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Purpose: Gathering an insight into brainstem task in generating auditory response to complex 
stimuli and its nonlinear behavior can be an important base in auditory system modelling, but 
no study has been done to demonstrate the nonlinear dynamic behavior of auditory systems 
considering cABR. This study attends the dynamic modeling of auditory brainstem response to 
consonant-vowel syllable /da/ using fuzzy logic as nonlinear mapping of the input and output 
of the system. 

Methods: We recorded cABR to /da/ from 40 normal Farsi speaking subjects in response 
to /da/ with 40ms duration. This data set was divided to train and validation sets. We 
implemented a fuzzy logic based model for the dynamic extraction of cABR to /da/ for data 
set. This model includes singltone fuzzifier, product inference engine and weighted center of 
average defuzzifier. Rule base representing dynamic of signal was generated and, then, firing 
rate of each rule was calculated and a histogram of rule firing rate was plotted. We selected 
the important regions of the histogram regarding to firing pattern of the rule. By choosing an 
appropriate threshold, a secondary rule reduction was done to generate a simplified model; 
remaining rules were best rules related to important cues of cABR.

Results: This model represents the input-output behavior of the brainstem in generating cABR to 
consonant-vowel /da/. The total error achieved by cross-validation of the model after an important 
rule selection is 0.1329 with a variance of  7.08×10-4.

Conclusion: Nonlinear fuzzy based dynamic extraction of cABR signal is a valid approach 
for generating important features of cABR and a remarkable evidence of these signals can be 
represented by some spatial rules.
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1. Introduction

uditory brainstem responses (ABRs) are 
biopotentials recorded from the scalp 
evoked by external stimuli like clicks, 
mono tones, etc. Neural encoding of 
sounds relies on central auditory system 

function which begins in the auditory nerve and reaches 
to brainstem [1]. ABRs are considered as an important 
tool to access the information about the neural encoding 
of sound in auditory systems, but they don not provide 

A
comprehensive information about what really happens 
in encoding of speech. Therefore, studies have been 
ubdertaken in the last decade to see how the temporal 
modulations of sounds are represented in the response. 

Evoked potential to basic stimuli, like transients, 
tone bursts and tones are considered more than com-
plex sounds with a contamination of amplitude and 
frequency modulations[2]. In clinical applications, 
brainstem responses to clicks or tones are commonly 
used to distinguish and evaluate the auditory pathway 
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integrity [3]. However, a non-speech stimulus such as 
a click or a tone burst doses not give sufficient infor-
mation about the real process of  encoding of speech, 
it is necessary to consider encoding of speech at the 
brainstem level because of the time varying complex 
nature of speech [4].

Natural complex sounds encompass transient, peri-
odic and quasi periodic features. There is insufficient 
knowledge about the neurophysiological processing 
of natural sounds along the auditory pathway. The re-
sponse to a complex sound is not necessarily predict-
able from clicks and tones evoked potentials [5, 6]. 
Because of these, auditory Neuroscientists try to use 
complex stimulus (e. g. speech, music and other natu-
ral sounds like a baby cry) to record ABR[7].

Melcher andKiang (1996) used a convolution method 
to describe the generation of ABR in cat [8]. Dau devel-
oped a model for the generation of ABRs to common 
transient stimuli like clicks and frequencies following 
responses to tones (FFR). These AEPs are the results 
of summed activities by neurons in the auditory nerves 
(AN) [9]. Cochlear processing such as the filtering of 
basilar membrane with compressive feedback loop, 
inner hair-cell function, adaptation of auditory nerves 
and inner hair-cell synapse are considered in the men-
tioned model. The output of AN model, instantaneous 
discharge rate, was convolved with an elementary unit 
waveform obtained to simulate AEPS. Harte extended 
Dau's model with current changes  in AN modeling [10] 
and humanized the model. Brainstem responses to com-
plex sounds like speech, music and natural sounds, re-
veals the temporal and spectral specification of acoustic 
stimulus [7]. Therefore, the modeling of auditory brain-
stem response, considering these responses, gives accu-
rate information about the encoding of the natural sound 
cues in the auditory pathway. Roone and Dau present 
a model for brainstem responses to transient stimulus 
based on previous studies [2]. Thenthe ABR model was 
developed  based purely on a bottom-up afferent pro-
cessing to speech stimulus [11].

The experimental analyses help the mathematical 
models to develop by means of input-output pairs. How-
ever, these dynamical models do not describe the exact 
internal structure of the system, but are an approxima-
tion of the system input and output nonlinear mapping. 
Although speech evoked potentials is relatively high 
replicable [12, 13], there are differences in the latencies, 
almost the fraction of milliseconds which are impor-
tant in clinical applications [14]. These are because of 

systematic differences between observed dynamics of 
everybody auditory pathways. Consonant-vowel stimu-
lus /da/ have been utilized more than other stimulus for 
studding auditory brain stem response because of its 
complex nature including both transient and sustained 
features and its research potential in hearing and learn-
ing disorders. It's also the only popular stimuli existing 
in cABR recording instruments.

Having collected all these, no study has been done to 
demonstrate the nonlinear dynamic behavior of audi-
tory system in generating cABR signals until now. This 
study attends a dynamic modeling of auditory brainstem 
response to consonant-vowel syllable /da/ using fuzzy 
logic as nonlinear mapping of input-output pairs of sys-
tem. This model tries to extract the dynamics of these 
differences in each responseand, then, find common 
rules that exist in cABRs describing the pattern of major 
and substantial dynamics of the responses. 

	2. Method

	2.1. Subjects

Forty volunteer students from School of Rehabilita-
tion, Iran University of Medical Sciences (18 women 
and 22 men), aged 20–28 years (mean ± SD = 22.77 ± 
2.05) were registered to initiate the experiment. None 
of the subjects had a history of auditory, learning or 
neurologic problems. All students were right handed 
and monolingual Persian speakers by self-report. All 
had normal middle ear function (supported by immit-
tance findings) and performed within the normal limits 
on pure tone audiometry (air conduction thresholds 
≤20 dB HL for octave frequencies 250–8000 Hz). Sub-
jects gave written consent to participate intensively in 
the study. All procedures were approved by the deputy 
of research review board, Iran University of Medical 
sciences.

	2.2. Stimuli

The 40-ms speech syllable /da/ (Fig. 1) was present-
ed through Biologic Navigator Pro (Natus Medical 
Inc.). The fundamental frequency (F0) increased lin-
early from 103 to 125 Hz. During the formant transi-
tion period, F1 linearly increases from 220 to 720 Hz, 
whereas the second formant frequency (F2) decreases 
from 1700 to 1240 Hz, and the third formant frequency 
(F3) decreases slightly from 2580 to 2500 Hz, whereas 
the fourth (F4) and fifth (F5) formant frequencies re-
main constant at 3600 and 4500 Hz, respectively.
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2.3. Recording Procedure

The speech syllable /da/ was presented binaurally 
through insert ear phones (Biologic 580-SINSER) in al-
ternating polarities at 80 dB SPL with an inter stimulus 
interval of 70.33-ms. ABRs to the /da/ sound in the qui-
et conditions were collected with four Ag-AgCl scalp 
electrodes using Biologic Navigator Pro (Natus Medical 
Inc.) with sampling frequency of 12 kHz. Brainstem re-
sponses were collected with a vertical montage (active 
electrode at Cz, linked reference electrodes on both ear-
lobes, ground electrode at Fpz). An online filter (100-
2000 Hz) selected to pass the brain stem potentials. 
Electrode impedances were maintained below 5 kΩ.

2.4.  Data Processing

Any sweep exceeding 23.8 mV was considered arti-
fact and excluded. After artifact rejection, the average 
of 3000-sweep separately was recorded in two memo-
ries according to their stimulus polarities presentation. 
Then, two memories were added offline to minimize the 
stimulus artifact and cochlear microphonic response [7].

Due to low pass nature of brainstem which emphasizes 
the energy of fundamental frequency of stimulus (F0) 
and bypasses the high frequencies [7], a low pass filter 
with cut off frequency 2 kHz was applied to stimuli. 

For finding the best model order, a lag embedding of 
cABR signal was used. Lag embedding is the funda-
mental technique in nonlinear time series analysis. We 
used an embedding lag equal to 1 and maximum em-
bedding dimension equal to 30. We calculated the corre-
lation integral for different embedded dimensions and, 
then, zoomed in the correlation integral representation 
to find the best scaling region for finding correlation di-

mensions. After the representation of correlation dimen-
sion diagram, we expected correlation dimensions to 
vary with dimensions until embedded dimensions was 
equal to or became greater than about twice the dimen-
sions of the state space attractor for the system. After 
this saturation value, correlation dimensions becomes 
independent of embedding dimensions. 

Then, we implemented the simplest discrete-time 
model based on correlation dimension method (shown 
in Fig. 2) to obtain the relationship between the input-
output pairs and find the transfer function of the sys-
tem which was considered as black box without the 
knowledge of its internal characteristics. The structure 
of model was followed as (1).

1 2 3

4 1

( ) ( 1) ( 2) ( 3)
( 4) ( ) ( )k

cABR n a cABR n a cABR n a cABR n
a cABR n b stimuli n n e n

= − + − + −
+ − + − +

 

                                                                                     (1)

Where e(n) is white-noise term and nk is the appro-
priate delay which is set to the maximum fitness point 
of model. This point is highlighted in Fig. 3. The ARX 
model was fitted to train set and the estimated parame-
ters for each data were obtained. Then all corresponding 
coefficients of regressors were averaged.

Correlation analyses are used for calculating the time 
delay between stimulus and response and can be used to 
compare the overall morphology and timing of stimu-
lus and response [15]. The cross correlation between 
response and stimulus is a function of time shift which 
measures the degree of their similarity. This quantity 
can also be used for determining the onset of response 
which is known as the time delay between stimulus and 
response [16]. Pearson correlation between response 
and stimulus with two polarities was calculated. Maxi-
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Figure 1. Time based representation of 40-ms speech syllable /da/.
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mum correlation considering positive polarity was 6.45-
ms and negative polarity was 8.23 ms. The suggested 
delay by ARX model was 8.16-ms (98 sample) which is 
comparable with Pearson correlation results (with nega-
tive polarity) which is 8.23ms.

For creating nonlinear mapping between the input 
and output of the system, the fuzzy based model was 
suggested as shown in Fig. 4. One step ahead predic-
tion was done by fuzzy mapping between the input and 
output of the system. Equations 2 and 3 represent the 
nonlinear relation between the input and output of the 
model. Where nk is the system delay which is obtained 
from ARX model.

( 1 | ( )) ( ( )).cABR n n f nϕ ϕ+ =                                        (2)

 
( ) ( ( ), ( 1),
( 2), ( 3), ( 4)).

kcABR n f stimuli n n cABR n
cABR n cABR n cABR n

= − −
− − −

          (3)

2.6. Fuzzy System Generation

Our objective was to design a Fuzzy system based on ex-
isting N=1024 input-output pairs in the form of equation 
(x0

p;y0
p), p=1,2,…,N according to the look up table scheme. 

Where x0
pϵ U = [α1β1] *...* [αn ,βn]  Rn and yo

p ϵ U = 
[αy ,βy]

Figure 3. ARX model error versus varying system delay. Minimum error of 
fitted model was in 98th sample delay of stimuli

Figure 2. The schematic of suggested linear model.
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we selected [αy ,βy]=[αi ,βi] =[_ 1 1و]    for  i =1,2,…,5

Step 1: Define fuzzy sets to cover input and output 
spaces.

We defined Ni =Ny=21 fuzzy sets Ai
j (j=1,2,…,Ni) on 

each dimention of input space [αi ,βi] µAi
j (xi) and µAi

j(xi) 
to be triangular membership functions whichdefined on 
input stimuli (/da/) samples and the feedbacks of cABR 
values (shown in Fig. 5). 

We also defined Ny=21 fuzzy sets Bj (j=1,2,…,Ny) 
and µBj(y) to be triangular membership functions. 
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Figure 5. Membership functions consist of 21 triangular functions that covers input (output) space.

Step 2: Generate one rule from one input-output pair.

For each input output pair (x01
p,…,x0n

p;y01
p), the mem-

bership value of x0i
p (i=1,2,…,n) in fuzzy sets Ai

j (j=1,2,…
,Ni) and the membership value of y0

p  in fuzzy sets B j 
(j=1,2,…,Ny ) was determined. Then, for each input vari-
able xi, the fuzzy set in which x0i

p has the largest member-
ship value (Ai

l) was determined. This action was done for 
output variable similarly and B^l  was calculated, so the 
fuzzy if-then rule were defined as bellow:

IF stimuli (n-98)  is 1
lA  and cABR(n-1) is 2

lA  and 

cABR(n-2) is 3
lA  and cABR(n-3)  is  4

lA  and cABR(n-4) 
is 5

lA  and THEN cABR(n) is lB .

In the above rule l
iA  and lB  are, respectively, input and 

output fuzzy sets. So we generate 30600 rules for train set. 

Step 3: Assign a degree to each rule generated in 
step 2 and perform rule reduction.

Since the number of input-output pairs was large and 
the probability of conflicting rules that have the same 
IF parts but different THEN parts, we assigned a degree 
(equation 4) to each generated rule in step 2 and keep 
only one rule from a conflicting group that has the maxi-
mum degree. So the number of rules reduced to around 
2000 rule (depending on random selection of train set).

1

( ) ( )* ( )l l

n

l iA B
i

D rule x yµ µ
=

=∏                                       (4)          

Step 4: Construct the Fuzzy system.

After rule reduction, the fuzzy rule base was created 
based on look up table and the fuzzy system consisting 
fuzzifier, inference engine and dufuzzifier, based on the 
fuzzy rule base was constructed. 

Fuzzifier: The singleton fuzzifier was chosen as is de-
fined in (5). In which x is input variable and µA(x) are 
input membership function values.

*1 .
( )

0 .A
ifx x

x
o w

µ
 =

= 


                                                  (5)
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Defuzzfier: The output of fuzzy system is weighted an 
average of output membership function centers, where 
the weights ( lw ) are membership function values in 
the IF part of rules (7). If the input vector of system is 
matched with IF part of rule, then that rule gets a larger 
weight.

* 1

1

.
.

lL

l
l

L

l
l

y w
y

w

=

=

=
∑

∑                                                                                      

(7)

The nonlinear mapping created by proposed FIS is de-
termined by (8). 

1 1

1 1

.( ( ))
( ) .

( ( ))

l
i

l
i

nL l

iA
l i

nL

iA
l i

y x
f x y

x

µ

µ

= =

= =

= =
∑ ∏

∑ ∏

                            (8)

After devolving proposed model by generating fuzzy 
systems as mentioned above, the model was validated 
using validation data set. 

3.  Results

	3.1. Model Order Calculation

Fig. 6 shows the saturation value that obtained from 
lag embedding method and is about 8 for the grand av-
erage of dataset, and the correlation dimension of the 
attractor is about 4. So the model order was selected 
equal to 4.

3.2. Validating the Model

The data set was divided into two sets, 30 data for train 
set and 10 for the validation set. The repeated random 
sub-sampling validation method used for cross-valida-
tion of model. This method randomly splits up dataset 
into train and test sets. Ten random train and validation 
sets were chosen to validate the model.

Obtained transfer function from the proposed ARX 
model is as follow:

98

4 3 2

0.002( ) .
2.4610 2.341 1.1492 0.2795

zH z
z z z

−−
=

− + − +
            (9) 

Inference Engine: Our experimental data give only local 
information about the system; because of this the product 

Figure 6. Correlation dimension plotted as a function of the embedding dimension for 
cABR data. The model order was selected equal to 4.

Table 1. Arx Model Parameters.

Statistic Moments of Parameters
Estimated Parameters

1a 2a 3a 4a 98b
Mean -2.46 2.3410 -1.1492 -0.2795 -0.0020

Variance 0.016 0.1281 0.1583 0.0248 4.6x10-6 

inference engine was chosen which is defined as (6).

 

'

1

( ) max[sup( ( ). ( ) ( ))].l l l
i

n

B A A B
i

y x x yµ µ µ µ
=

= ∏
                       

    (6)
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Outputs for the ARX model and nonlinear ARX was 
shown in the Fig. 7 which shows nonlinear ARX model 
acts better than the linear one. The mean and variance 
of estimated parameters for proposed ARX model is 
available in table 1. Table 2 shows the mean and vari-
ance values of one step ahead prediction error defined 
by (10) for both linear ARX and nonlinear one, where N 
is sample size of signal.

1

1

| ( ) ( ) |
.

| ( ) |

N

n
N

n

cABR n cABR n
E

cABR n

=

=

−
=
∑

∑

                                     

                                                                                    (10) 

The cABR to /da/ includes transient and sustained 
features corresponding with stimulus acoustic cues. 
This consonant-vowel syllable /da/ evokes seven major 
peaks that have been named V, A, C, D, E, F, and O, 
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Figure 7. The plot on the top  shows the output of model for linear model and the down 
plot shows the output of  fuzzy based model (blue:original signal and red:predicted one).

Figure 8. The grand average of cABR signals, consonant-vowel syllable /da/ 
evokes seven major peaks that have been named V, A, C, D, E, F, and O.
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as can be seen in Fig. 8. These peaks relate to major 
acoustic landmarks in the stimulus. These major peaks 
appear approximately 6 to 9 ms  after  the correspond-
ing stimulus landmark, which is related to transmission 
time between the cochlea and rostral brain stem.[7]. 
Fig. 9 shows the firing number across the cABR time. In 
this figure a 0.33 ms runnig window from test data was 
used to distinguish which rule was fired in each window. 
The Fourier transform of steady state part of firing num-
ber pattern is shown in Fig. 10. This figure shows that 
the pattern of fired rules follow the main dominant fre-
quency of stimulus i.e. F0 and F1 etc. Where F0 linearly 

increases from 103 to 125 Hz in the stimulus and F1 of 
stimulus increased from 220 to 729 Hz.

3.3. Simplified Model

Fig. 11 shows the histogram of fired rules for valida-
tion set. In this figure, some rules that show high firing 
rate can be assumed as important rules in generating 
cABR. Therefore, by chosing an appropriate threshold, 
the Rule base size can be reduced more than before. The 
threshold was chosed  above minimum firing rate of his-
togram and the rules that their firing rate is lower than 

Figure 9. The grand average of the histogram of fired rules for 10 times of model valida-
tion in terms of cABR signal time.

Figure 10. Fourier transform of steady state part of histogram. The pattern of fired rules 
following the main dominant frequency of stimulus likes F0 and F1 where F0 lineally 
increases from 103 to 125 Hz in the stimulus and F1 of stimulus increased from 220 to 
729 Hz.
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this value was eliminated. So around 200 rules (depend-
ing on random selection of train and test set) remained 
from the primary rule base. After rule reduction by this 

approach, the model was revalidated and the output of 
model for a signal from validation set was shown in 
Fig. 12. It can be seen that the model was successful 
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Figure 11. Histogram of fired rules for validation data set. some rules that show high 
firing rate can be assumed as important rules in generating cABR.

Figure 12. The output of model for a cABR  from validation set after constructing sim-
plified model using selecting the rules by their firing rate  (blue:original signal and 
red:predicted one). It can be seen that the model was successful in predicting a whole 
component of signal but failed in predicting baseline 

Table 2. The Mean And Variance Values Of Model's Error Resulted From Validation Step.

Models
Error Parameters

Mean Variance

ARX model 0.3187 0.0046

Fuzzy model 0.1419 7.08x10-4

Fuzzy model after histogram based rule reduction (simplified 
model) 0.2533 0.0048
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in predicting a whole component of signal but failed in 
predicting baseline.

The mean and variance of error from cross-validation 
were reported in table 2. The error after generating sim-
plified model is a bit higher than before, but the com-
plexity of model was reduced. So the cost is minimized 
versus a slight increase in error. 

	4. Discussion

This paper represents a dynamic model for the gen-
eration of auditory brainstem responses to syllable /da/ 
using fuzzy logic as a nonlinear mapping between input 
(stimulus) and outputs (cABRs) of the auditory system. 
The proposed model proved that there is special Fuzzy 
rules that are corresponded to important evidences and 
dynamics of cABR signal. In Fig. 9 there exist some 
regions that show less repetition of rules. These regions 
can be assumed to be in relation to specific dynamics of 
cABR data, because the rules that is fired in this region 
does not fire in other times. Some remarkable similari-
ties between the overall morphology of grand average 
of cABR data (Fig. 8) and the firing number of rules 
versus time (Fig. 9) can be seen. In Fig. 9 the important 
acoustic cues like onset, consonant part and vowel in the 
response can be observed. The first part of Fig. 9 is rep-
resented as onset of response and the rules that fired in 
this region is describing A-V complex dynamic, second 
part is related to transient part of response and the third 
part of the histogram, begin from wave D until wave F, 
is related to vowel part that show periodicity manner of 
vowel. The last part that specified in Fig. 9 is related to 
the final transient response witch is named O wave. On 
the other hand, as it can be seen in Fig. 10, a strong simi-
larity between the frequency content of speech stimuli 
as input of system and firing number as a sign of system 
output was proved in this work. This similarity shows 
that the model could extract the existing nonlinear map-
ping between input and output of system and the above 
time and frequency domain results show this fuzzy logic 
model can represent the behavior of brainstem in gen-
erating signals. In fact, this work presents dynamics of 
cABRs to /da/ for a normal subject, so this rule base can 
be considered for normal subjects and can be the base 
of approach to identify abnormalities. In other words, a 
poor representation of acoustic cues like F0, F1 in the 
model's output and histograms of fired rules for new 
cABR signal can be a sign of some abnormalities of 
brainstem behavior. On the other hand, the histogram of 
fired rules shows that acoustic cues were mapped with 
separable rules in cABR signals which can be remark-

able rules for normal subjects and can be compared with 
other pathological subjects. Variations from this normal 
features can be a sign of an auditory disease. Although 
a number of studies in neurosciences have used fuzzy 
logic, it is still largely employable in more applications; 
the aim is changing the medical diagnosis and manage-
ment, incorporating fuzzy interpretation in medical di-
agnostic and clinical applications. This work improved 
the insight into the real behavior of auditory system and 
proved that nonlinear behavior exists in auditory path-
ways. Due to nonlinearity of the auditory pathway in 
encoding of acoustic cues, nonlinear mapping was suc-
cessful in predicting cABR signals. 

The limitation of this study was the inaccessibility to 
cABR signals to other speech stimulus and cABR signal 
to pathological subjects. This limitation is according to 
popular instrument's only stimulus that is /da/. The abil-
ity to generate and combine other stimulus have been 
reached in this research group and developing this study 
for other stimulus is the topic of our future works. It is 
proved that the brainstem encoding of speech depends 
on various experiences [17] such as language [17-19] 
and music training [20]. Further studies need to focus 
on comparing the efficient rules in each case and lead to 
distinguish more about the function of learning abilities 
on the auditory processing.
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