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Abstract 

Purpose: Reinforcement Learning (RL) is attracting great interest because it enables systems to learn by 

interacting with the environment. This study aims to enhance the RL algorithm to become more similar to human 

motor control by combining it with the Non-negative matrix factorization (NMF) method. 

Materials and Methods: In the study, the signals recorded from six muscles involved in arm-reaching movement 

without carryinga certain weight.were pre-processed, and the optimal number of synergy patterns was extracted 

using NMF and the Variance Account For (VAF) methods. This, in turn, contributes to reducing the calculations. 

Subsequently, the robustness of the two-link arm model with six muscles was evaluated under various noise levels 

applied to the action coefficient matrix. Finally, the average synergy pattern was done on the mentioned arm 

model, and the RL algorithm controlled it by producing the action coefficient matrix. 

Results: The average VAF% was 97.25±0.45%, and the number of synergies was four. The tip-of-the-arm model 

was able to reach the target after an average of 100 episodes. 

Conclusion: The results indicated that the similarity in the extracted synergy patterns helps to model a system that 

is more similar to motor control. Additionally, the results of the synergistic patterns revealed that the two-link 

arm model with six muscles was suitable for the model. While controlling the model with the RL algorithm, the 

desired end-point position and path were achieved. 

Keywords: Reinforcement Learning Algorithm; Non-Negative Matrix Factorization; Muscle Synergy; Action 

Coefficient Matrix; Optimization; Two-Link Arm Model. 
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1. Introduction  

In early infancy, humans find initiation of 

movement control difficult, but over time and through 

training, they acquire knowledge and information 

about how to control their movements, eventually 

finding the best solution for the desired action. Reward 

and punishment can result in learning by humans. 

Reinforcement Learning (RL) controllers are 

aligned with human motor control, whereas a 

controller such as the Proportional Integral Derivative 

(PID) controller cannot achieve this feature. The RL 

controller can be defined as the process of active 

learning while interacting with a constantly changing 

environment [1]. 

Thanks to the RL agent that generates suitable 

actions, the system can learn by interacting with the 

environment, taking actions, and gaining knowledge 

to reach the target through trial and error. The RL 

controller is based on the idea of learning from 

experience, which is accompanied by rewards and 

punishments, representing positive reinforcement 

(desired behaviors) and negative reinforcement 

(undesired behaviors), respectively [2]. An agent 

strives to maximize its future rewards by minimizing 

control costs. Systems that provide individual 

suggestions based on user behavior have been created 

through RL controllers [3]. In addition, adaptive 

shifting settings for survival and growth principles 

enable the provision of solutions to various issues in 

industries [4]. RL controllers have a significant impact 

on controlling upper extremity areas. Examples 

include combining the RL controller with the 

Functional Electrical Stimulation System (FES) [5], 

using the RL controller to learn how to predict the 

paddle target [6], and modeling multiactuator 

musculoskeletal systems using the RL algorithm [7]. 

Other examples include controlling the learnable 

parametrized model and a conventional feedback 

controller [8], as well as controlling the fuzzy neural 

network [9] by combining the RL algorithm. Humans 

often create effective and coordinated movements by 

ingeniously using the dynamics of their intricate 

musculoskeletal system. Through the Central Nervous 

System (CNS), various muscles that contain many 

motor units are activated and coordinated [10]. To 

handle the numerous Degrees of Freedom (DoF), 

humans do not have control over basic degrees of 

freedom; instead, they manage this issue using muscle 

synergistic patterns and the activation coefficient [9-

12]. These synergistic patterns of muscles are similar 

in many cases [13, 14], and humans control 

movements by adjusting the activation coefficient, 

which in turn results in movement performance. 

The Multi-Agent State Action Reward State Action 

(MA-SARSA) algorithm is an improved RL algorithm 

introduced by Martin et al. [15], which is based on the 

SARSA algorithm. This algorithm employs multiple 

agents to control complex systems, such as the multi-

link arm model [16]. It can reduce the complexity of 

the agent, lower the learning speed, and minimize 

interference errors. 

Jun Izawa et al. [17] discussed optimal learning 

control methods utilizing the RL controller for 

biological systems with redundant actuators.  

Albers et al. [18] utilized the RL algorithm to 

control the two-link arm robot model, where the 

torque generated by the RL algorithm was applied as 

input to the robot. In a related study [16], the MA-

SARSA algorithm was combined with the bee 

algorithm to control the two-link arm model with six 

muscles. Wannawas et al. [5] emphasized that 

complex environments are challenging to control 

using hand-crafted control policies, but the RL 

algorithm can learn to control them. Therefore, in FES 

control, RL is an essential component for governing 

the policies to control settings. 

Analysis of arm-reaching movements has provided 

information about a limited number of fundamental 

training signals known as muscle synergy patterns, 

which govern diverse activities instead of separate 

commands to each muscle in the CNS. One of the 

methods to capture muscular synergies is NMF, which 

is more consistent than other methods such as 

Principal Component Analysis (PCA) and 

Independent Component Analysis (ICA). 

Decomposing signals can be done by the NMF 

method which has greater robustness [19], as well as,  

NMF is a matrix factorization method. PCA generates 

factors that can be both positive and negative, whereas 

NMF exclusively produces positive factors.  

PCA is useful when transforming a high-

dimensional dataset into lower dimensions, provided 

that some loss of the original features is acceptable. 
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ICA is generally more computationally intensive than 

PCA, requiring more time to execute. NMF can 

identify more complex patterns in non-negative data. 

Additionally, NMF can effectively extract new 

features suitable for various applications. 

The selection of an appropriate number of synergies 

relies on the VAF criterion, and the threshold value of 

the VAF should be chosen to describe the arm-

reaching space more clearly while minimizing 

calculations. Great number of studies [13, 17, 19] have 

utilized the NMF method for extracting synergistic 

patterns [20-24]. 

It is believed that, under the same movement [25], 

highly modular muscular synergetic patterns can be 

achieved [12, 13, 25]. Therefore, in the present 

investigation, we used these similarities to reduce the 

computational burden of the MA-SARSA controller. 

Consequently, the NMF-reinforcement algorithm was 

able to achieve the desired end-point position and 

path. The proposed method in this study is to utilize 

methods such as the NMF and VAF methods to 

calculate the W.C matrix (where W was the weight 

matrix and C was the active coefficient matrix) after it 

was applied to the two-link arm model with six 

muscles. The W matrix was then applied to the two-

link arm model, and the MA-SARSA algorithm was 

used to control it (see Figure 1). 

2. Materials and Methods  

2.1. Study Population and Experimental 

Procedure  

The study included twenty healthy, right-handed men 

with no neuromuscular disorders. Male’ age averaged at 

28 years (SD = 4.22 years), their average weight was 80 

kg (SD = 11 kg), and their average height was 170 cm 

(SD = 8 cm). In this study, the participants were seated 

behind a desk while their shoulders and bodies were at 

a 90-degree angle (see Figure 2). Additionally, they 

were introduced to perform arm-reaching movements 

without carrying a specific weight along a specified path 

[29]. For each subject, the arm-reaching movement was 

performed up to 10 times.  

It is essential to prepare the skin properly to reduce 

the skin's impedance. So, in this study firstly, the 

electrode area on the muscle should be cleaned with 

alcohol-soaked cotton to remove fat and perfume. 

Dead skin cells, which have high electrical resistance, 

should also be removed using a very fine sandpaper. 

During this process, continuous cleaning with alcohol-

soaked cotton is necessary, and care must be taken to 

avoid damaging the skin. Surface hairs at the electrode 

locations should be removed. Finally, the skin's 

electrical impedance was measured with a multimeter, 

which should be less than ten kilo-ohms. EMG signals 

of six muscles, such as the biceps short head (BSH), 

biceps long head (BLH), pectoralis major (PMJ), 

 

Figure 1. The diagram presents the NMF-MA- SARSA 

algorithm. The schematic of this paper suggests that 

combining the two-link arm model with the six-muscle and 

NMF algorithm, controlled by the MA-SARSA algorithm, 

can help reach the target 

 

Figure 2. Experimental setup. The subjects sit at the table 

whose shoulders and bodies were at an angle of 90 degrees. 

Protocol was done at a certain endpoint position. 

Movements were recorded from each subject (20 arm-

reaching movements in each person's protocol) 
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deltoids (DEL), triceps long head (TRIO), and triceps 

lateral head (TRIA) involved in arm-reaching 

movement [26], were recorded. 

2.2. Data Acquisition Pre-Processing  

The EMG signals were recorded at a sampling rate 

of 1 kHz through 5000 gain factor amplifiers 

(BIOPAC EMG 100A system). The electrode position 

was chosen according to the SENIAM standard [27].  

The recorded EMG signals were passed through the 

high-pass filter at 1 Hz and the low-pass filter at 500 

Hz outage frequencies. Subsequently, rectification, 

baseline correction, normalization, and activity level 

estimation were performed on the recorded signals 

(see Figure 3). 

2.3. Non-Negative Matrix Factorization and 

Variability Accounted For  

In the present study, to calculate the signal values, 

the NMF method and the required number of synergies 

were extracted by applying the VAF criterion [28]. 

The Non-Negative Matrix Factorization (NMF) 

 

method can be represented as Equation 1. Where W is 

the weight matrix, C denotes the coefficient matrix 

and e represents the residual error matrix: 

𝑀𝑗(𝑡) = ∑ 𝑊𝑖𝑗𝐶𝑖(𝑡) + 𝑒(𝑡), 𝑗 = 1, … , 𝑚

𝑟

𝑖=1

 (1) 

Figure 4 depicts information about an example of 

NMF method for two matrices (W and C matrices) 

with an inner dimension of K. Each column of the data 

(EMG signals) is expressed as a linear combination of 

basis vectors, specifically the columns of the matrix 

along with their corresponding weights. 

The VAF criterion calculates to what extent W*H 

can be reconstructed from the original EMG data. The 

VAF criteria can be measured by Equation 2, where 

EMGori is the signal recorded from six muscles from 

20 participants, and ||.|| is the Euclidean norm. 

 

 

 

𝑉𝐴𝐹 = 1 −
‖𝐸𝑀𝐺𝑜𝑟𝑖 − (𝑊 × 𝐶)‖2

‖𝐸𝑀𝐺𝑜𝑟𝑖‖2
 (2) 

 

Figure 3. The entire EMG signal preprocessing for each muscle. The vertical and horizontal axis depicts 

normalized EMG (Volt) and time (sec), respectively 
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2.4. Algorithm for Finding the most Effective 

VAF Threshold for Extracting the Optimum 

Number of Synergies 

Extracting the optimum of the W.C affects the 

reduction of calculations and describes the arm-

reaching space clearly. Therefore, in the present study, 

to choose the best VAF threshold, the following 

algorithm was used. The algorithm is repeated as long 

as the stop condition is satisfied. If the results (W.C 

matrix and desired value matrix) are in harmony, the 

VAF% is chosen as the best [29]. 

Step 1: Apply the desired average value matrix 

recorded from subjects as input to the two-link arm 

model. 

Step 2: Select the initial VAF threshold. 

Step 3: For each epoch step n=1, 2, ..., M: 

Choose VAF threshold from 92 to 99: 

Extract the W.C matrix using the NMF method. 

Apply the extracted W.C matrix to the arm model 

as input. 

Compare the output of the model results (W.C 

matrix and desired value matrix performed as input on 

the two-link arm model). 

Step 4: If the results are not in harmony, increase 

the VAF value threshold (VAF= VAF+1) and go to 

Step 3. 

Step 5: Stop if the stop condition is met [29]. 

2.4.1. Paired T-Test and Conditions for Using 

the Paired T-Test 

The paired t-test is a crucial statistical method in 

order to compare two related sets of data. The Paired 

t-test is particularly applicable in cases where 

measurements are taken before and after a treatment 

or under similar conditions. Additionally, the paired t-

test is suitable when there are two related sets of 

observations. For instance, it can be used for 

measurements taken before and after a treatment or for 

values produced by two methods applied to the same 

unit. In these cases, each value in the target group has 

a direct counterpart in the other group, justifying the 

use of the paired t-test. Since it is not assumed that one 

method consistently produces higher or lower values 

than the other, a two-tailed test is appropriate. The t-

test examines any significant difference, whether 

positive or negative. 

Sample size is a key factor in the reliability of 

statistical results. In this case, our dataset consists of 

10,000 pairs, which represents a very large sample 

size. This is particularly important when the raw data 

may not follow a normal distribution. In such 

scenarios, the Central Limit Theorem applies, 

ensuring that the sampling distribution of the mean 

differences will be approximately normal. 

Generally, the Paired t-test is as follows: 

1. Compute the difference (𝑑𝑖 = 𝑦𝑖 − 𝑥𝑖) for each 

pair of observations. x and y indicate test score before 

and after the module. 

2. Determine the mean difference, denoted as d. 

3. Calculate the standard deviation of these 

differences, sd, and then use it to find the standard error 

of the mean difference, 𝑆𝐸(𝑑) = 𝑠𝑑/√𝑛 

4. Calculate the t-statistic using the formula  

T=d/(SE(d)). According to the null hypothesis, this 

statistic follows a t-distribution with n − 1 degrees of 

freedom. 

5. Refer to the t-distribution tables to compare your 

T value with the tn−1 distribution, which will provide 

the p-value for the paired t-test. 

 

Figure 4. The process by which the NMF method 

functions to extract muscle synergy patterns matrix (W) 

and activation coefficient (C) from the EMG signals 
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2.4.2. Cohen’s d 

In the realm of research and data analysis, one of 

the most important aspects is understanding the 

differences and effects of various variables on each 

other. In this context, Cohen’s d is recognized as a key 

tool that helps researchers better grasp the depth and 

significance of observed differences. Cohen’s d is a 

standardized measure of effect size that quantifies the 

magnitude of difference between two sets of values. 

While p-values tell us whether a difference is 

statistically significant, Cohen’s d tells us how large 

or meaningful that difference is in practice. This 

feature becomes particularly important when sample 

sizes are large, as even small differences can become 

statistically significant but may lack practical 

importance.  

To calculate Cohen’s d for paired data, such as 

comparing a desired value to a W.C value for the same 

cases, the following formula is used (Equation 3): 

𝐷 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 

/ 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 
(3) 

In this formula, the mean of the differences 

represents the size of the difference between the two 

groups, while the standard deviation of the differences 

indicates the dispersion of these differences. 

The value of Cohen’s d can provide valuable 

insights into effect size. Generally, the following 

values indicate different effect sizes: 

− Values around 0.2: small effect 

− Values around 0.5: medium effect 

− Values of 0.8 or more: large effect 

2.5. Muscle Modeling Structure in the 

Horizontal Plane and MA-SARSA  

The selection of the optimizer in the arm model 

influences the choices made by the MA-SARSA 

algorithm [16]. Therefore, in this study, the two-link 

arm model with six muscles in the horizontal plane 

[30] was simulated using MATLAB-2022 

SimMechanics. This model had two degrees of 

freedom (2-DoF). The two-link arm model with six 

muscles was activated when the matrices (such as 

W.C) were performed as input. The lengths of the first 

link (a1) and the second link (a2) were 0.31m and 0.34 

m, respectively. The arm reached the target at the 

specified point. Theta 1 represented the first joint 

angle located at the robot base, and Theta 2 

represented the middle joint angle.  

In this study, To control the model, the MA-SARSA 

method [15], which is one of the RL methods, was 

simulated using MATLAB code [31]. This model can 

be considered a better model compared to the classical 

RL controller, as continuous reward functions enhance 

the learning speed [15].  

In the present study, after extracting synergy 

patterns and simulating the two-link arm model with 

six muscles, the Weight matrix (W) was applied to the 

model. To control the model, the MA-SARSA 

algorithm was simulated. Arm-reaching movement 

was achieved by generating coefficient matrices (C) 

using the MA-SARSA algorithm. 

2.6. The General Method of MA-SARSA 

Algorithm 

Generally, the MA-SARSA algorithm is as follows 

[15]: 

Initialization:  

Q-Table: Each agent i initializes a Q-table 𝑄𝑖(𝑠, 𝑎) 

for all states s and actions 𝑎. Learning parameters: 

Learning rate 𝑎 (e.g., 0.1), discount factor 0 ≤ 𝛾 ≤ 1, 

and exploration rate 𝜖 (for 𝜀- greedy policy): 

In the present study, the following algorithm was 

used in order to enhance the RL algorithm to become 

more similar to human motor control by combining it 

Start learning: 

Initialize 𝑄𝑖 arbitararily; ∀𝑖= 1, … , 𝑛 

Repeat (for each episode) 

Observe (𝑆1, … , 𝑆𝑛) 

Select  𝑎𝑖 for 𝑆𝑖 by 𝜀- greedy policy; ∀𝑖=
1, … , 𝑛 

Repeat (for J steps) 

Take actions (𝑎1, … , 𝑎𝑛), observe r, 

(𝑆′
1, … , 𝑆′

𝑛) 

Select 𝑎′
𝑖 for 𝑠′

𝑖 by 𝜀- greedy policy; ∀𝑖=
1, … , 𝑛 

𝑄𝑖(𝑠, 𝑎) = 𝑄𝑖(𝑠, 𝑎) + 𝑎[𝑟 + 𝛾𝑄(𝑠′
𝑖
, 𝑎′

𝑖) −

𝑄(𝑠𝑖, 𝑎𝑖)]  

𝑆𝑖 = 𝑠′
𝑖; 𝑎𝑖 = 𝑎′

𝑖 

Until s is terminal 
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with the Non-negative matrix factorization (NMF) 

method. 

Step 1: Insert weight matrix (W) as an input to the 

system 

Step 2: Choose the coefficients matrix (C) and 

multiply it to the W matrix 

Step 3: Apply it to the two-link arm model with six 

muscles 

Step 4: Change the C matrix until reach the target 

in fewer steps.  

3. Results 

3.1. Synergy Extraction  

In the study, synergetic patterns and the number of 

synergies were extracted using the NMF and VAF 

methods. As mentioned previously, extracting the 

appropriate number of synergies helps reduce 

computations and describes the wide space. This 

desired goal is achieved by choosing the best VAF 

criterion threshold. In this study, the number of 

synergies was selected as 4 to describe the movement, 

and the average VAF criterion extracted from all 

participants was 97.25±0.45%. Each number of 

synergy value ranges from 1 to 5, and the 

corresponding VAF% value is depicted. 

Figure 5 (a and b) shows bar graphs that illustrate 

the average number of synergies extracted from 20 

subjects from six major muscles involved in arm-

reaching movement. Additionally, the bar graphs 

present information on the average number of 

synergies in four different categories for each of the 

six muscles. 

Regarding the first number of synergies (W1) in the 

BSH and BLH muscles (see Figure 5a and b), the 

figures were the highest (18.31 and 12.97, 

respectively). The figure for the DEL muscle was also 

relatively high (7.06) compared to the figures for the 

PMJ, TRIA, and TRIO muscles, which were the 

lowest (4.59, 3.54, and 2.01, respectively). According 

to Figure 5 (a and b), looking at the second number of 

synergies (W2), the figures for the TRIA and TRIO 

muscles were the highest (8.33, 7.10, respectively). 

The figures for the other muscles were around 5. 

Regarding the third number of synergies (W3), the 

figures for the TRIO, TRIA, and DEL muscles 

indicated a greater involvement in arm-reaching 

movement (10.51, 9.15, and 5.78, respectively), while 

the figures for the Biceps and PMJ muscles were the 

lowest (approximately 2). 

Finally, the average number of fourth synergies 

(W4) illustrates that the DEL and PMJ muscles 

showed the highest level of involvement in the arm-

reaching movement (9.20 and 8.61, respectively). The 

figure for the TRIO muscle was also high (4.29) 

compared to the figures for the TRIA, BLH, and BSH 

muscles, which were the lowest (1.30, 2.18, and 0.87, 

respectively). 

3.2. Extracting the Optimum W.C Matrix by 

the Best VAF% Threshold 

In the present investigation, to choose the best VAF 

threshold, the algorithm mentioned in this paper 

(section 2.1.4) was utilized to find the most effective 

VAF threshold for extracting the optimum number of 

synergies in order to reducing the calculations done by 

MA-SARSA algorithm. 

 

Figure 5. Plot of the average weight matrix for 20 

participants with respect to the value role of six muscles, 

clustering the synergies into four groups. Bar graph (a) 

shows the value role of the BLH, BSH, and DEL muscles 

while bar graph (b) illustrates the value role of TRIA, PMJ, 

and TRIO muscles. The horizontal and vertical axes 

represent the number of muscles and the value role of the 

muscles in reaching movement, respectively 
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As shown in Table 1, the number of synergies (NS) 

can range from 1 to 5, with the optimal number 

determined by the VAF method. The average VAF % 

across 20 subjects were 97.25% (SD=±0.45), yielding 

four synergies. The first number of synergies 

achieving 96% variance in the input signal was 

deemed suitable for movement description. Given 

such an approach, NS>4 enjoyed this feature. On the 

opposite side, variation (representation matrix is more 

similar to the desired value matrix) in NS=5 decreased 

as compared to NS=4’s variation but it can result in 

increasing the distance between the number of 

synergies and the main goal (that is dimension 

reduction). 

Additionally, in this study, the results of the two-

link arm model with six muscles when the desired 

value matrix (average EMG signals recorded from 20 

subjects) and the W.C matrix (when the VAF% 

threshold of 96%) were used as inputs. The outputs 

included Theta 1, Theta 2, and endpoint position (EP) 

x and y. It is evident that the output of the W.C matrix 

were in harmony with the desired value matrix’s 

outputs. 

3.2.1. Paired T-Test  

The result obtained indicates a high p-value (see 

Figure 6 and Table 2). The outputs include Theta 1 

(see Figure 6a), Theta 2 (see Figure 6b), and EP x and 

y shown in Figure 6c and d, respectively. The value 

reinforces that there is no strong evidence for a  

Table 1. The average VAF % criterion extracted from all 

20 subjects was 97.25% (SD=±0.45). The horizontal axis 

shows the number of extracted synergies and the vertical 

axis represents the VAF% value. Four number of 

synergies were chosen as the appropriate number of 

synergies to describe the movement 

Number of Synergy (NS) VAF% SD 

1 76.2877  4.0116 

2 89.7411  1.7356 

3 93.7099  1.0641 

4 97.2509  0.4552 

5 99.0011  0.1689 

 

 

Figure 6. Histogram of outputs from the two-link arm model with six muscles. The differences of outputs include the 

W.C matrix (with a VAF criterion of 96%) and the desired value matrix, which comprises Theta 1 (a), Theta 2 (b), EP 

x (c), and EP y (d). a) The p-value for the Theta 1 desired and Theta 1 WC is 0.223. b) The p-value for the Theta 2 

desired and Theta 2 WC is 0.349. c) The p-value for the end point position x desired and WC is 0.559. d) The p-value 

for the end point position y desired and WC is 0.404. The outputs are presented that by choosing a VAF threshold of 

96% the optimum number of synergies can be achieved in this study based on section 2.4 algorithm. The results 

obtained from the tests indicate that there is no strong evidence for a meaningful difference 
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meaningful difference between the two groups under 

consideration. In other words, we cannot confidently 

assert that one method or condition is significantly 

different from the other.  

As can be seen in Table 2, the p-value is much 

greater than the alpha level (0.05) in all results. In 

Theta 1 outputs of the six muscles arm model, their 

differences are not significant, 𝑝 = 0.223. Likewise, 

the difference between Theta 2 desired and Theta 2 

WC are not significant, with a 𝑝-value of 0.349. 

Furthermore, the difference between the end point 

position y desired and the end point position y WC is 

not also significant, with 𝑝 = 0.404.  

Thanks to the large sample size and the paired 

nature of our data, the p-value produced by the t-test 

will be trustworthy. These results illustrate that by 

choosing a VAF threshold of 96%, the optimum 

number of synergies can be achieved. 

3.2.2. Cohen’s d 

Based on Table 3, all Cohen’s d values are very 

close to zero, indicating negligible practical 

differences between the desired and WC values for all 

variables. As can be seen, a very small difference 

between Theta 1 desired and WC values is observed, 

making the effect negligible (Cohen’s d=- 

 

0.01218669). Additionally, a very small difference is 

observed between Theta 2 desired and WC values 

(Cohen’s d = -0.00937019). 

3.3. Applying the Arm Model and Studying 

the Robustness of W.C Matrices at Various 

Noise Levels  

In the study, before performing W (weight matrix) 

on the two-link arm model with six muscles and 

controlling model by MA-SARSA, some random 

noise levels were applied to the coefficients matrix 

(C), and then they were applied with W matrix on the 

two-link arm model with six muscles.  

Random noise can be measured by Equation 4. 

Where x is equal to 0.1, 0.2, 0.3, 0.4 and the interval 

is defined with m as the lower bound and n as the 

upper bound. 

𝑛𝑜𝑖𝑠𝑒 = 𝑥. 𝑚𝑒𝑎𝑛(𝑚, 𝑛). 𝑟𝑎𝑛𝑑(𝑚, 𝑛) (4) 

This is mainly because the study wanted to survey 

the robustness of the two-link arm model with six 

muscles when the MA-SARSA algorithm controls it 

by producing a random C matrix. If the two-link arm 

model is robust, then by performing the W matrix on 

the two-link arm model and controlling the model by  

Table 2. Summary of paired t-test Results. The p-value is much greater than the alpha level (0.05) in all results 

Variable 
Null Hypothesis 

(H₀) 

Alternative 

Hypothesis (H₁) 
p-value Conclusion 

Interpretation 

Summary 

Theta 1 

No difference 

between desired 

and W.C values 

 
There is a 

difference 
0.223 Fail to reject H₀ 

No significant 

difference. Results 

consistent even 

with large sample 

size. 

Theta 2 

No difference 

between desired 

and WC values 

 
There is a 

difference 
0.349 Fail to reject H₀ 

No significant 

difference. Results 

consistent even 

with large sample 

size. 

End Point 

position x 

No difference 

between desired 

and WC values 

 
There is a 

difference 
0.5597 Fail to reject H₀ 

No significant 

difference. Results 

consistent even 

with large sample 

size. 

End Point 

position y 

No difference 

between desired 

and WC values 

 
There is a 

difference 
0.404 Fail to reject H₀ 

No significant 

difference. Results 

consistent even 

with large sample 

size. 
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the MA-SARSA algorithm, the system remains in its 

robustness. 

The results of the error bar analysis of the W.C 

matrix (mean and Standard Deviation (STD)) for the 

20 subjects were obtained by applying this matrix to 

the arm model.  

These results were then compared with the findings 

of the error bar matrix W.C*, where C* represents the 

C matrix with various noise levels (x=0.1, 0.2, 0.3, 

0.4). The outputs include Theta 1 (see Figure 7a), 

Theta 2 (see Figure 7b), and EP x and y shown in 

Figure 7c and d, respectively. Figure 7 illustrates the 

error bars for four cases, ranging from x= 0.1 to 0.4. 

The large dots indicate the mean (M) of the data. The 

error bars on the left (representing the W.C matrix) 

remained unchanged, while the error bar on the right 

depicts the W.C* matrix, where C varied at different 

noise levels. As x increased, the error bars on the right 

(W.C*) also increased. The probability that the right 

error bars were captured 𝜇 varies according to x and 

was greater for x=0.4.  

3.4. Performing W Matrix in the Two-Link 

Arm Model with Six Muscles and Controlling 

it by Reinforcement Learning  

In the present investigation, the MA-SARSA 

algorithm was aimed at generating the coefficient 

matrix, performed as input to the two-link arm model. 

This was achieved by multiplying the C matrix by the 

W matrix extracted by the NMF method. As a result, 

the W.C matrix could be considered as the input for 

each of the six muscles, generating forces for each 

muscle. These forces were then applied to the torque 

model [30], resulting in the generation of torques 1 and 

2. These torques were applied to the joints, ultimately 

causing arm movement.  

3.5. The Trajectory of the Two-Link Arm 

Model Controlled by the MA-SARSA 

Algorithm Using the NMF Algorithm was 

Examined in This Study 

The RL controller uses two techniques to reach its 

target: the discovery technique, which involves the 

best task, and the experience technique, allowing 

policy RL methods to reuse past experiences. The 

agent strives to maximize its future rewards by 

minimizing control costs. During each episode of MA-

SARASA, the two-link arm model did not follow a 

predetermined path to reach the target.  

In the context of reinforcement learning, an episode 

refers to a sequence of interactions that starts from an 

initial state and ends in a terminal state, while a step 

refers to a single interaction between the agent and the 

environment. In each episode, the agent interacts with 

the environment with the goal of maximizing the total 

reward. 

Figures 8 and 9 illustrate the trajectory of the two-

link arm model controlled by the MA-SARSA and 

NMF-MA-SARSA algorithms, respectively.  

Figure 10a shows that the arm model was able to 

reach the target after an average of 100 episodes. The 

horizontal and vertical axes illustrate the steps and the 

total reward which are obtained in a best pathway 

episode, respectively. In Figure 10a, the total reward 

was achieved after approximately 27 steps in the best 

pathway episode. The total reward amount was 25.  

Table 4 is presented a brief comparison of the 

results of the MA-SARSA and NMF- MA- SARSA 

algorithms in control of six-muscle two-link arm. 

According to Table 4, after running approximately 100 

Table 3. Summary of Cohen’s d results. All Cohen’s d values are very close to zero 

Variable Cohen’s d Effect Size Interpretation 

Theta 1 -0.01218669  Negligible 
The difference between Theta 1 desired and WC values is 

minimal, making the effect negligible.  

Theta 2 -0.00937019  Negligible 
The difference between Theta 2 desired and WC values is 

minimal, making the effect negligible. 

End Point 

Position x 
-0.00583212  Negligible 

The difference between end point position x desired and 

WC values is minimal, making the effect negligible. 

End Point 

Position y 
-0.008348591  Negligible 

The difference between end point position y desired and 

WC values is minimal, making the effect negligible. 
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episodes, the average number of steps produced by the 

NMF-MA-SARSA algorithm was 25. On the contrary, 

the average steps produced by the MA-SARSA 

algorithm was 32. 

The plot of the C matrix (action coefficient matrix) 

produced by the MA-SARSA algorithm is depicted in 

Figure 10b. The values of the C matrix ranged from 0 

to 1. 

 

 

algorithm is depicted in Figure 6b. The values of the 

C matrix ranged from 0 to 1. 

4. Discussion 

An important issue in human motor control is the 

generation of a controller that is more similar to 

human motor control. One type of controller that 

works highly similar to the human motor controller is 

reinforcement learning. This is mainly because the 

 

Figure 7. Plot of the error bar. Before applying the weight matrix (W) to the two-link arm model with six muscles, 

random noise levels were introduced to the coefficients matrix (C), defined by applying different values of x (x 

= 0.1, 0.2, 0.3, 0.4). Subsequently, both the noise-affected coefficients and the weight matrix were applied to the 

two-link arm model. The results were compared with those obtained by multiplying the coefficients matrix 

without noise and the weight matrix after being applied to the six-muscle model. The analysis of the error bar for 

the W.C matrix (without noise) was compared with the error bar of the W.C* matrix (with noise) (mean and 

STD) for the 20 subjects at various noise levels (x=0.1, 0.2, 0.3, 0.4). The outputs included Theta 1 (a) and Theta 

2 (b) in the EP x (c) and y (d) 
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RL algorithm is based on survival and growth 

performed by the reinforcement learning's agent, 

which in turn leads to finding the best solution for the 

desired action. The RL controller can be considered a 

powerful approach to developing capable and robust 

robot controllers [31]. In a previous study [15], the RL 

controller and the two-link arm model were used to 

successfully reach the target. However, a challenge 

encountered is the path to reach the target, and in 

addition, the MA-SARASA algorithm serves as the 

long-gain target. However, a challenge encountered is 

the path to reach the target, and in addition, the MA-

SARSA algorithm requires time to achieve the target 

and slow learning speed, as well as, the algorithm is 

not optimizing the trajectory [15]. Since the algorithm 

is based on trial and error, it must explore a large 

number of states to achieve the desired outcome. The 

analysis of the high number of states contributes to the 

algorithm's sluggishness. Such as the NMF method, 

can be beneficial in the research for optimal paths 

within a smaller space. 

In the study, the combination of the NMF method 

(to extract synergy patterns) and the two-link arm 

model with six muscles, controlled by the RL 

algorithm, allowed to achievement of the desired end-

point position and path. The NMF method has been 

widely utilized in numerous studies [14, 20, 21] to 

extract synergy patterns. Previous research [13, 14] 

has shown that highly modular and similar muscular 

synergies are found among subjects who perform the 

same movement in many cases. 

This similarity was also observed in the results of 

the extracted patterns. In this study, we used these 

similarities as a positive aspect of the NMF-

MASARSA algorithm. 

Determining the optimal number of synergies 

extracted by the NMF method not only reduces 

computational complexity [32] but also provides a 

 

Figure 9. Plot of the arm trajectory. The NMF method, the two-link arm model 

trajectory, controlled by the NMF-MA-SARSA algorithm. In these 100 episodes 

the model has managed to find the optimal route 

 

Table 4. Comparison of MA-SARSA and NMF- MA-

SARSA algorithms in control of six-muscle two-link arm 

Trajectory 

The average 

number of 

steps 

 

Longer route 

and wider space 
32±12.27  

MA-SARSA 

algorithm 

Shorter path and 

Limited space 
25±10.63  

NMF-MA-

SARSA 

algorithm 

 

 

Figure 8. Plot of the arm trajectory. The two-link arm 

model trajectory controlled by the MA-SARSA algorithm 
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clear description of the arm-reaching space, as 

demonstrated in the present study. This optimum 

number of synergies can be achieved by selecting the 

best VAF threshold. In our study, the NMF method 

was used to extract synergetic patterns, which 

effectively reduced the movement space, thus 

reducing the computational burden of the MA-

SARSA algorithm. 

Figure 5 (a and b) provides information on the 

average number of synergies extracted from the 20 

subjects. It is evident that the biceps, triceps, PMJ, and 

DEL muscles were the most involved in arm-reaching 

movements. These results highlight the suitability of 

the two-link arm model with six muscles as the best 

model in this context. In the present study, we utilized 

the similarity among the extracted synergetic patterns 

observed in many cases. Furthermore, as 

demonstrated in the study details, determining the 

optimal number of synergies that can be achieved by 

NMF and the best VAF threshold method would 

reduce the calculations. Furthermore, the MA-SARSA 

algorithm, which serves as a long-gain target [17], can 

benefit from an optimization algorithm (such as the 

NMF method) to find the optimal path. Therefore, 

these synergy patterns (represented by the W-weight 

matrix) were used as input to the two-link arm model 

with six muscles, and the MA-SARSA algorithm was 

used for control. As can be seen in Figure 8, without 

using the NMF method, the trajectory has traveled a 

long way in reaching the target. On the other hand, by 

utilizing NMF-MA-SARSA the trajectory has gone 

through a shorter route to the target (see Figure 9). It 

is seen in Table 4, the average steps produced by 

NMF-MA-SARSA algorithm was shorter than MA-

SARSA algorithm, 25 and 32 respectively. 

Additionally, the NMF-MA-SARSA algorithm had a 

lower variance in the number of steps compare with 

the MA-SARSA algorithm. Through this approach, 

the MA-SARSA algorithm could learn to generate 

suitable actions represented by the desired C matrix 

and achieve the target on a desired path (see Figure 

10). 

According to Figure 10b, in each episode of control 

of the two-link arm model with six muscles, the MA-

SARSA algorithm generated a C matrix of size [4*1]. 

When this value was multiplied by the W matrix 

(which was the weight matrix of size [6*4]), it resulted 

in the movement of the two-link arm model with six 

muscles. As mentioned above, the first number of 

synergies (W1) had the highest value compared to 

other numbers of synergies, while the first row of the 

C matrix had the minimum value compared to other 

rows of the C matrix. 

4.1. Limitations and Future Directions 

The present study has some limitations regarding 

the sample and methodology that should be 

considered. All participants were male, so future 

studies may include female participants. In addition, 

factors such as age and individual characteristics (e.g., 

activity level or athletic experience) may also 

influence the results.  

To survey the robustness of the two-link arm model 

with six muscles when the MA-SARSA algorithm 

controls it by producing a random C matrix, future 

studies may utilize non-Gaussian noise on the model 

to explore how the system might operate under more 

realistic conditions, as non-Gaussian noise can pose 

challenges for data analysis. Furthermore, it is 

suggested that researchers focus on models of other 

parts of the body in future research. 

Additionally, future studies should explore more 

than two links and/or more than six muscles involved 

in arm-reaching movements to investigate whether the 

results are consistent. However, increasing the number 

of muscles and links may raise the computational load, 

which could impact the final results. 

5. Conclusion 

The approach proposed in this study involves 

employing techniques like NMF and VAF methods to 

compute the W.C matrix. Subsequently, this matrix is 

applied to a two-link arm model with six muscles. As 

well as controlling the model with the MA-SARSA 

algorithm. The results of the NMF-MA-SARSA 

algorithm demonstrate that the controller was more 

similar to human motor control, reduced the 

computational requirements needed to reach the 

target, optimized the trajectory, and improved arm 

movement towards a specific target. The results 

indicate that the methods mentioned successfully 

achieve the desired destination and end-point position. 

Additional parameters should be identified and 

optimized to further improve the result. 
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