, 

the interpersonal error of the estimated kinetic 

parameters can be considerably reduced, which is 

critical for the consistency of kinetic modeling results 

and large-scale data comparison across different 

institutions worldwide. 

4.2. Limitations 

Some limitations in our proposed method indicate 

the need for further studies. First, the computational 

speed of PCDE is approximately 1.1×10-3 s/voxel; 

therefore, approximately 2 hours of computing are 

needed to perform WB kinetic modeling for a typical 

active patient volume size in the clinic with typical 

hardware specifications (e.g., CPU: AMD Ryzen 9 

5900HX, RAM: 32.0 GB, platform: MATLAB 

R2021b, precision of estimated parameter: 0.01). For 

use in routine practice, at least 100 times the current 

computational speed (i.e., ~10-5 s/voxel) is needed to 

complete the computation in a few minutes. 

Parallelized computation using a graphical processing 

unit (GPU) will allow us to achieve this.  

Secondly, in this study, we limited the maximum 

allowable value of the micro parameter to 1 (for K1 

and k2) and 0.5 (for k3), respectively. Although for 

18F-FDG, almost all micro parameters for each ROI 

in WB were within the desired ranges [8, 16], we need 

to broaden the range to increase applicability to 

diverse types of radiotracers.  

Thirdly, in the present work, irreversible uptake 

process was assumed (i.e., k_4≈0), as mentioned 

previously. Such an assumption is quite prevalent in 

past and ongoing studies with a number of 

radiopharmaceuticals (e.g. FDG, DCFPyL). 

Incorporating additional modeling of 𝑘4is certainly 

possible, and can result in more accurate estimates, but 

at the expense of reduced precision (increased noise) 

in parametric images given the extra degree of 

freedom in fitting. In any case, depending on a specific 

radiopharmaceutical of interest, such additional 

modeling can certainly be performed and studied.  

Overall, with the addition of a reversible process and 

a broader range of parameters, we anticipate that the 

GPU-accelerated PCDE approach will enable the 

widespread use of typical PET-based WB kinetic 

modeling for kinetic microparameters. This method 

ensures both reasonable computational time and 

compatibility with various types of radiotracers. 

Furthermore, despite significant improvements via 

PCDE, the overall levels of NBias and NSD tend to be 

beyond 10% (i.e., near 20%), and non-negligible 

variations among ROIs exist (e.g., supplemental 

Figures 1-7), implying that the proposed method may 
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still be insufficient for use in routine practice. We 

expect that the exploitation of de-noising techniques 

such as the finite Legendre transform-based low-pass 

filter with excellent de-noising performance for the 

exponential type curve (i.e., typical shape of TAC 

after peak) without the phase shift [37] and/or noise 

propagation pattern learning through machine/deep 

learning algorithms (i.e., noise propagation from the 

sinogram domain into image domain) could reduce the 

overall levels of NBias and NSD within 10%. 

Moreover, it can reduce variations among ROIs (i.e., 

consideration of different noise propagation patterns 

at each position). 

Finally, a validation study based on real patient data 

should be conducted. We are actively collecting 

patient data (e.g., Clinical Trial ID: NCT04017104) 

categorized by a specific tumor detection mechanism 

such as 18F-FDG by glucose metabolism [38], 18F-

DCFPyL and 68Ga-HTK by targeting PSMA [39,40], 

and 18F-AmBF3 by targeting somatostatin receptor 2 

(SSTR2) [41]. We expect to perform a validation 

study based on extensive patient data in the near 

future. 

5. Conclusion 

We compared the performance of kinetic parameter 

estimation between the common standard (LSE) and 

the proposed PCDE method, focusing on general 

image quality, overall visibility, and tumor 

detectability. Although there were no significant 

differences in macroparameter estimation, significant 

improvements in the microparameters were 

demonstrated. PCDE can enable typical PET-based 

WB kinetic modeling for kinetic microparameters, 

which has been almost nonexistent owing to 

significant uncertainties in estimates when using LSE. 

Overall, our proposed framework enables 

microparametric imaging as applied to dynamic WB 

imaging protocols on regular-axial field-of-view PET 

scanners. 
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Supplemental Figures 

 

Supplemental Figure 1. Calculation of relative selection powers for each aspect of TAC. (1) Calculate normalized 

scores for each aspect by min-max normalization. (2) Calculate coefficients of variation for each aspect and the relative 

values that represent selection powers for each aspect 
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Supplemental Figure 2. Calculation of parameter combination weights for each combination in the top-10 list. (1) 

Acquire probability distributions of microparameters from the top 10 list. (2) Calculate occurrence probabilities for 

each combination in the top-10 list and relative values that represent the weights for each parameter combination 

 

Supplemental Figure 3. Example of an erroneously lower level of NSDspatial with high bias in the LSE-based 2TCM 

K1 image mainly due to the local minimum issue. (OSEM iterations=5, Noise realization index=1). Note that, unlike 

NSDspatial, each NBias values were calculated from all noise realizations 

 

 

Supplemental Figure 4. Example of a misleading CNR and necessity of RETBR for a fair comparison. (a): Ground 

Truth. (b): LSE-based 2TCM. (c): PCDE. (OSEM iterations=5, Noise realization index=1, Kinetic parameter: k2) 
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Supplemental Figure 5. ROI-based NBias-NSD trade-off curves (i.e., upper two rows) and NRMSE results with increasing 

OSEM iterations (i.e., lower two rows) for parametric K1 images 
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Supplemental Figure 6. ROI-based NBias-NSD trade-off curves (i.e., upper two rows) and NRMSE results with increasing 

OSEM iterations (i.e., lower two rows) for parametric k2 images 
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Supplemental Figure 7. ROI-based NBias-NSD trade-off curves (i.e., upper two rows) and NRMSE results with increasing 

OSEM iterations (i.e., lower two rows) for parametric k3 images 
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Supplemental Figure 8. ROI-based NBias-NSD trade-off curves (i.e., upper two rows) and NRMSE results with increasing 

OSEM iterations (i.e., lower two rows) for parametric Ki images 
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Supplemental Figure 9. ROI-based NBias-NSD trade-off curves (i.e., upper two rows) and NRMSE results with increasing 

OSEM iterations (i.e., lower two rows) for parametric Vd images 
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