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Abstract

Purpose: Reinforcement Learning (RL) is attracting great interest because it enables systems to learn by
interacting with the environment. This study aims to enhance the RL algorithm to become more similar to human
motor control by combining it with the Non-negative matrix factorization (NMF) method.

Materials and Methods: In the study, the signals recorded from six muscles involved in arm-reaching movement
without carryinga certain weight.were pre-processed, and the optimal number of synergy patterns was extracted
using NMF and the Variance Account For (VAF) methods. This, in turn, contributes to reducing the calculations.
Subsequently, the robustness of the two-link arm model with six muscles was evaluated under various noise levels
applied to the action coefficient matrix. Finally, the average synergy pattern was done on the mentioned arm
model, and the RL algorithm controlled it by producing the action coefficient matrix.

Results: The average VAF% was 97.25+0.45%, and the number of synergies was four. The tip-of-the-arm model
was able to reach the target after an average of 100 episodes.

Conclusion: The results indicated that the similarity in the extracted synergy patterns helps to model a system that
is more similar to motor control. Additionally, the results of the synergistic patterns revealed that the two-link
arm model with six muscles was suitable for the model. While controlling the model with the RL algorithm, the
desired end-point position and path were achieved.

Keywords: Reinforcement Learning Algorithm; Non-Negative Matrix Factorization; Muscle Synergy; Action
Coefficient Matrix; Optimization; Two-Link Arm Model.
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NMF-MA-SARSA Algorithm for Target Positioning

1. Introduction

In early infancy, humans find initiation of
movement control difficult, but over time and through
training, they acquire knowledge and information
about how to control their movements, eventually
finding the best solution for the desired action. Reward

and punishment can result in learning by humans.

Reinforcement Learning (RL) controllers are
aligned with human motor control, whereas a
controller such as the Proportional Integral Derivative
(PID) controller cannot achieve this feature. The RL
controller can be defined as the process of active
learning while interacting with a constantly changing
environment [1].

Thanks to the RL agent that generates suitable
actions, the system can learn by interacting with the
environment, taking actions, and gaining knowledge
to reach the target through trial and error. The RL
controller is based on the idea of learning from
experience, which is accompanied by rewards and
punishments, representing positive reinforcement
(desired behaviors) and negative reinforcement
(undesired behaviors), respectively [2]. An agent
strives to maximize its future rewards by minimizing
control costs. Systems that provide individual
suggestions based on user behavior have been created
through RL controllers [3]. In addition, adaptive
shifting settings for survival and growth principles
enable the provision of solutions to various issues in
industries [4]. RL controllers have a significant impact
on controlling upper extremity areas. Examples
include combining the RL controller with the
Functional Electrical Stimulation System (FES) [5],
using the RL controller to learn how to predict the
paddle target [6], and modeling multiactuator
musculoskeletal systems using the RL algorithm [7].
Other examples include controlling the learnable
parametrized model and a conventional feedback
controller [8], as well as controlling the fuzzy neural
network [9] by combining the RL algorithm. Humans
often create effective and coordinated movements by
ingeniously using the dynamics of their intricate
musculoskeletal system. Through the Central Nervous
System (CNS), various muscles that contain many
motor units are activated and coordinated [10]. To
handle the numerous Degrees of Freedom (DoF),
humans do not have control over basic degrees of
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freedom; instead, they manage this issue using muscle
synergistic patterns and the activation coefficient [9-
12]. These synergistic patterns of muscles are similar
in many cases [13, 14], and humans control
movements by adjusting the activation coefficient,
which in turn results in movement performance.

The Multi-Agent State Action Reward State Action
(MA-SARSA) algorithm is an improved RL algorithm
introduced by Martin et al. [15], which is based on the
SARSA algorithm. This algorithm employs multiple
agents to control complex systems, such as the multi-
link arm model [16]. It can reduce the complexity of
the agent, lower the learning speed, and minimize
interference errors.

Jun Izawa et al. [17] discussed optimal learning
control methods utilizing the RL controller for
biological systems with redundant actuators.

Albers et al. [18] utilized the RL algorithm to
control the two-link arm robot model, where the
torque generated by the RL algorithm was applied as
input to the robot. In a related study [16], the MA-
SARSA algorithm was combined with the bee
algorithm to control the two-link arm model with six
[5] emphasized that
complex environments are challenging to control

muscles. Wannawas et al.

using hand-crafted control policies, but the RL
algorithm can learn to control them. Therefore, in FES
control, RL is an essential component for governing
the policies to control settings.

Analysis of arm-reaching movements has provided
information about a limited number of fundamental
training signals known as muscle synergy patterns,
which govern diverse activities instead of separate
commands to each muscle in the CNS. One of the
methods to capture muscular synergies is NMF, which
is more consistent than other methods such as
Principal Component  Analysis (PCA) and
Independent Component Analysis (ICA).

Decomposing signals can be done by the NMF
method which has greater robustness [19], as well as,
NMF is a matrix factorization method. PCA generates
factors that can be both positive and negative, whereas
NMF exclusively produces positive factors.

PCA s
dimensional dataset into lower dimensions, provided
that some loss of the original features is acceptable.

useful when transforming a high-
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ICA is generally more computationally intensive than
PCA, requiring more time to execute. NMF can
identify more complex patterns in non-negative data.
Additionally, NMF can effectively extract new
features suitable for various applications.

The selection of an appropriate number of synergies
relies on the VAF criterion, and the threshold value of
the VAF should be chosen to describe the arm-
reaching space more clearly while minimizing
calculations. Great number of studies [13, 17, 19] have
utilized the NMF method for extracting synergistic
patterns [20-24].

It is believed that, under the same movement [25],
highly modular muscular synergetic patterns can be
achieved [12, 13, 25]. Therefore, in the present
investigation, we used these similarities to reduce the
computational burden of the MA-SARSA controller.
Consequently, the NMF-reinforcement algorithm was
able to achieve the desired end-point position and
path. The proposed method in this study is to utilize
methods such as the NMF and VAF methods to
calculate the W.C matrix (where W was the weight
matrix and C was the active coefficient matrix) after it
was applied to the two-link arm model with six
muscles. The W matrix was then applied to the two-
link arm model, and the MA-SARSA algorithm was
used to control it (see Figure 1).

_ RLAgent
Value Rewards _l
Function
Coefficients TW‘(;-:ml.( :rITI
] Synergies model with six
Policy z - egr n —>1 muscles

Statue

Figure 1. The diagram presents the NMF-MA- SARSA
algorithm. The schematic of this paper suggests that
combining the two-link arm model with the six-muscle and
NMF algorithm, controlled by the MA-SARSA algorithm,
can help reach the target
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2. Materials and Methods

2.1. Study Population and Experimental
Procedure

The study included twenty healthy, right-handed men
with no neuromuscular disorders. Male’ age averaged at
28 years (SD = 4.22 years), their average weight was 80
kg (SD = 11 kg), and their average height was 170 cm
(SD = 8 cm). In this study, the participants were seated
behind a desk while their shoulders and bodies were at
a 90-degree angle (see Figure 2). Additionally, they
were introduced to perform arm-reaching movements
without carrying a specific weight along a specified path
[29]. For each subject, the arm-reaching movement was
performed up to 10 times.

It is essential to prepare the skin properly to reduce
the skin's impedance. So, in this study firstly, the
electrode area on the muscle should be cleaned with
alcohol-soaked cotton to remove fat and perfume.
Dead skin cells, which have high electrical resistance,
should also be removed using a very fine sandpaper.
During this process, continuous cleaning with alcohol-
soaked cotton is necessary, and care must be taken to
avoid damaging the skin. Surface hairs at the electrode
locations should be removed. Finally, the skin's
electrical impedance was measured with a multimeter,
which should be less than ten kilo-ohms. EMG signals
of six muscles, such as the biceps short head (BSH),
biceps long head (BLH), pectoralis major (PMJ),

Figure 2. Experimental setup. The subjects sit at the table
whose shoulders and bodies were at an angle of 90 degrees.
Protocol was done at a certain endpoint position.
Movements were recorded from each subject (20 arm-
reaching movements in each person's protocol)
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deltoids (DEL), triceps long head (TRIO), and triceps
lateral head (TRIA) involved in arm-reaching
movement [26], were recorded.

2.2. Data Acquisition Pre-Processing

The EMG signals were recorded at a sampling rate
of 1 kHz through 5000 gain factor amplifiers
(BIOPAC EMG 100A system). The electrode position
was chosen according to the SENIAM standard [27].

The recorded EMG signals were passed through the
high-pass filter at 1 Hz and the low-pass filter at 500
Hz outage frequencies. Subsequently, rectification,
baseline correction, normalization, and activity level
estimation were performed on the recorded signals
(see Figure 3).

2.3. Non-Negative Matrix Factorization and
Variability Accounted For

In the present study, to calculate the signal values,
the NMF method and the required number of synergies
were extracted by applying the VAF criterion [28].
The Non-Negative Matrix Factorization (NMF)

" (@)

s f

g |

Tos| PRy

o ¥ ,

E ol | h : \

[=]

= 0 2 4 6 8 10
Time {sec)

= (c)

: 11—

0] :

=

T 05 A M

AR T

Z o 2 4 6 8 10
Time (sec)

= (e)

= 1

LIJ | "

505 M |

BRI

ool WA A ;

2 V] 2 4 6 8 10
Time (sec)

method can be represented as Equation 1. Where W is
the weight matrix, C denotes the coefficient matrix
and e represents the residual error matrix:

M;() =ZWijCi(t)+e(t),j =1,..,m (1)
i=1

Figure 4 depicts information about an example of
NMF method for two matrices (W and C matrices)
with an inner dimension of K. Each column of the data
(EMG signals) is expressed as a linear combination of
basis vectors, specifically the columns of the matrix
along with their corresponding weights.

The VAF criterion calculates to what extent W*H
can be reconstructed from the original EMG data. The
VAF criteria can be measured by Equation 2, where
EMGeori is the signal recorded from six muscles from
20 participants, and ||.|| is the Euclidean norm.
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Figure 3. The entire EMG signal preprocessing for each muscle. The vertical and horizontal axis depicts

normalized EMG (Volt) and time (sec), respectively
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Figure 4. The process by which the NMF method
functions to extract muscle synergy patterns matrix (W)
and activation coefficient (C) from the EMG signals

2.4. Algorithm for Finding the most Effective
VAF Threshold for Extracting the Optimum
Number of Synergies

Extracting the optimum of the W.C affects the
reduction of calculations and describes the arm-
reaching space clearly. Therefore, in the present study,
to choose the best VAF threshold, the following
algorithm was used. The algorithm is repeated as long
as the stop condition is satisfied. If the results (W.C
matrix and desired value matrix) are in harmony, the
VAF% is chosen as the best [29].

Step 1: Apply the desired average value matrix
recorded from subjects as input to the two-link arm
model.

Step 2: Select the initial VAF threshold.

Step 3: For each epoch step n=1, 2, ..., M:
Choose VAF threshold from 92 to 99:

Extract the W.C matrix using the NMF method.

Apply the extracted W.C matrix to the arm model
as input.

Compare the output of the model results (W.C
matrix and desired value matrix performed as input on
the two-link arm model).

Step 4: If the results are not in harmony, increase
the VAF value threshold (VAF= VAF+1) and go to
Step 3.

Step 5: Stop if the stop condition is met [29].
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2.4.1.Paired T-Test and Conditions for Using
the Paired T-Test

The paired t-test is a crucial statistical method in
order to compare two related sets of data. The Paired
t-test is particularly applicable in cases where
measurements are taken before and after a treatment
or under similar conditions. Additionally, the paired t-
test is suitable when there are two related sets of
observations. For instance, it can be used for
measurements taken before and after a treatment or for
values produced by two methods applied to the same
unit. In these cases, each value in the target group has
a direct counterpart in the other group, justifying the
use of the paired t-test. Since it is not assumed that one
method consistently produces higher or lower values
than the other, a two-tailed test is appropriate. The t-
test examines any significant difference, whether
positive or negative.

Sample size is a key factor in the reliability of
statistical results. In this case, our dataset consists of
10,000 pairs, which represents a very large sample
size. This is particularly important when the raw data
may not follow a normal distribution. In such
the Central Limit Theorem applies,
ensuring that the sampling distribution of the mean

scenarios,

differences will be approximately normal.
Generally, the Paired t-test is as follows:

1. Compute the difference (d; = y; — x;) for each
pair of observations. x and y indicate test score before
and after the module.

2. Determine the mean difference, denoted as d.

3. Calculate the standard deviation of these
differences, sq, and then use it to find the standard error

of the mean difference, SE(d) = sq/vn
4. Calculate the t-statistic using the formula

T=d/(SE(d)). According to the null hypothesis, this
statistic follows a t-distribution with n — 1 degrees of
freedom.

5. Refer to the t-distribution tables to compare your
T value with the t,-; distribution, which will provide
the p-value for the paired t-test.
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2.4.2.Cohen’s d

In the realm of research and data analysis, one of
the most important aspects is understanding the
differences and effects of various variables on each
other. In this context, Cohen’s d is recognized as a key
tool that helps researchers better grasp the depth and
significance of observed differences. Cohen’s d is a
standardized measure of effect size that quantifies the
magnitude of difference between two sets of values.
While p-values tell us whether a difference is
statistically significant, Cohen’s d tells us how large
or meaningful that difference is in practice. This
feature becomes particularly important when sample
sizes are large, as even small differences can become
statistically significant but may lack practical
importance.

To calculate Cohen’s d for paired data, such as
comparing a desired value to a W.C value for the same
cases, the following formula is used (Equation 3):

D = standard deviation of dif ferences
/ mean of dif ferences

3)

In this formula, the mean of the differences
represents the size of the difference between the two
groups, while the standard deviation of the differences
indicates the dispersion of these differences.

The value of Cohen’s d can provide valuable
insights into effect size. Generally, the following
values indicate different effect sizes:

— Values around 0.2: small effect
— Values around 0.5: medium effect

— Values of 0.8 or more: large effect

2.5. Muscle Modeling Structure in the
Horizontal Plane and MA-SARSA

The selection of the optimizer in the arm model
influences the choices made by the MA-SARSA
algorithm [16]. Therefore, in this study, the two-link
arm model with six muscles in the horizontal plane
[30] was simulated using MATLAB-2022
SimMechanics. This model had two degrees of
freedom (2-DoF). The two-link arm model with six
muscles was activated when the matrices (such as
W.C) were performed as input. The lengths of the first
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link (al) and the second link (a2) were 0.31m and 0.34
m, respectively. The arm reached the target at the
specified point. Theta 1 represented the first joint
angle located at the robot base, and Theta 2
represented the middle joint angle.

In this study, To control the model, the MA-SARSA
method [15], which is one of the RL methods, was
simulated using MATLAB code [31]. This model can
be considered a better model compared to the classical
RL controller, as continuous reward functions enhance
the learning speed [15].

In the present study, after extracting synergy
patterns and simulating the two-link arm model with
six muscles, the Weight matrix (W) was applied to the
model. To control the model, the MA-SARSA
algorithm was simulated. Arm-reaching movement
was achieved by generating coefficient matrices (C)
using the MA-SARSA algorithm.

2.6. The General Method of MA-SARSA
Algorithm

Generally, the MA-SARSA algorithm is as follows
[15]:

Initialization:

Q-Table: Each agent i initializes a Q-table Q; (s, a)
for all states s and actions a. Learning parameters:
Learning rate a (e.g., 0.1), discount factor 0 <y < 1,
and exploration rate € (for - greedy policy):

Start learning:

Initialize Q; arbitararily; V;=1,...,n

Repeat (for each episode)

Observe (84, ..., Sy)

Select a; for S; by €- greedy policy; V;=
1,..,n

Repeat (for J steps)

Take actions (aq, ..., ay), observe r,
(S'1, ., S0

Select a'; for s'; by e- greedy policy, V=
1,..,n
0(s,0) = QuCs, ) + alr +yQ(s', a')) -

Q (s ay)]
Si = S,i,' a; = a'i

Until s is terminal

In the present study, the following algorithm was
used in order to enhance the RL algorithm to become
more similar to human motor control by combining it

FBT, Vol. 13, No. 1 (Winter 2026) 133-147
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with the Non-negative matrix factorization (NMF)
method.

Step 1: Insert weight matrix (W) as an input to the
system

Step 2: Choose the coefficients matrix (C) and
multiply it to the W matrix

Step 3: Apply it to the two-link arm model with six
muscles

Step 4: Change the C matrix until reach the target
in fewer steps.

3. Results

3.1. Synergy Extraction

In the study, synergetic patterns and the number of
synergies were extracted using the NMF and VAF
methods. As mentioned previously, extracting the
appropriate  number of synergies helps reduce
computations and describes the wide space. This
desired goal is achieved by choosing the best VAF
criterion threshold. In this study, the number of
synergies was selected as 4 to describe the movement,
and the average VAF criterion extracted from all
participants was 97.25+0.45%. Each number of
synergy value ranges from 1 to 5, and the
corresponding VAF% value is depicted.

Figure 5 (a and b) shows bar graphs that illustrate
the average number of synergies extracted from 20
subjects from six major muscles involved in arm-
reaching movement. Additionally, the bar graphs
present information on the average number of
synergies in four different categories for each of the
six muscles.

Regarding the first number of synergies (W1) in the
BSH and BLH muscles (see Figure 5a and b), the
figures were the highest (18.31 and 12.97,
respectively). The figure for the DEL muscle was also
relatively high (7.06) compared to the figures for the
PMJ, TRIA, and TRIO muscles, which were the
lowest (4.59, 3.54, and 2.01, respectively). According
to Figure 5 (a and b), looking at the second number of
synergies (W2), the figures for the TRIA and TRIO
muscles were the highest (8.33, 7.10, respectively).
The figures for the other muscles were around 5.
Regarding the third number of synergies (W3), the
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figures for the TRIO, TRIA, and DEL muscles
indicated a greater involvement in arm-reaching
movement (10.51, 9.15, and 5.78, respectively), while
the figures for the Biceps and PMJ muscles were the
lowest (approximately 2).

Finally, the average number of fourth synergies
(W4) illustrates that the DEL and PMJ muscles
showed the highest level of involvement in the arm-
reaching movement (9.20 and 8.61, respectively). The
figure for the TRIO muscle was also high (4.29)
compared to the figures for the TRIA, BLH, and BSH
muscles, which were the lowest (1.30, 2.18, and 0.87,
respectively).
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Figure 5. Plot of the average weight matrix for 20
participants with respect to the value role of six muscles,
clustering the synergies into four groups. Bar graph (a)
shows the value role of the BLH, BSH, and DEL muscles
while bar graph (b) illustrates the value role of TRIA, PMJ,
and TRIO muscles. The horizontal and vertical axes
represent the number of muscles and the value role of the
muscles in reaching movement, respectively

3.2. Extracting the Optimum W.C Matrix by

the Best VAF% Threshold

In the present investigation, to choose the best VAF
threshold, the algorithm mentioned in this paper
(section 2.1.4) was utilized to find the most effective
VAF threshold for extracting the optimum number of
synergies in order to reducing the calculations done by
MA-SARSA algorithm.
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As shown in Table 1, the number of synergies (NS)
can range from 1 to 5, with the optimal number
determined by the VAF method. The average VAF %
across 20 subjects were 97.25% (SD=%0.45), yielding
four synergies. The first number of synergies
achieving 96% variance in the input signal was
deemed suitable for movement description. Given
such an approach, NS>4 enjoyed this feature. On the
opposite side, variation (representation matrix is more
similar to the desired value matrix) in NS=5 decreased
as compared to NS=4’s variation but it can result in
increasing the distance between the number of
synergies and the main goal (that is dimension
reduction).

Additionally, in this study, the results of the two-
link arm model with six muscles when the desired
value matrix (average EMG signals recorded from 20
subjects) and the W.C matrix (when the VAF%
threshold of 96%) were used as inputs. The outputs
included Theta 1, Theta 2, and endpoint position (EP)
x and y. It is evident that the output of the W.C matrix

(a)
1000 p > 0.223
800
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400
200

(©

800

1
1
1
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0.
0.
0.
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0.
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Table 1. The average VAF % criterion extracted from all
20 subjects was 97.25% (SD=%0.45). The horizontal axis
shows the number of extracted synergies and the vertical
axis represents the VAF% value. Four number of
synergies were chosen as the appropriate number of
synergies to describe the movement

Number of Synergy (NS) VAF% SD
1 76.2877 4.0116
2 89.7411 1.7356
3 93.7099 1.0641
4 97.2509 0.4552
5 99.0011 0.1689

were in harmony with the desired value matrix’s
outputs.

3.2.1.Paired T-Test

The result obtained indicates a high p-value (see
Figure 6 and Table 2). The outputs include Theta 1
(see Figure 6a), Theta 2 (see Figure 6b), and EP x and
y shown in Figure 6¢ and d, respectively. The value
reinforces that there is no strong evidence for a

p > 0.349
800
600
400
200
0
ool SRR T
00 00 00 00 00 00 00 00 €0 00 00 00 o o f i v v f f —f o o
HONUOANNUNADNNTOOONT OO
ONNOVNOOVUMNONTONNOHAN O TN
NOANNNNAAA000 000 dHdNNNM ™

p > 0.404

Figure 6. Histogram of outputs from the two-link arm model with six muscles. The differences of outputs include the
W.C matrix (with a VAF criterion of 96%) and the desired value matrix, which comprises Theta 1 (a), Theta 2 (b), EP
x (¢), and EP y (d). a) The p-value for the Theta 1 desired and Theta 1 WC is 0.223. b) The p-value for the Theta 2
desired and Theta 2 WC is 0.349. ¢) The p-value for the end point position x desired and WC is 0.559. d) The p-value
for the end point position y desired and WC is 0.404. The outputs are presented that by choosing a VAF threshold of
96% the optimum number of synergies can be achieved in this study based on section 2.4 algorithm. The results
obtained from the tests indicate that there is no strong evidence for a meaningful difference
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Table 2. Summary of paired t-test Results. The p-value is much greater than the alpha level (0.05) in all results

. Null Hypothesis Alternative . Interpretation
Variable (Ho) Hypothesis (Hy) p-value Conclusion Summary
No significant
No difference There is a difference. Results
Theta 1 between desired . 0.223 Fail to reject Hy consistent even
difference :
and W.C values with large sample
size.
No significant
No difference There is a difference. Results
Theta 2 between desired . 0.349 Fail to reject Hy consistent even
difference .
and WC values with large sample
size.
No significant
End Point No difference There is a difference. Results
osition x between desired difference 0.5597 Fail to reject Hy consistent even
p and WC values with large sample
size.
No significant
. No difference . difference. Results
End Point . There is a . . .
osition between desired difference 0.404 Fail to reject Hg consistent even
p y and WC values with large sample

size.

meaningful difference between the two groups under
consideration. In other words, we cannot confidently
assert that one method or condition is significantly
different from the other.

As can be seen in Table 2, the p-value is much
greater than the alpha level (0.05) in all results. In
Theta 1 outputs of the six muscles arm model, their
differences are not significant, p = 0.223. Likewise,
the difference between Theta 2 desired and Theta 2
WC are not significant, with a p-value of 0.349.
Furthermore, the difference between the end point
position y desired and the end point position y WC is
not also significant, with p = 0.404.

Thanks to the large sample size and the paired
nature of our data, the p-value produced by the t-test
will be trustworthy. These results illustrate that by
choosing a VAF threshold of 96%, the optimum
number of synergies can be achieved.

3.2.2.Cohen’s d

Based on Table 3, all Cohen’s d values are very
close to zero, indicating negligible practical
differences between the desired and WC values for all
variables. As can be seen, a very small difference
between Theta 1 desired and WC values is observed,
making the effect negligible (Cohen’s d=-
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0.01218669). Additionally, a very small difference is
observed between Theta 2 desired and WC values
(Cohen’s d =-0.00937019).

3.3. Applying the Arm Model and Studying
the Robustness of W.C Matrices at Various
Noise Levels

In the study, before performing W (weight matrix)
on the two-link arm model with six muscles and
controlling model by MA-SARSA, some random
noise levels were applied to the coefficients matrix
(C), and then they were applied with W matrix on the
two-link arm model with six muscles.

Random noise can be measured by Equation 4.
Where x is equal to 0.1, 0.2, 0.3, 0.4 and the interval
is defined with m as the lower bound and n as the
upper bound.

noise = x. mean(m, n).rand(m,n) ()

This is mainly because the study wanted to survey
the robustness of the two-link arm model with six
muscles when the MA-SARSA algorithm controls it
by producing a random C matrix. If the two-link arm
model is robust, then by performing the W matrix on
the two-link arm model and controlling the model by
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Table 3. Summary of Cohen’s d results. All Cohen’s d values are very close to zero

Variable Cohen’s d Effect Size Interpretation
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AP oo Negigble TS e codpont pstn dered nd

the MA-SARSA algorithm, the system remains in its
robustness.

The results of the error bar analysis of the W.C
matrix (mean and Standard Deviation (STD)) for the
20 subjects were obtained by applying this matrix to
the arm model.

These results were then compared with the findings
of the error bar matrix W.C*, where C* represents the
C matrix with various noise levels (x=0.1, 0.2, 0.3,
0.4). The outputs include Theta 1 (see Figure 7a),
Theta 2 (see Figure 7b), and EP x and y shown in
Figure 7c and d, respectively. Figure 7 illustrates the
error bars for four cases, ranging from x= 0.1 to 0.4.
The large dots indicate the mean (M) of the data. The
error bars on the left (representing the W.C matrix)
remained unchanged, while the error bar on the right
depicts the W.C* matrix, where C varied at different
noise levels. As x increased, the error bars on the right
(W.C*) also increased. The probability that the right
error bars were captured p varies according to x and
was greater for x=0.4.

3.4. Performing W Matrix in the Two-Link
Arm Model with Six Muscles and Controlling
it by Reinforcement Learning

In the present investigation, the MA-SARSA
algorithm was aimed at generating the coefficient
matrix, performed as input to the two-link arm model.
This was achieved by multiplying the C matrix by the
W matrix extracted by the NMF method. As a result,
the W.C matrix could be considered as the input for
each of the six muscles, generating forces for each
muscle. These forces were then applied to the torque
model [30], resulting in the generation of torques 1 and

142

2. These torques were applied to the joints, ultimately
causing arm movement.

3.5. The Trajectory of the Two-Link Arm
Model Controlled by the MA-SARSA
Algorithm Using the NMF Algorithm was
Examined in This Study

The RL controller uses two techniques to reach its
target: the discovery technique, which involves the
best task, and the experience technique, allowing
policy RL methods to reuse past experiences. The
agent strives to maximize its future rewards by
minimizing control costs. During each episode of MA-
SARASA, the two-link arm model did not follow a
predetermined path to reach the target.

In the context of reinforcement learning, an episode
refers to a sequence of interactions that starts from an
initial state and ends in a terminal state, while a step
refers to a single interaction between the agent and the
environment. In each episode, the agent interacts with
the environment with the goal of maximizing the total
reward.

Figures 8 and 9 illustrate the trajectory of the two-
link arm model controlled by the MA-SARSA and
NMF-MA-SARSA algorithms, respectively.

Figure 10a shows that the arm model was able to
reach the target after an average of 100 episodes. The
horizontal and vertical axes illustrate the steps and the
total reward which are obtained in a best pathway
episode, respectively. In Figure 10a, the total reward
was achieved after approximately 27 steps in the best
pathway episode. The total reward amount was 25.

Table 4 is presented a brief comparison of the
results of the MA-SARSA and NMF- MA- SARSA
algorithms in control of six-muscle two-link arm.
According to Table 4, after running approximately 100
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episodes, the average number of steps produced by the
NMF-MA-SARSA algorithm was 25. On the contrary,
the average steps produced by the MA-SARSA
algorithm was 32.

The plot of the C matrix (action coefficient matrix)
produced by the MA-SARSA algorithm is depicted in
Figure 10b. The values of the C matrix ranged from 0
to 1.

(a)

algorithm is depicted in Figure 6b. The values of the
C matrix ranged from O to 1.

4. Discussion

An important issue in human motor control is the
generation of a controller that is more similar to
human motor control. One type of controller that
works highly similar to the human motor controller is
reinforcement learning. This is mainly because the

(b)
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Figure 7. Plot of the error bar. Before applying the weight matrix (W) to the two-link arm model with six muscles,
random noise levels were introduced to the coefficients matrix (C), defined by applying different values of x (x
=0.1,0.2,0.3, 0.4). Subsequently, both the noise-affected coefficients and the weight matrix were applied to the
two-link arm model. The results were compared with those obtained by multiplying the coefficients matrix
without noise and the weight matrix after being applied to the six-muscle model. The analysis of the error bar for
the W.C matrix (without noise) was compared with the error bar of the W.C* matrix (with noise) (mean and
STD) for the 20 subjects at various noise levels (x=0.1, 0.2, 0.3, 0.4). The outputs included Theta 1 (a) and Theta

2 (b) in the EP x (c) and y (d)
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Lpisode: a5’ Yy=104

Steps: ¢
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Figure 8. Plot of the arm trajectory. The two-link arm
model trajectory controlled by the MA-SARSA algorithm

Table 4. Comparison of MA-SARSA and NMF- MA-
SARSA algorithms in control of six-muscle two-link arm

The average

Trajectory number of
steps
Longer route 3041227 MA—SARSA
and wider space algorithm
NMF-MA-
Shorter path and 5,1 3 SARSA
Limited space .
algorithm

RL algorithm is based on survival and growth
performed by the reinforcement learning's agent,
which in turn leads to finding the best solution for the
desired action. The RL controller can be considered a
powerful approach to developing capable and robust
robot controllers [31]. In a previous study [15], the RL
controller and the two-link arm model were used to

25¢
20+
15+

10+

successfully reach the target. However, a challenge
encountered is the path to reach the target, and in
addition, the MA-SARASA algorithm serves as the
long-gain target. However, a challenge encountered is
the path to reach the target, and in addition, the MA-
SARSA algorithm requires time to achieve the target
and slow learning speed, as well as, the algorithm is
not optimizing the trajectory [15]. Since the algorithm
is based on trial and error, it must explore a large
number of states to achieve the desired outcome. The
analysis of the high number of states contributes to the
algorithm's sluggishness. Such as the NMF method,
can be beneficial in the research for optimal paths
within a smaller space.

In the study, the combination of the NMF method
(to extract synergy patterns) and the two-link arm
model with six muscles, controlled by the RL
algorithm, allowed to achievement of the desired end-
point position and path. The NMF method has been
widely utilized in numerous studies [14, 20, 21] to
extract synergy patterns. Previous research [13, 14]
has shown that highly modular and similar muscular
synergies are found among subjects who perform the
same movement in many cases.

This similarity was also observed in the results of
the extracted patterns. In this study, we used these
similarities as a positive aspect of the NMF-
MASARSA algorithm.

Determining the optimal number of synergies
extracted by the NMF method not only reduces
computational complexity [32] but also provides a

8, =131% 6, =-66.7"
Episode: K =7.58' Yo=124
Steps:
25 20 15 10 5 5 10 15 20 25

Figure 9. Plot of the arm trajectory. The NMF method, the two-link arm model
trajectory, controlled by the NMF-MA-SARSA algorithm. In these 100 episodes
the model has managed to find the optimal route
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clear description of the arm-reaching space, as
demonstrated in the present study. This optimum
number of synergies can be achieved by selecting the
best VAF threshold. In our study, the NMF method
was used to extract synergetic patterns, which
effectively reduced the movement space, thus
reducing the computational burden of the MA-
SARSA algorithm.

Figure 5 (a and b) provides information on the
average number of synergies extracted from the 20
subjects. It is evident that the biceps, triceps, PMJ, and
DEL muscles were the most involved in arm-reaching
movements. These results highlight the suitability of
the two-link arm model with six muscles as the best
model in this context. In the present study, we utilized
the similarity among the extracted synergetic patterns
observed in many cases. Furthermore, as
demonstrated in the study details, determining the
optimal number of synergies that can be achieved by
NMF and the best VAF threshold method would
reduce the calculations. Furthermore, the MA-SARSA
algorithm, which serves as a long-gain target [17], can
benefit from an optimization algorithm (such as the
NMF method) to find the optimal path. Therefore,
these synergy patterns (represented by the W-weight
matrix) were used as input to the two-link arm model
with six muscles, and the MA-SARSA algorithm was
used for control. As can be seen in Figure 8, without
using the NMF method, the trajectory has traveled a
long way in reaching the target. On the other hand, by
utilizing NMF-MA-SARSA the trajectory has gone
through a shorter route to the target (see Figure 9). It
is seen in Table 4, the average steps produced by
NMF-MA-SARSA algorithm was shorter than MA-
SARSA algorithm, 25 and 32 respectively.
Additionally, the NMF-MA-SARSA algorithm had a
lower variance in the number of steps compare with
the MA-SARSA algorithm. Through this approach,
the MA-SARSA algorithm could learn to generate
suitable actions represented by the desired C matrix
and achieve the target on a desired path (see Figure
10).

According to Figure 10b, in each episode of control
of the two-link arm model with six muscles, the MA-
SARSA algorithm generated a C matrix of size [4*1].
When this value was multiplied by the W matrix
(which was the weight matrix of size [6¥4]), it resulted
in the movement of the two-link arm model with six
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muscles. As mentioned above, the first number of
synergies (W1) had the highest value compared to
other numbers of synergies, while the first row of the
C matrix had the minimum value compared to other
rows of the C matrix.

4.1. Limitations and Future Directions

The present study has some limitations regarding
the sample and methodology that should be
considered. All participants were male, so future
studies may include female participants. In addition,
factors such as age and individual characteristics (e.g.,
activity level or athletic experience) may also
influence the results.

To survey the robustness of the two-link arm model
with six muscles when the MA-SARSA algorithm
controls it by producing a random C matrix, future
studies may utilize non-Gaussian noise on the model
to explore how the system might operate under more
realistic conditions, as non-Gaussian noise can pose
challenges for data analysis. Furthermore, it is
suggested that researchers focus on models of other
parts of the body in future research.

Additionally, future studies should explore more
than two links and/or more than six muscles involved
in arm-reaching movements to investigate whether the
results are consistent. However, increasing the number
of muscles and links may raise the computational load,
which could impact the final results.

5. Conclusion

The approach proposed in this study involves
employing techniques like NMF and VAF methods to
compute the W.C matrix. Subsequently, this matrix is
applied to a two-link arm model with six muscles. As
well as controlling the model with the MA-SARSA
algorithm. The results of the NMF-MA-SARSA
algorithm demonstrate that the controller was more
similar to human motor control, reduced the
computational requirements needed to reach the
target, optimized the trajectory, and improved arm
movement towards a specific target. The results
indicate that the methods mentioned successfully
achieve the desired destination and end-point position.
Additional parameters should be identified and
optimized to further improve the result.
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Figure 10. a) The learning chart for the two-link six-muscular arm using the NMF-MA-SARSA algorithm in the
best pathway episode. The horizontal and vertical axes represent the steps and the total reward which are achieved
in a best pathway episode, respectively. The total reward was achieved after approximately 27 steps in the best
pathway episode and the total reward amount was 25. b) Plot of the action coefficient matrix for each episode (C
best). The action coefficient matrix output in each episode of the model was controlled by MA-SARSA. As can be

seen, the values of the C matrix range between 0 and 1
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