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Abstract 

Estimation of brain connectivity, as a brain mapping technique, has become increasingly important in the 

diagnosis and treatment of neurological and psychiatric disorders. Understanding how different regions of the 

brain communicate with each other provides valuable insights into the underlying mechanisms of these 

conditions. Brain connectivity includes structural connectivity and functional connectivity and can be utilized in 

various scenarios for diagnosis, treatment, and prognosis of mental disorders. This editorial briefly presents 

structural and functional brain connectivity and some of their applications.  
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1. Diagnosis 

Functional Connectivity (FC): Aberrant patterns of 

functional connectivity, estimated from the resting-

state fMRI or task-based fMRI, can serve as 

biomarkers of various disorders. Functional 

connectivity patterns may be indicative of conditions 

such as schizophrenia, depression, and Attention 

Deficit Hyperactivity Disorder (ADHD). 

Structural Connectivity (SC): Disruptions in white 

matter tracts, identified through Diffusion Tensor 

Imaging (DTI) and quantified by structural 

connectivity metrics, can be associated with 

neurodegenerative diseases such as Alzheimer's and 

multiple sclerosis. 

2. Disease Subtyping 

Brain connectivity analysis can contribute to the 

identification of subtypes within a broader disorder. 

For example, in psychiatric disorders like 

schizophrenia, distinct connectivity patterns may be 

associated with different symptom profiles, aiding in 

more personalized treatment strategies. 

3. Prediction of Treatment Effect 

Functional Connectivity Changes: Monitoring 

changes in functional connectivity before and after 

treatment can help predict treatment response. For 

instance, alterations in brain connectivity may be 

observed following interventions such as 

psychotherapy or medication. 

Neurofeedback: Real-time monitoring of brain 

connectivity through neurofeedback can be used to 

guide and enhance therapeutic interventions. Patients 

can learn to modulate their brain activity based on 

feedback received during neuroimaging. 

4. Brain Stimulation 

Brain connectivity information is crucial in the 

application of non-invasive brain stimulation 

techniques such as Transcranial Magnetic Stimulation 

(TMS) or transcranial Direct Current Stimulation 

(tDCS). Targeting specific brain regions based on 

connectivity patterns can optimize the effectiveness of 

these treatments. 

5. Neurosurgical Planning 

Prior to neurosurgical procedures such as those 

directed towards treatment of epilepsy and brain 

tumors, mapping of the functional and structural 

connectivity helps surgeons avoid critical areas and 

minimize the risk of postoperative deficits. 

6. Monitoring Progression 

Longitudinal studies using connectivity measures 

allow researchers and clinicians to track the 

progression of neurological disorders over time. This 

information is vital for understanding disease 

trajectories and optimizing intervention strategies. 

7. Integrative Approaches 

Combining information from multiple 

neuroimaging modalities such as structural MRI, 

functional MRI, and DTI provides a more 

comprehensive view of the brain connectivity, 

offering a holistic understanding of the brain's 

organization and function. 

8. AI-Based Methods 

While brain connectivity analysis holds great 

promise, the field is still evolving, and further research 

is needed to develop novel analysis approaches and 

establish standardized protocols and enhance the 

clinical utility of these measures. To this end, 

Artificial Intelligence (AI) based techniques will play 

a significant role in advancing brain connectivity 

analysis by providing sophisticated tools for data 

processing, feature extraction, and interpretation, as 

described below. 

Preprocessing: AI algorithms can automate the 

preprocessing of neuroimaging data, handling tasks 

such as motion correction, normalization, and noise 

reduction. This ensures that the data used for 

connectivity analysis is of high quality. 
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Identifying Connectivity Patterns: AI techniques, 

particularly machine learning algorithms, can extract 

complex patterns of connectivity from large datasets. 

These patterns may not be readily apparent through 

traditional analyses, allowing for a more nuanced 

understanding of the brain networks. 

Reducing Dimensionality: AI methods help manage 

the high dimensionality of neuroimaging data by 

identifying the most relevant features. This is crucial 

for reducing computational complexity and improving 

the interpretability of results. 

Identifying Disease Biomarkers: AI algorithms can 

identify subtle connectivity patterns associated with 

specific neurological or psychiatric disorders. This 

enables the development of potential biomarkers for 

diagnostic purposes. 

Predicting Treatment Response: Machine learning 

models can analyze connectivity data to predict how 

an individual might respond to a particular treatment, 

facilitating personalized and targeted therapeutic 

interventions. 

Combining Imaging Modalities: AI facilitates the 

integration of data from different imaging modalities, 

such as structural MRI, functional MRI, and DTI. This 

multimodal approach provides a more comprehensive 

understanding of brain connectivity. 

Enhancing Real-Time Neurofeedback: AI 

algorithms can be employed in real-time 

neurofeedback systems, allowing individuals to 

modulate their brain activity based on ongoing 

connectivity patterns. This is particularly relevant in 

therapeutic interventions and cognitive training. 

Identifying Disease Subtypes: AI methods can 

uncover subtypes within larger patient populations 

based on connectivity patterns. This can aid in 

personalized medicine by tailoring treatments to 

specific subgroups. 

Predictive Modeling: AI models can predict clinical 

outcomes or disease progression based on 

connectivity data. This information is valuable for 

prognosis and long-term treatment planning. 

Quality Control: AI algorithms assist in quality 

control by automatically flagging problematic data 

points or outliers, ensuring that only reliable data 

contribute to the analysis. 

Big Data: AI is instrumental in handling large-scale 

datasets commonly encountered in neuroimaging 

studies. This includes efficient storage, retrieval, and 

analysis of big data, promoting collaborative research 

efforts. 

Optimizing Brain Stimulation: In applications such 

as non-invasive brain stimulation, AI can optimize the 

targeting of specific brain regions by considering 

individual variability in connectivity patterns. 

While AI has shown great promise in advancing 

brain connectivity analysis, ongoing research and 

validation are essential to ensure the reliability and 

generalizability of AI-driven findings in clinical 

contexts. Moreover, ethical considerations, data 

privacy, and transparency in AI algorithms are crucial 

aspects that need careful attention in neuroimaging 

research. 

9. ISBM 2023 

Many of the connectivity approaches and 

applications discussed above have been used and 

discussed in the speeches, panels, and papers 

presented in the Seventh Iranian Symposium of Brain 

Mapping Updates (ISBM’2023). The papers presented 

at the symposium and published in this Special Issue 

have been reviewed by experts in the field and were 

the best among the submitted papers. They describe 

specific approaches for the analysis of neuroimaging 

data or specific applications of neuroimaging, brain 

mapping, and brain connectivity analysis techniques 

for the diagnosis and treatment of the brain disorders. 
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Abstract 

Empathy towards out-groups is essential for maintaining peaceful and favourable relationships with other nations. 

The experience of war can damage the empathy between two nations. New developments in trauma studies reveal 

that the impacts of war can be inherited. This study investigated whether war experiences impact future 

generations' ability to empathize with out-groups with negative experiences. In this fMRI study, 30 healthy 

participants (15 individuals with a family history of trauma from the Iran and Iraq wars and 15 controls) viewed 

video clips of Iraqi, Afghan, and Iranian patients displaying facial expressions of pain. Next, they were asked to 

rate the level of distress shown. Participants from families not affected by war exhibit more empathy-related brain 

activity when watching videos of Iraqi patients. The affected regions are the corpus callosum, limbic and 

hippocampal areas, and, partially, the prefrontal lobe. Participants from the main group showed increased activity 

in the occipital lobe when watching Iraqi pain and insula regions when viewing video clips of the suffering of 

Irani patients, indicating a stronger response to unpleasant images and a preference for their group. The research 

found that war trauma negatively affects the next generation's empathetic feelings toward hostile ethnic groups.  

Keywords: Intergenerational Transmission of Trauma; War Trauma; Empathy; Outgroup Bias; functional Magnetic 

Resonance Imaging Study. 
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1. Introduction  

The experience of war can be traumatic and have 

lasting effects, not just on those who directly 

experience it but also on future generations. 

Neuroscience has made significant progress in 

understanding the neural processes associated with 

war trauma and empathy, showing how these 

experiences can negatively impact survivors' ability to 

understand others' perspectives [1-4]. Determining the 

stability of these effects among future generations of 

society requires further research. Thus, our study 

focused on determining whether the offspring of Iran-

Iraq war survivors with a history of war trauma exhibit 

reduced empathy towards Iraqis. 

War-time stress can affect children indirectly. 

These effects can be long-lasting and may persist until 

the individual's lifetime. Reviewing the literature on 

"Intergenerational Transmission of Trauma" confirms 

that the consequences of this disorder in parents are 

transmitted to children through various mechanisms. 

[5-9]. Recent studies suggest that war-induced trauma 

also impacts children biologically. New molecular 

biology studies have confirmed that traumatic injuries' 

effects can be transmitted to the first to fourth 

generation through epigenetic mechanisms. These 

mechanisms change the DNA transcript [10-13]. It has 

been discovered that the transmission of PTSD to 

children is linked to biological changes in the 

Hypothalamic-Pituitary-Adrenal axis (HPA). 

According to Decety (2011), the HPA axis is a 

component of the neural system that represents 

empathy. We can anticipate differences in how 

empathy is demonstrated among children with war-

related trauma family backgrounds. 

2. Materials and Methods 

2.1. Participants  

Thirty healthy Iranian participants (18 males), all 

right-handed, with a mean age of 30 years (SD=3), 

provided written consent for the fMRI experiment. 

The Ethics Committee of Allameh Tabataba'i 

University authorized the research 

(IR.ATU.REC.1399.056). Participants had no 

neurological or psychiatric disorders, were not taking 

medication, and had normal or corrected-normal 

vision. They were compensated for their participation. 

2.2. General Procedure  

In order to ensure the success of our experiment, we 

were very selective in the initial stages of participant 

recruitment. Six months before the fMRI experiment, 

we distributed questionnaires to 536 individuals born 

in the 1980s and 1990s and were the first-generation 

offspring of Iran-Iraq war survivors. We used the 

Interpersonal Reactivity Index [14] to identify 

individuals with above-average levels of empathy. To 

determine the influence of parental socioeconomic 

status and education on child-rearing, we used the 

Socioeconomic Status Questionnaire (2012). 

Additionally, we used Bernstein et al.'s [15] childhood 

trauma questionnaire (2003) to assess the impact of 

childhood trauma. As part of the survey, participants 

were also asked to rate their family's political leanings 

during their childhood on a scale of 0 to 10, ranging 

from reformist to extremely conservative. We created 

a questionnaire to understand how severe parents' 

traumatic experiences were from their children's 

perspective. The questionnaire was inspired by a 

similar study conducted in 2006 among children of 

Holocaust survivors. Yehuda et al. [16] designed a 

brief questionnaire that assessed parents' post-

traumatic stress disorder symptoms from the children's 

viewpoint. Our questionnaire helped us understand 

how much exposure the children had to their family's 

trauma narratives, observed symptoms, or experienced 

consequences. The questionnaire's validity was 

confirmed to be 0.81 Cronbach's alpha. As part of our 

survey, we included two open-ended questions for 

children to share their parent's experiences during the 

Iran-Iraq war. We evaluated parents' traumatic 

experiences by assessing the type and severity of 

situations they faced, such as war zones, forced 

migration, bombardment anxiety, having veteran 

family members, mental and emotional distress, and 

time spent at the front. 16 main-group participants (8 

m ales) with severe family trauma and 14 control 

participants (10 males) without a family record of war 

trauma were selected for an fMRI test. 

 



The Legacy of War: How Trauma Affects Empathy in Future Generations  

6   FBT, Vol. 11, No. Supple 1 (Summer 2024) 4-9 

2.3. Visual Stimuli 

We utilized a video clip to examine empathy for 

pain and out-group biases. The participants watched 

patients of different ethnicities (Iranians, Afghans, and 

Iraqis) displaying expressions of pain on their faces, 

which progressed from neutral to intense pain 

expression. The selection of stimuli was influenced by 

previous research [17, 18]. International student 

volunteers from Allameh Tabatabai University were 

taught to express pain through specific facial 

expressions, such as frowning and pressing their lips 

[19].  

The group consisted of 34 Iraqis, 44 Iranians, and 

32 Afghans, and the final version was recorded after 

multiple trial recordings. The videos were captured 

using a stable tripod to prevent shaking and filmed 

from a front-facing angle that shows people's faces 

and part of their shoulders (Figure 1). The individuals 

in the videos were instructed to focus on a point 50 cm 

below the camera to avoid direct eye contact with the 

audience. To make the hospital scenes more realistic, 

the actors wore regular clothes and stood against a 

white wall. Each video lasted 8 seconds, with the first 

0.5 seconds being neutral expressions and the 

remaining 7.5 seconds showing pain caused by audio. 

From all the videos, 48 clips that showed the most 

genuine intense pain expression were selected for an 

fMRI test. A group of 10 people rated these clips on a 

scale of 1 to 5. There were 16 video subjects (8 males) 

from each ethnicity. 

2.4. Functional MRI Scanning 

Before their fMRI scans, participants were told to 

watch video clips of patients with neurological hearing 

issues undergoing painful sound therapy. Before each 

video clip, there were written instructions that 

described the patients' diagnoses, which were either 

acquired during their life or caused by hereditary 

factors due to their father's involvement in wars. 

Participants conducted a trial before the scan to 

familiarize themselves with the button box. 

We conducted a study using a 3x2 factorial design, 

which looked at the origin (Iranian/Iraqi/Afghan) and 

type of disease (hereditary/acquired) as factors. The 

stimuli were presented in a blocked event-related 

mode, with fixation images shown before each video 

clip. The patients' nationalities were indicated in the 

instructions. Participants watched 8-second video 

clips of a male and female with neutral expressions for 

0.5 seconds, followed by painful expressions for 7.5 

seconds. They used a 1 to 4 scale to rate the intensity 

of the perceived pain. 

3. Results 

We conducted an MRI at Iran’s National Brain 

Mapping Lab to study empathy-related responses. We 

used a 3-T Siemens Sonata scanner for 2 fMRI runs 

with 48 video clips. We collected behavioral data and 

created visual content using Psychopy2021 software. 

Our team processed the images using the SPM test in 

Mathworks Matlab R2022a software. Participants 

received random and equal blocks with six positions. 

Each round had two video clips (male and female) for 

each condition, repeated four times with a two-minute 

rest in between. 

The control group showed higher activity in the 

corpus callusom when observing Iranian's pain 

(heredity condition). (p<0.001) (Figure 2). CC is a 

crucial area for social cognition, which includes 

empathy as an important capacity. Recent studies have 

shown that damage to this area due to brain trauma can 

impair social cognition. Additionally, microstructural 

 

Figure  1. Sample frames of facial expressions 

shifting from neutral to pain due to an aversive sound 
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studies have revealed that white matter connectivity, 

particularly through CC, can predict emotional 

empathy ability. Evidence suggests that the corpus 

callosum plays a significant role in empathy [20-22]. 

This finding supports the initial assumption of the 

study that the main group has a lower empathy 

capacity than the control group. 

The main group had higher insula activity when 

observing pain in Iranian subjects (heredity 

condition). (p<0.001) The insula is involved in 

empathic responses to pain and emotions such as 

disgust, fear, anxiety, and happiness. The right 

anterior insula is linked to affective-perceptual 

empathy, while the left is linked to affective-cognitive 

and cognitive-evaluative empathy. Stimulation of the 

left insula can affect the ability to recognize emotions, 

particularly disgust. The insula is also implicated in 

biased empathy, with increased activity in the bilateral 

anterior insula associated with a tendency to harm 

stereotyped out-groups. The left insula is affected in 

cases of national-regional group membership and in-

group bias [23-26] (Figure 3).  

The Control group had higher activity in limbic 

and parahippocampal fusiform when observing 

pain in Iraqi subjects (Figure 4). 

When viewing the facial pain of an Iraqi with a 

hereditary condition, the main group displayed 

greater activity in the Occipital Lobe and Lingual 

Gyrus (pValue<0.001). The occipital lobe is 

responsible for processing empathy triggered by pain 

from visual stimuli. An increase in activity in this area 

suggests that empathy processing is occurring at an 

early stage. However, it is worth noting that the 

 

Figure 1. Between Group Analysis/ CC activated in Control Group. Contrast (Irani Heredity>Iraqi Heredity) p<0.001 

 

Figure 3. Insula activated in the main group. Contrast 

(Iranian heredity>Iraqi Heredity), p<0.001 

 

 

Figure 2. Limbic area activated in the control group.  

Contrast (Iraqi heredity>Iranian Heredity), p<0.001 
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activity of this area is solely influenced by the type of 

stimulus utilized during the experiment (Figure 5). 

4. Conclusion 

Our study aimed to investigate whether children of 

Iran-Iraq war survivors, who have experienced war 

trauma, exhibit reduced empathy toward Iraqis. The 

results showed a significant decrease in empathy 

among the offspring of war survivors with a family 

history of trauma. The control group exhibited higher 

activity in the corpus callosum when observing 

Iranian's pain, indicating the region's importance in 

social cognition and empathy. On the other hand, the 

main group showed higher insula activity when 

watching Iranian pain, which is involved in empathic 

responses to pain and in-group favoritism. These 

findings suggest that the main group may have a lower 

empathy capacity than the control group. Our fMRI 

study offers valuable insights into the complex 

neurobiological mechanisms underlying the 

intergenerational transmission of war trauma. It may 

have important implications for future research in the 

interdisciplinary field of peace and neuroscience. It 

highlights the need to address the long-term impacts 

of war trauma on future generations and the 

importance of effective interventions to promote 

empathy and reduce in-group favoritism among 

individuals with war-related trauma family 

backgrounds. 
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Abstract 

Diffusion Tensor Imaging (DTI) is a noise-sensitive method, where a low Signal-to-Noise Ratio (SNR) results in 

significant errors in the estimated tensor field. Post-reconstruction tensor field smoothing is a simple and effective 

solution for alleviating this problem. Diffusion tensors can be represented by Symmetric Positive-Definite (SPD) 

matrices which can be viewed as a Riemannian manifold after defining a suitable metric on the space of SPD 

matrices. The Log-Cholesky metric is a recently developed concept with several advantages over previously 

defined metrics, e.g., Frobenius, Log-Euclidean, and affine-invariant metrics. In this work, we implemented a 

smoothing method based on the Log-Cholesky metric and show its effectiveness as a simple solution to filtering 

noisy diffusion tensor fields.  

Keywords: Tensor Field Smoothing; Diffusion Tensor Imaging; Log-Cholesky Metric; Riemannian Geometry. 
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1. Introduction  

DTI has become the method of choice in Magnetic 

Resonance Imaging (MRI) for imaging the brain white 

matter. In DTI, for each voxel of the brain, a diffusion 

tensor is estimated using a series of Diffusion 

Weighted Images (DWI). Low SNR in DWI may 

result in significant errors in the estimated tensors 

which adversely impact subsequent analyses, for 

example, in white matter tractography. Therefore, 

regularization of the estimated tensor field is 

necessary to reduce the impact of noise. 

The state-of-the-art noise reduction methods apply 

the regularization during tensor reconstruction. 

However, these methods are often complex and 

computationally inefficient. Spatial smoothing of the 

tensor field post-reconstruction presents a practical 

alternative. Smoothing basically amounts to spatial 

averaging of the reconstructed noisy tensors. 

However, the averaging needs to be performed in the 

SPD space using Riemannian geometry based on a 

selected Riemannian metric. Previously utilized 

metrics for this purpose are the Frobenius, the Log-

Euclidean, and the affine-invariant (Fisher). The Log-

Choleskey metric [1] has been introduced recently as 

an alternative with several advantages, e.g., 

computational efficiency, non-swelling effect, a 

closed-form average. 

2. Materials and Methods 

In DTI tensors are estimated by fitting the Stejskal-

Tanner model [2], 𝑆𝑖 = 𝑆0(−𝑏𝑔𝑖
𝑡𝐷𝑔𝑖), to the DWI 

data, Si, where 𝐷 is a 3 fi 3 SPD matrix to be estimated 

at each voxel. 

Usually, a least squares method is used for tensor 

estimate, such as linear (LLS) or Non-linear Least 

Squares (NLS) [3], or Iterative Re-Weighted (IRWLS) 

[4]. We implemented these methods while imposing 

positivity constraints [3]. Following tensor field 

estimation, we use the Log-Cholesky metric in the 

context of Riemannian geometry to spatially smooth 

the tensor field. 

Briefly, the Cholesky decomposition establishes a 

diffeomorphism between the space of SPD matrices 

and the space of lower triangular matrices with 

positive diagonal elements (ℒ+). In the present paper, 

we perform the smoothing in ℒ+. Specifically, to 

average a set of adjacent SPD matrices, 𝐷1, 𝐷2, … , 𝐷𝑛, 

we first compute their corresponding elements in ℒ+, 

𝐿1, 𝐿2, … , 𝐿𝑛, and then average them as follows 

(Equation 1): 

𝑳𝑎𝑣𝑒 =  
1

𝑛
∑⌊𝑳𝑖⌋

𝑛

𝑖=1

+ exp (
1

𝑛
∑ 𝑙𝑜𝑔 𝔻

𝑛

𝑖=1

(𝑳𝑖)) (1) 

where ⌊𝐿𝑖⌋ is the strictly lower triangular part and 

𝔻(𝐿𝑖) is the diagonal part of 𝐿𝑖. The average 𝐷𝑎𝑣𝑒 is 

finally given by (Equation 2): 

𝐷𝑎𝑣𝑒 =  𝐿𝑎𝑣𝑒 𝐿𝑎𝑣𝑒
𝑇  (2) 

3. Results and Discussion 

IRWLS with and without post-reconstruction 

smoothing was implemented in Python. We used 

simulated DWI data to compare IRWLS with and 

without smoothing. The simulated DWI was created 

by ExploreDTI [5] with 32 directions. Figure 1 shows 

the estimated tensor fields using IRWLS alone and 

using IRWLS followed by Log-Cholesky post-

reconstruction smoothing (SNR=15). Figure 2 

compares the error distributions (i.e., distances 

between the simulated and estimated tensors) between 

IRWLS and IRWLS+smoothing methods. 

Qualitatively, Figure 1 shows that post-

reconstruction Log-Cholesky smoothing clearly 

improves the estimated tensor field. Noise is reduced 

while tensor orientation and boundaries are well 

preserved. 

Quantitatively, Figure 2 shows that smoothing 

clearly shifts the distribution of errors to the right 

when smoothing is applied 

4. Conclusion 

Post-reconstruction smoothing using the Log-

Cholesky method clearly improves DTI estimation. 

This can be a simple and effective method for noise 

reduction which can be applied as an independent 

processing step in DTI analysis, as an alternative to 

complex methods that implement regularization 

during DTI reconstruction. 
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Figure 1. Estimated tensor fields. (a) using IRWLS, (b) using IRWLS+Smoothing 

 

Figure 2. Comparison of error distributions betweenIRWLS and IRWLS+Smoothing methods 
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Abstract 

Ischemic stroke lesion segmentation in Magnetic Resonance Images (MRIs) is a challenging task due to lesion 

type, shape, and size variations in the brain. Also, MRIs suffer from intensity inhomogeneity and different types 

of noises. Lesion segmentation is a manual task for clinicians which is error-prone and very time-consuming. 

This paper aims to present an automatic segmentation for Ischemic stroke lesions in MRIs. 

The proposed method is a new active contour model based on morphology and fuzzy kernel clustering with a 

combination of modified U-Net for initial contour selection. In this way, a fully automatic stroke lesion 

segmentation is obtained.  

Experiments are conducted on ISLES 2015 dataset. We use T2 and Flair modalities as a vector-valued approach 

for multimodal segmentation. Results show that our proposed method can segment stroke lesions with proper 

accuracy. Dice, Jaccard, Sensitivity, and Specificity for automatic lesion segmentation against ground truth are 

0.9652±0.0316, 0.9344±0.0561, 0.9903±0.0033 and 0.9903±0.0033 respectively.  

Our multimodal proposed method shows satisfactory results for Ischemic lesion segmentation due to fuzzy 

clustering and morphological approach. Moreover, our method is not sensitive to initialization thanks to the 

proposed modified U-Net. Also, our method is capable to segment images with intensity inhomogeneity.  

Keywords: Active Contour; Deep Learning; Ischemic Stroke Lesion Segmentation; Kernel Induced Clustering; 

Morphology. 
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1. Introduction  

Brain stroke is the second leading cause of death in 

the world [1]. Brain stroke is a series of brain tissue 

necrosis symptoms caused by rupture or blockage of 

intracranial blood vessels [2]. Lesion segmentation 

from MRI means marking each voxel as a lesion or 

non-lesion. Automatic lesion segmentation is an 

important task for the diagnosis of ischemic stroke 

because manual lesion segmentation by physicians is 

tedious and time-consuming. However, automatic 

segmentation is challenging since the lesions have a 

large variation of location, irregular boundaries and 

shape, and appearance at different times in the brain 

[3]. In recent years, there has been growing interest in 

automatic segmentation of brain lesions such as 

tumors and stroke [4-6]. In this paper, we present a 

new active contour model based on morphological 

fuzzy clustering and deep learning for automatic 

stroke lesion segmentation. 

2. Materials and Methods 

The proposed method consists of two major parts. 

In the first part, we proposed modified attention U-Net 

and in the second part, we introduced a new region-

based active contour for segmentation. 

2.1. Proposed Modified Attention U-Net 

The proposed architecture includes an encoder, 

decoder, and modified attention blocks. The encoder  

 

and decoder blocks have five layers including the max 

pooling layers. To reduce the number of trainable 

parameters, the DWS-ResBlock3d layer is designed 

and used in the encoder. 

2.2. Proposed Morphological Kernel Fuzzy 

The lesion segmentation was performed using the 

kernel fuzzy active contour model proposed by 

Khosravanian et al. [7]. 

𝐹𝐾(𝑅1, 𝑅2, 𝑢, 𝑣, 𝐵)

= ∫ 𝑢1
𝑝(�⃗�) 𝐽𝐾(𝐼(�⃗�), 𝑏(�⃗�)𝑣1)𝑀1(𝜑)𝑑�⃗�

𝑅1

+∫ 𝑢2
𝑝(�⃗�) 𝐽𝐾(𝐼(�⃗�), 𝑏(�⃗�)𝑣2)𝑀2(𝜑)𝑑�⃗�

𝑅2

+ 𝜐𝐿(𝜑) + 𝜇𝑅𝑝(𝜑) 

(1) 

Where the image intensity 𝐼(�⃗�) corresponding to 

the object domain Ω𝑖 is approximated by a local mean 

of 𝑏(�⃗�)𝑐𝑖. The 𝑏(�⃗�) is a smooth and spatially varying 

function that models the intensity non-uniformity. The 

𝑢𝑖
𝑝
 indicates the membership function in fuzzy 

clustering. The characteristic functions of regions are 

𝑀1(𝜑) = 𝐻(𝜑) and 𝑀2(𝜑) = 1 − 𝐻(𝜑). The 𝐿(𝜑) 

and 𝑅𝑝(𝜑) are an arc term and a distance 

regularization term, respectively. 

We used morphological operators for contour 

evolution [8] as a novelty in this paper instead of the 

traditional minimization method in the active 

contours. In this regard, the energy function is 

minimized by the following three steps: 

 

 

Step 1: 

𝜑𝑚+
1
3⁄ (𝑥) = {

𝐷𝑖𝑙𝑎𝑡𝑒(𝜑𝑚(𝑥))      𝜐 > 0

𝐸𝑟𝑜𝑑𝑒(𝜑𝑚(𝑥))     𝜐 < 0

𝜑𝑚(𝑥)         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

Step 2: 

𝜑𝑚+
2
3⁄ (𝑥) =

{
 
 

 
 1        |∇𝜑𝑚+

1
3⁄ | . (∫ 𝑢1

𝑝(�⃗�) 𝐽𝐾(𝐼(�⃗�), 𝐵(�⃗�)𝑣1)𝑀1(𝜑)𝑑�⃗� +
𝑅1

∫ 𝑢2
𝑝(�⃗�) 𝐽𝐾(𝐼(�⃗�), 𝐵(�⃗�)𝑣2)𝑀2(𝜑)𝑑�⃗�

𝑅2

) < 0

0      |∇𝜑𝑚+
1
3⁄ | . (∫ 𝑢1

𝑝(�⃗�) 𝐽𝐾(𝐼(�⃗�), 𝐵(�⃗�)𝑣1)𝑀1(𝜑)𝑑�⃗� +
𝑅1

∫ 𝑢2
𝑝(�⃗�) 𝐽𝐾(𝐼(�⃗�), 𝐵(�⃗�)𝑣2)𝑀2(𝜑)𝑑�⃗�

𝑅2

) > 0  

𝜑𝑚+
1
3⁄                                                                                                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

Step 3: 

𝜑𝑚+1(𝑥) = 𝑜𝑝𝑒𝑛𝑖𝑛𝑔(𝑐𝑙𝑜𝑠𝑖𝑛𝑔(𝐶(𝜑𝑚+
2
3⁄ (𝑥))))            𝜇 𝑇𝑖𝑚𝑒𝑠 (4) 
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3. Results 

To evaluate the performance of the proposed 

method, we used the T2 and Flair modalities from 

ISLES 2015 simultaneously. The proposed modified 

attention U-Net was trained on 70% of three-

dimensional MRIs. To evaluate the efficiency of the 

proposed morphological kernel fuzzy level set model, 

10 cases were selected randomly. The proposed U-Net 

segmentation results are used as an initial contour in 

the proposed multimodal active contour model. 

Results confirm that multimodal active contour 

capable to improve the results of the proposed 

modified U-Net. 

Figure 1 shows the segmentation results by the 

proposed method. The quantitative results of the 

proposed method are shown in Table 1. 
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4. Conclusion 

In this paper, we proposed a deep multimodal active 

contour method that automatically segmented stroke 

lesions from 3D MRIs with high accuracies. The 

proposed method used a modified attention U-Net for 

initial contour selection. The results show that our 

method can improve the U-Net results in stroke lesion 

segmentation. 
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Figure 1. Proposed method results a: Original Image (Flair modality), b: Reference mask c: Proposed U-Net 

segmentation result, d: Proposed multimodal segmentation result 

Table 1. Quantitative results (mean±std) 

Method Dice Jaccard Sensitivity Specificity 

Proposed 

modified attention 

U-Net 

0.8215±0.1583 0.7181±0.1768 0.8071±0.2049 0.9979±0.0024 

Proposed active 

contour 
0.9652±0.0316 0.9344±0.0561 0.9903±0.0033 0.9903±0.0033 
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Abstract 

The human brain is a complex network characterized by structural and functional connections within and between 

regions. It is proven that in some brain diseases (such as schizophrenia), these connections are disrupted. Graph 

theory is a suitable tool to analyze brain network disruptions. The data analyzed in this study include the functional 

and structural connections of 27 schizophrenic patients and 27 healthy controls. By means of Independent 

Component Analysis (ICA) and joint ICA (jICA) algorithms, the brain network is divided into 10 sub-networks, 

in which structural connections play an important role. We look for graph parameters that distinguish patients 

from healthy people. We observed that the local parameters of joint subnetwork #3 such as clustering efficiency, 

strength, and local efficiency can be used to distinguish patients from controls. The global parameters in joint 

subnetwork #1, such as characteristic path length, radius, diameter, and max modularity have the same effect. To 

investigate nervous system disorders such as schizophrenia it is better to analyze the joint sub-networks of the 

brain than the whole brain. 

Keywords: Schizophrenia; Independent Component Analysis; Subnetworks; Functional Connectivity; Graph Theory. 
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1. Introduction  

The brain consists of several complex networks that 

reveal its structural and functional connections [1]. 

This approach provides a higher-level description of 

complex human behaviors and psychological 

disorders [2, 3]. In recent studies, instead of the whole 

brain, we may consider its subnetworks, which 

provide suitable concepts for studying neuroscience 

and analyzing the connectivity of the brain [4]. In this 

study, a network-level blind analysis is used to 

decompose brain connectivity into subnetworks based 

on Independent Component Analysis (ICA) [5]. As a 

result, 10 joint networks have been constructed from 

functional and structural connections of 27 persons 

with schizophrenia and 27 healthy individuals. The 

main features of schizophrenia include cognitive 

dysfunction associated with poor occupational and 

social performance [6]. This psychotic disorder such 

as schizophrenia may be caused by changes in the 

dynamics of connections between the brain segments. 

The disorders known in schizophrenia can be well 

studied with imaging techniques, including fMRI and 

DTI. The use of the joint algorithm on multimodal data 

has led to the discovery of the relationship between the 

structure and the function of the brain. Such analysis 

examines the information from two or more modalities 

together which helps in detecting their mutual 

counterparts and extracting more comprehensive 

information compared to a single modality [7, 8]. In 

this study, graph theory has been exploited to calculate 

the parameters of both structural and functional 

subnetworks jointly. Diagnosis and estimation of 

topology changes using various graph parameters can 

provide a proper understanding of the 

pathophysiological mechanism of this disease. Thus, 

changes in brain connections can be detected using 

graph parameters and subnetworks that are most 

sensitive in schizophrenia. 

2. Materials and Methods 

The data used in this study are the structural and 

functional connectivity matrices of 27 people living 

with schizophrenia and 27 healthy subjects. The 

Lausanne atlas was used for brain parcellation [9]. 

PCA is used for dimensionality reduction. Then two 

algorithms ICA and jICA are used to divide the brain 

connectivity network into 10 sub-networks. ICA 

considers only the functional connectivity, while jICA 

takes also into account the structural connectivity. 

After determining the location of each subnetwork, the 

differences between the two groups were analyzed 

using graph theory. Graph parameters studied in this 

article include betweenness, clustering coefficient, 

modularity maximization, diffusion, strength, local 

and global efficiency, radius, diameter, characteristic 

path length, modularity optimum, and node 

eccentricity, which were examined by statistical 

analysis. The algorithms for constructing subnetworks 

and calculation of the graph parameters are 

implemented using MATLAB 2021b and Brain 

Connectivity Toolbox (BCT), a powerful MATLAB 

toolbox for graph analysis. The goal is to see if graph 

parameters of certain subnetworks can discriminate 

between schizophrenic and healthy individuals. 

3. Results 

Figure 1 shows the similarities between the jICA 

and ICA subnetworks. The similarities between these 

two types of subnetworks are calculated in each of 

their 10 subnetworks. The highest similarities have 

been observed between jICA subnetworks #1 to #10 

to ICA subnetworks #8, #5, #1, #1, #2, #4, #7, #7, #5, 

and #5 respectively. The differences between the 2 

types of subnetworks are due to the presence of 

structural information in the analysis. Consequently, 

joint analysis offers the possibility of extracting more 

comprehensive information than other methods 

because it examines the information from two or more 

modalities together and it is possible to detect the 

equivalence between them. Also, structural 

connectivity leads to different subnetworks compared 

to other methods. In other words, the relationship 

between brain structure and function is not necessarily 

one-to-one, and it appears that connections are 

structural, they have the ability to control functional 

connections indirectly and remotely [10- 13]. 

Using a t-test with a p-value of less than 0.05, the 

significant global graph parameters of jICA 

subnetworks are as follows: the radius in the 

subnetworks #1 and #3, the maximum modularity in 

subnetworks #1, #4, and #9, the characteristic path 

length in subnetwork #1, the diameter in subnetworks 

#1 and #3, and the global efficiency in subnetwork #1,  
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which can be distinguished from healthy people and 

schizophrenics by studying these parameters in 

specific subnetworks. It is notable that most of the 

global parameters are significant in sub-network #1 

which includes the default mode network (DMN) and 

the limbic areas in the brain. For jICA subnetworks, 

the significant local parameters are as follows: 

strength in subnetworks #3 and #5 and cluster 

coefficient in subnetworks #3 and #7, eccentricity in 

subnetwork #10 and #2, and local efficiency in 

subnetworks #3, #5, and #7, which distinguish patients 

from healthy individuals. In this type of local 

parameters, subnetwork #3 can be used to diagnose 

schizophrenia by examining the neurological 

disorders of this subnetwork, which mainly includes 

the visual and sensorimotor areas. The subnetworks 

created using only functional connectivity contain 

significant graph parameters: Radius in subnetworks 

#10, #1, #7, and #8; characteristic path length in 

subnetworks #5, #7, and #9; maximum modularity in 

subnetwork #1; global efficiency in subnetworks #5, 

#7, and 9; diffusion in subnetwork #8; and diameter in 

subnetwork #1 distinguish healthy and schizophrenic 

patients. Similarly, strength in subnetworks #5, #7, 

and #9, local efficiency in subnetworks #5, #7, and #9, 

eccentricity in subnetwork #1, and clustering 

coefficient in subnetworks #5, #7, and #9 distinguish 

patients from control subjects. Consequently, 

neurological disorders in schizophrenia patients can 

be diagnosed by examining subnetworks #5 (which 

includes ventral attention and area SM at rest) and #7, 

which includes area SM (which are only the result of 

functional connections, for many parameters. Table 1 

shows the details of the statistical results. In contrast, 

when the clustering coefficient, radius, and 

characteristic path length parameters were examined 

for the whole brain, a significant difference was found 

between the healthy subjects and the patients. Thus, if 

the subnetworks were not used and only the state of 

the whole brain was considered, more detailed 

information about the disorders occurring in 

schizophrenia and their exact localization would not 

be obtained. 

 

Figure 1. Similarities of jICA (functional and structural) 

subnetworks with ICA (functional-only) subnetworks 

Table 1. Details of the statistical results. significant parameters in just and joint functions 

Function Subnetwork Parameter P-value CTRL Mean & std SZ Mean & std 

just 

function 

#7 

Clustering Coefficient 0.0010 0.0808 ± 0.0169 0.0687 ± 0.0133 

Strength 0.0030 9.9264 ± 1.6259 8.8630 ± 1.3269 

Local Efficiency 0.0032 0.1486 ± 0.0276 0.1311 ± 0.231 

Radius 0.0050 6.5527 ± 0.5724 6.9812 ± 0.5899 

Global Efficiency 0.0109 0.2278 ±0.0249 0.2133 ± 0.0210 

Eccentricity 0.0305 8.1626 ± 0.7853 8.5957 ±0.7354 

Characteristic path length 0.0395 4.9885 ± 0.5167 5.2596 ± 0.4704 

#5 

Clustering Coefficient 0.0089 0.0930 ± 0.0172 0.0806 ± 0.0178 

Local Efficiency 0.0147 0.1640 ± 0.0276 0.1458 ± 0.0283 

Strength 0.0154 9.3982 ± 1.3596 8.4650 ± 1.4123 

Global Efficiency 0.0195 0.2288 ± 0.0231 0.2142 ± 0.0227 

Characteristic path length 0.0378 5.0278 ± 0.5156 5.3170 ± 0.5082 

joint 

function 

#3 

Radius 0.03632 5.6983 ±0.5456 6.1127 ± 0.5229 

Strength 0.04471 17.2229 ±3.5778 15.5285 ± 2.3429 

Local Efficiency 0.04858 0.1794 ± 0.0427 0.1601 ± 0.0281 

Clustering Coefficient 0.04858 0.1330 ± 0.0357 0.1165 ± 0.221 

#1 

Global Efficiency 6.43×10−5 0.2099 ± 0.0113 0.2042 ± 0.0132 

Characteristic Path Length 8.60×10−5 5.5202 ± 0.3033 5.6622 ± 0.3765 

Radius 0.003 7.4283 ±0.4954 7.6601 ± 0.7407 

Diameter 0.04121 12.3051 ± 1.2286 12.8703 ± 1.5443 

Max Modularity 0.04121 0.3654 ± 0.0213 0.3515 ± 0.0247 
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4. Conclusion 

Considering the important role of structural 

connections in the formation of subnetworks, the main 

conclusion is that using both structural and functional 

connections improve the study of brain connection 

abnormalities in schizophrenics. Examination of the 

data has shown that the path length parameters 

(characteristic path length, radius, and diameter) are 

greater in patients than in normal people. The result 

obtained, which is also consistent with the studies in 

the field, shows that in schizophrenia patients, the 

information interactions between the interconnected 

brain regions are slower. The greatest increase in path 

length parameters occurs in the jICA subnetwork 

#3(Mostly including Somatomotor (SM) and visual 

areas in the brain based on Yeo Atlas) and subnetwork 

#2(includes DMN) [3, 14]. This result shows that in 

schizophrenic patients, information interactions 

between interconnected brain regions are slowed 

down. On the other hand, the strength parameter in 

schizophrenic patients is lower than that in healthy 

people [14]. This change will create a significant 

difference between the healthy and the patients in the 

subnetworks, most of which are the visual and SM 

areas in the brain. As previously mentioned, changes 

in this parameter in schizophrenics indicate 

asynchronous connections of connected points in the 

brain [15]. 

In schizophrenia, the clustering coefficient is often 

reduced compared to healthy individuals. This result 

was also obtained in our data, and this parameter is 

lower in joint subnetwork #7, which mainly includes 

the areas SM, and in joint subnetwork #3 in patients 

compared to healthy people [16, 17]. From the 

changes in the parameters of the clustering coefficient 

compared with healthy people, it can be concluded 

that the organization of the brain network and the 

correct communication between neighbors as well as 

the complexity of a network are disturbed in 

schizophrenic patients [3]. Moreover, in our results, 

schizophrenic patients have lower global efficiency 

compared to healthy people, which is a factor for us to 

distinguish between healthy people and patients in 

joint subnetwork #1, which mainly includes limbic 

and DMN regions in the brain [18]. In our data, local 

efficiency is lower in schizophrenic people joint than 

in healthy people. This parameter accounts for the 

largest difference between healthy people and patients 

in joint subnetworks #5, #7, and #3 [16, 17]. The 

change in local and global efficiency parameters 

indicates impaired parallel information transmission 

in the network and the average efficiency of the 

neighborhood subgraph of each node in our data is 

impaired in schizophrenic patients [18]. And the 

modularity parameter is lower in joint subnetworks #1, 

#4, and #9 of patients. These patients are expected to 

perform worse than healthy people in solving 

cognitive tasks [18]. And in ICA subnetworks path 

length parameters (characteristic path length, radius, 

and diameter) are greater in patients than in normal 

people. the strength parameter in schizophrenic 

patients is lower than that in healthy people. In our 

data, the clustering coefficient, and local and global 

efficiency are often reduced compared to healthy 

individuals. These results are consistent with other 

studies. In addition, we realized that by decomposing 

the brain system into multiple subsystems one is able 

to study psychotic disorders such as schizophrenia in 

more detail. Thus, changes in brain connections can be 

detected using graph parameters and subnetworks that 

are most sensitive in schizophrenia. More specifically, 

by studying subnetworks in these disorders, we can 

better diagnose the disorders of the patients and the 

way the connections change in these patients, which 

was not possible by studying the whole brain of these 

people. On the other hand, knowing the significant 

parameters in each subnetwork improves the 

personalization of diagnosis and treatment compared 

to a whole brain examination. 
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Abstract 

Understanding the activity and functioning of various brain regions is a crucial aspect of neuroscience. Functional 

Magnetic Resonance Imaging (fMRI) has emerged as a powerful tool for recording brain activity during specific 

tasks, providing valuable insights into brain function. With advancements in machine learning and statistics, there 

is a growing potential to process and identify patterns in fMRI data. In this study, we aimed to decode the 

information embedded in fMRI data to recognize objects presented to subjects as visual images. We proposed a 

novel solution using deep learning techniques to develop a generalized model to address the limitations of 

previous subject-specific models. We introduced a specially designed transformer model for fMRI data, which 

not only exhibited superior spatial pattern recognition capabilities but also considered the relationships among 

different Regions Of Interests (ROIs) involved in visual processing. This approach ensured adaptability to 

differences in brain structure across different subjects. Our results demonstrated the potential for decoding visual 

images based on the brain activity of new subjects, thereby opening up a new way in reading the brain. The 

proposed decoder can be used in brain machine interface systems to help people with visual disabilities 

Keywords: Functional Magnetic Resonance Imaging; Deep Learning; Object Recognition; Brain Decoding; Regions 

Of Interests Connectivity; Image Reconstruction. 
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1. Introduction  

Computational neuroscience explores how sensory 

stimuli are decoded in nerve cells and investigates the 

potential of decoding information from neurons. 

Machine learning techniques have been increasingly 

used to read brain activities from fMRI data, primarily 

focused on object recognition. Understanding brain 

regions aids in diagnosing disorders and comparing 

results across individuals [1]. This study aims to 

improve the generalization of existing models. Image 

reconstruction from fMRI encounters challenges due 

to predictive coding, variations in neuronal responses, 

and factors like fatigue and attention. Although fMRI 

provides high spatial resolution, it indirectly captures 

aggregated neural activity through blood oxygenation 

[2, 3]. 

The challenges of building models based on data 

from multiple subjects arise from inter-individual 

variability in brain structure and function. While 

mapping brain structures can align general processing 

areas, they lack one-to-one functional correspondence, 

leading to limitations in image reconstruction that 

require more detailed patterns from different fMRI 

points. Variations in factors like blood pressure, 

mental state, and attention levels introduce statistical 

variations in fMRI responses, making current image 

reconstruction systems reliant on data from a single 

individual, limiting their applicability [4]. To address 

these challenges, this study proposes innovations 

including a transformer neural network that leverages 

attention to extract information from fMRI data, 

capturing relevant features in different visual regions 

of the brain and their interrelationships. The study also 

presents methods to enhance model generalization 

through assimilated input data, allowing evaluation on 

new individuals without the need for brain mapping or 

volume matching. By incorporating these 

advancements, the study aims to overcome limitations 

in brain decoding, making brain reading models more 

practical and applicable. 

2. Materials and Methods 

Existing methods for image reconstruction from 

fMRI data face challenges due to training and 

evaluating models on the same person's data. 

Inconsistencies in voxels, ROIs, statistical differences 

in brain responses, and limited sample size contribute 

to these challenges. To overcome these limitations, we 

proposed a method that aims to create a generalized 

model capable of accommodating new individuals. 

Our approach utilized a transformer neural network 

to address voxel mismatch and unify extracted 

information from fMRI data across different 

individuals. The model-building process involved two 

parts: feature extraction using a pre-trained network 

on the Imagenet image set (InceptionV3) and 

categorization using an MLP decoder. We employed a 

transformer network to extract features from fMRI 

signals, using the decoder to identify image 

components. The fMRI signal is inputted as vision-

related areas, leveraging the transformer network's 

interconnection and attention capabilities. We handled 

fMRI signals from individuals with different brain 

sizes using an overlapping technique, eliminating the 

need for resizing or zero-padding. Our network had 

fewer training parameters, ensuring higher efficiency 

and faster model training, especially for large data 

volumes. This streamlined architecture enhanced the 

practicality and scalability of our method. 

We conducted our study using the NSD dataset, which 

included fMRI signals from eight participants viewing 

images from the coco dataset. For training our 

network, we selected data from the first three subjects 

with varying voxel sizes. Using the HCP mask, we 

extracted 200 areas relevant to visual processing and 

adjusted their sizes for input into the network. From 

the images seen by these subjects, we focused on 

images containing person, resulting in a dataset of 

26,888 images. The architecture of our model is shown 

in Figure 1. 

3. Results 

Our study achieved favorable accuracy in decoding 

visual images based on new subjects' brain activity 

using the proposed transformer model based on deep 

learning algorithms. The data was divided into three 

parts: train (80% of the total data), evaluation (10% of 

the total data), and test (10% of the total data). For the 

fMRI transformer network, the Cosine similarity 

metric was used as the evaluation metric, the similarity 

was 84.8% in train, 86.5% in evaluation, and 86.95% 

in test. The fully connected network, with features 
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from the InceptionV3 network, achieved 75.6% 

accuracy in train, 72.8% in evaluation, and 71.6% in 

test. When using the fMRI transformer network's 

features, the accuracy was 73.1% in train, 72.3% in 

evaluation, and 70.3% in test. The accuracy achieved 

in the classification task further supported the 

effectiveness of our approach.  

4. Conclusion 

In conclusion, our study presents a novel approach 

using a transformer neural network and deep learning 

techniques to decode visual images from fMRI data. 

The results demonstrate the potential of our 

generalized model in accurately reconstructing images 

based on brain activity, offering promising prospects 

for advancing brain decoding research and its practical 

applications. 
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Abstract 

Psychoradiology is one of the new areas in neuroscience that aims to help diagnose and treatment of patients with 

neurological diseases using neuroimaging techniques. Transcranial Magnetic Stimulation (TMS) is a promising 

treatment modality for psychiatric and neurological disorders. Functional Magnetic Resonance Imaging (fMRI) 

as one of the main neuroimaging techniques, is a suitable method to reflect the functional integrity of the brain. 

Changes in Functional brain Connectivity (FC) are expected to provide potential biomarkers for the classification 

or prediction of brain disorders. In this paper, with the aim of helping people with mental disorders, we propose 

a neuroimaging-based method, using resting state MRI imaging and graph-based functional connectivity analysis. 

This method can be used in the field of medical diagnosis and specialized brain stimulation treatment with TMS 

to provide accurate and reliable medical services for radiologists and neurologists. 

Keywords: Transcranial Magnetic Stimulation; Psychoradiology; Functional Connectivity; Graph Analysis. 
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1. Introduction  

Mental diseases such as Schizophrenia (SZ), 

Bipolar Disorder (BD), and Major Depression 

Disorder (MDD) are a group of brain disorders that 

affect the thinking and behavior of a patient and cause 

discomfort for him. The cause of mental diseases is 

still not well known, because mental illnesses, like 

many diseases, do not have one known cause. Mental 

diseases are considered in the normal range of brain 

functions. While psychiatric disorders are diagnosed 

based on clinical interview symptom scores, there is 

no existing gold standard that can be used for 

definitive validation. Psychoradiology is a 

neuroimaging technique to help diagnose and 

treatment of patients with neurological diseases. 

Functional brain neuroimaging techniques including 

functional Magnetic Resonance Imaging (fMRI) [1, 

2], Positron Emission Tomography (PET), and 

Electroencephalography (EEG) have become 

important tools in the investigation of brain diseases 

[3]. There is great hope that functional brain 

connectivity revealed using functional neuroimaging 

data can be useful to characterize abnormal brain 

function and, in turn, be useful for diagnosis and 

treatment [4]. Among various methods, fMRI enables 

non-invasive examination of brain function with high 

spatial resolution and is widely used to identify and 

characterize brain networks or connectivity among 

interconnected regions. Investigating differences in 

functional networks (or connectivity) between 

disorders such as SZ and BP may provide new insights 

into their disease mechanisms [5]. In addition, 

connectivity change criteria may be useful as 

biomarkers that can be used to classify individual 

patients using machine learning methods [4].  

Various methods have been proposed to measure 

Functional Connectivity (FC) among brain regions 

using fMRI data [6-8]. While different approaches 

have different assumptions and advantages. 

Transcranial Magnetic Stimulation (TMS) is a Non-

Invasive transcranial Brain Stimulation (NIBS) 

method that modulates neural activity by applying 

electromagnetic pulses to the scalp [9]. A unique 

strength of TMS is that it allows for in-vivo 

experimental investigation by depolarizing neurons to 

induce action potentials. TMS can be applied as 

single-pulse TMS (sTMS) or repetitive TMS (rTMS), 

and rTMS is more commonly used as a treatment for 

neurological and psychiatric patients [10]. In this 

paper, we applied functional connectivity analysis to 

evaluate the effect of TMS treatment in BD and MDD 

patients. We used resting state functional MRI and 

applied network and graph-based analysis techniques. 

2. Materials and Methods 

2.1. Dataset and Data Preprocessing 

This study included 20 mental disorder patients (10 

BD and 10 MDD). After the patient's admission and 

the relevant psychological tests, structural and resting 

state functional MRI images are performed. MRI data 

were collected using a 64-channel phased-array head 

coil on a 3-Tesla scanner (Siemens Prisma, Erlangen, 

Germany) with software version “Syngo MR E11” at 

the Iranian National Brain Mapping Laboratory 

(NMBL). Anatomic images were acquired using a 

standard protocol including transverse T1 weighted 

images with Slice thickness = 4mm, TR/TE=5000/34 

ms, 4 averages, matrix=128 × 128, 90-degree flip 

angle. The parameters for MPRAGE were the 

following: TR=1.9 s, TE=2.26 ms, FOV =250 mm, 

matrix =256 × 256, sagittal plane, slice thickness=1 

mm, 176 slices. The rsfMRI images were acquired 

using Echo-Planar Imaging (EPI) protocol and the 

imaging parameters: Slice thickness=4 mm, 42 slices, 

TR=1.2 s, TE=30 ms, flip angle=90°, matrix 64 × 64, 

FOV=192 mm, total time= 6 min and 36 sec. All 

patients were asked to relax keep their eyes closed and 

think nothing in particular during the rsfMRI scanning 

process.  

DPARSF 4.3 (http://rfmri.org/dpabi; [11]) was used 

for the preprocessing of the rsfMRI data. For each 

subject, the first 10 time points were discarded.  The 

remaining volumes were first corrected for the time 

difference between slices and then realigned to the 

middle volume for head-motion correction. Skull 

stripping was performed for a proper registration of 

functional images to T1-weighted images. Head 

movement was corrected using motion scrubbing. The 

resulting images were segmented into Grey Matter 

(GM), White Matter (WM), and Cerebrospinal Fluid 

(CSF), and then the mean BOLD signal was calculated 

from WM, CSF, and global signals (which is extracted 

from all voxels of the entire MRI volume) were 
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regressed on the rsfMRI data. Using the normalization 

parameters estimated by the T1 structural image, the 

realigned functional volumes (voxel size [3, 3, 3]) 

were spatially normalized to the Montreal 

Neurological Institute (MNI) space. Then using a 

Gaussian kernel (FWHM = 8 mm), the dataset was 

smoothed, linearly detrended, and temporally filtered 

(0.01– 0.08 Hz) to decrease the effect of low-

frequency drifts. Using the Automated Anatomical 

Labeling (AAL) atlas [12], the volumes were 

segmented into 90 anatomical regions of interest 

(ROIs) to extract the ROIs time series. The mean time 

series of all voxels within the ROIs were used for the 

connectivity analysis.  

2.2. Dataset Analysis 

We applied functional network and graph-based nodal 

analysis as the neuroimaging methods for patient evaluation. 

The results of the analysis were applied to localize TMS filed 

mapping and also follow-up patients after TMS treatment. 

We used the Yeo 7 functional network [13], as the one of 

main resting state functional atlases. These networks include; 

Default mode (DMN), Limbic (LIN), Visual (VIN), 

Frontoparietal (FPN), sensory-motor (SMN), Dorsal 

attention (DAN), and Ventral Attention (VAN). In each 

functional network the mean of within and between 

functional connectivity value, resulting from Pearson’s 

correlation method, is calculated for network analysis. 

Graph-based nodal degree analysis [14] is also used as the 

other method for evaluating nodal alteration in patients with 

cognitive disease. In the network, the nodal degree is 

considered a basic and important measure of centrality and 

shows how a node interacts structurally and functionally with 

other nodes in the network. Then for each patient, these 

extracted measures were statistically compared with healthy 

normal group sample t-test. Then, based on these results and 

the individual characteristics of each patient, such as the type 

of illness, the affected area of the brain and even the head 

shape, the proper brain stimulation protocol is suggested for 

TMS treatment. After treatment, the effectiveness of the 

proposed protocol is evaluated by these analysis. The block 

diagram of proposed protocol was shown in Figure1. 

3. Results 

The results of brain network analysis, as well as 

nodal graph analysis, are shown in Figure 2 for MDD 

and BD patients. As seen in Figure 2a, before applying 

TMS in both cases, there is a lot of abnormal hypo 

connectivity between and within the brain functional 

networks. Figure 2b shows an effective reduction of 

abnormal connectivity after the TMS treatment 

process. These abnormalities are mostly limited to the 

limbic network in MDD patients and the DMN 

network in PD patients.  Graph analysis also shows 

several abnormal decreases or increases in nodal 

degree before applying TMS that these abnormal 

nodes reduced after TMS treatment. 

Figure 3 shows the head model and TMS field 

distribution method and Figure 4 shows for example 

how to distribute the field when the coil is on the right 

and left DLPFC area.  

4. Conclusion 

In this study, functional connectivity analysis is 

applied to investigate the effective features of 

cognitive networks of the brain in mental illness. 

Using proposed methods, it is possible to find changes 

in the functional and cognitive networks of the brain 

that have been disrupted by disease, which in some 

cases is difficult or impossible for expert neurologists. 

The proposed methods also make it possible to more 

accurately evaluate brain function in patients with 

mental illness and to evaluate the effectiveness of 

TMS treatment. 

 

 

Figure 1. Block diagram of TMS treatment with neuroimaging analysis 
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Figure 2. Result of functional network and nodal graph analysis. A: Before TMS treatment, B: After TMS 

treatment 

 
 

Figure 3. Head model and TMS field distribution method 

b a 

  
Figure 4. How to distribute the field when the coil is on the right (A) and left (B) DLPFC area 
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Abstract 

Aphantasia is a condition that inhibits the ability to create mental images. In recent years, researchers have 

discovered a potential correlation between aphantasia and other mental health conditions, such as autism. 

However, due to the intricacy of the cognitive task, there is a debate among scientists about the specific regions 

of the brain that are causally involved in our ability to create mental images. The objective of this study is to 

present a groundbreaking deep learning framework for spatio-temporal analysis of block-designed fMRI signals. 

This framework, which we have named the classification and explanation deep learning framework for fMRI 

Signals (CEDLF-fMRI), has been designed to meet the complex needs of fMRI signal analysis. Our testing has 

demonstrated that CEDLF-fMRI outperforms traditional methods in classifying fMRI signals from complex 

experimental conditions. Furthermore, our framework generates a 3D image that provides an in-depth explanation 

of its decision-making process. Utilizing the generic object decoding dataset, the proposed CEDLF-fMRI 

demonstrated exceptional performance by classifying previously unseen samples at an impressive rate of 99% for 

two distinct categories: perception and imagery. Additionally, CEDLF-fMRI suggests that Right Lingual Gyrus 

(RLG) plays a key role in its ability to tell whether a signal belongs to imagery class or not. 

Keywords: Aphantasia; Spatio-Temporal Analysis; functional Magnetic Resonance Imaging, Classification; 

Explanation; Deep Learning. 
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1. Introduction  

Visual mental imagery refers to the ability of an 

individual to generate mental images in the absence of 

external stimuli. The assessment of visual imagery 

includes two critical factors: vividness and 

controllability. Researches have revealed that 

variations in these factors among individuals are 

associated with several mental disorders, including 

autism, schizophrenia, psychosis, and mood disorder 

[1-3]. Therefore, it is essential to understand the neural 

mechanisms underlying visual imagery to gain 

insights into the potential therapeutic interventions for 

these disorders. However, visual mental imagery tasks 

pose a challenge in cognitive neuroscience due to their 

complex nature. The inability of subjects to perform 

the task at an exact time point makes it difficult to 

monitor the process using modalities with low 

temporal resolutions, like fMRI. Moreover, the 

variable strength of visual imagery across individuals 

can result in a weak signal-to-noise ratio in modalities 

with higher temporal resolution, rendering traditional 

analysis methods ineffective. 

Despite the aforementioned complexities, 

researchers have utilized diverse approaches to 

comprehend the cerebral basis of visual mental 

imagery. Thorudottir et al. conducted a study in which 

they compared four individuals who had suffered from 

bilateral Posterior Cerebral Artery (PCA) stroke. 

Surprisingly, only one of the patients had lost his 

ability for visual imagery. The researchers suggested 

that the patient's aphantasia was due to lesions in 

selective areas, specifically a small patch in the left 

fusiform gyrus and a part of the right lingual gyrus [4]. 

In a separate study, Spagna et al. conducted a large-

scale meta-analysis of 46 fMRI studies, of which 27 

investigated specifically visual mental imagery. They 

found that visual mental imagery engages fronto-

parietal networks and a well-delimited region in the 

left fusiform gyrus [5]. 

In recent years, deep learning models have seen 

significant advancements in extracting spatial and 

temporal features from complex signals. Additionally, 

explainable artificial intelligence techniques have 

made it possible to understand the rational behind a 

model's decision-making process. The purpose of this 

study is to leverage these technologies to gain a better 

understanding of the cerebral basis of visual mental 

imagery. 

2. Materials and Methods 

To gain insight into the cerebral basis of visual 

imagery, a comparison with visual perception is a 

helpful approach. As both processes share 

representations in multiple brain regions, the absence 

of deficits in perception among individuals with 

aphantasia suggests that certain brain regions may 

play a causal role in visual imagery without affecting 

perception. Therefore, we have used preprocessed 

block-designed fMRI data for three subjects from 

generic object decoding dataset [6] for analysis 

purposes. The dataset is composed of three different 

types of sessions: training perception, test perception, 

and test imagery. Each session is comprised of 

multiple runs, with each run containing multiple 

events. To compare visual perception and imagery, we 

combined images from the test perception and test 

imagery sessions. Subsequently, we filtered the events 

so that there were only two types in each image: 

stimulus and imagery. The scan per event was 3 and 5 

for stimulus and imagery, respectively. We partitioned 

imagery events into three samples of three scans each 

with a stride of 1 for input dimension compatibility. 

The 3D fMRI volume was horizontally partitioned 

into ten batches, each containing five slices, to 

facilitate spatial feature extraction. 

The CEDLF-fMRI model can be categorized into 

two primary components, namely classification and 

explanation. The first component involves three 

distinct stages, which are comprised of 3D 

Convolutional Neural Networks (CNN) for spatial 

feature extraction, bidirectional long-short term 

memory (Bi-LSTM) layers for temporal feature 

extraction, and Deep Neural Networks (DNN) for 

classification. Figure 1 illustrates the architecture of 

the classifier in detail. The second component of our 

approach consists of two stages aimed at providing an 

explanation for the classifier's decision. The first stage 

involves the removal of information contained within 

an Occluded Cube (OC) for all test samples. This is 

achieved by averaging voxel values inside the OC 

across time and samples. In the second stage, we 

assess the impact of the OC on the classifier's decision 

by computing the loss of the classifier with and 
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without this new OC included in the test set. This 

comparison allows us to infer the importance of the 

OC in shaping the classifier's output. The process of 

generating an explanation for the model's decision is 

illustrated in Figure 2. 

 

 

3. Results 

In our evaluation of CEDLF-fMRI, we assessed its 

performance on previously unseen data from all five subjects. 

The classification accuracy varied among subjects across 

different axial batches. Notably, subject number 3 achieved 

the most accurate results, with an average accuracy of 99.9% 

across all axial batches. Additionally, the best axial batch 

across all subjects was identified as z = (-45, -30) (Field Of 

View (FOV), 192×192 mm2; voxel size, 3×3×3 mm3; slice 

gap, 0 mm; number of slices, 50). CEDLF-fMRI produces 

two statistical maps for imagery and stimulus classes. 

Regions with high z-scores for imagery indicate that 

removing information from that region resulted in the model 

misclassifying an imagery sample. Conversely, regions with 

low z-scores for imagery indicate that removing information 

from that region improved the model's ability to classify the 

sample as imagery. Figure 3 shows an ortho view of z-score 

map for imagery class of subject 4. 

 

   

  

Figure 1. An illustration of the architecture of the classifier model 

 

 

Figure 2. The process of generating an explanation 
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According to our analysis, several brain regions - 

such as the Right Fusiform Gyrus (RFG), Right 

Lingual Gyrus (RLG), superior parietal lobule (SPL), 

Ventral Pallidum (VP), Pre Central Gyrus (PreCG), 

Flocculonodular Lobe (FL), and Intra Parietal Lobe 

(IPL) - provide valuable information for the model's 

capability to detect imagery samples in the test set. 

Additionally, the findings demonstrate that the 

removal of information in the thalamus and posterior 

lobe of the cerebellum results in a loss of the model's 

ability to detect stimuli in the test set (Figure 4). 

4. Conclusion 

Identifying brain regions that are crucial in visual 

mental imagery holds immense significance, as these 

regions can act as potential indicators for various 

mental disorders. The primary aim of this study was to 

explore these significant regions by implementing 

cutting-edge technologies to address the intricacies of 

the cognitive task. 

Based on the findings of this study, it can be 

concluded that there is consistency with prior research 

on visual mental imagery, indicating that several brain 

regions, including right lingual gyrus, and fusiform 

gyrus play a critical role in this process. Moreover, the 

CEDLF-fMRI findings suggest that there are 

additional regions whose involvement in visual mental 

imagery was previously unknown. 
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Figure 3. z-score map for subject 4 

 

 

Figure 4. Brain regions that contribute the most to 

model’s imagery identification ability 
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Abstract 

This research aimed to evaluate the effect of audio in the performance of an audiovisual advertisement stimulus, 

using eye tracking technology and self-report measures.  

31 participants (average age=24.2, SD=5.3) who were recruited for the experiment, watched the video ad without 

audio, and 30 other participants (average age=25.2, SD=8.8) watched the ad with the original audio. The eye 

movements of participants were recorded while they were watching the advertisement using a 30Hz Tobii eye 

tracker and Tobii Pro Studio software and were analyzed offline. Participants’ self-report measures of 

effectiveness, affectiveness, perceptibility, and attractiveness were collected using 5-point Likert scales.  

Performing appropriate statistical tests, this study revealed a significant difference of attention in two investigated 

conditions. Significant results yielded for fixation count and visit duration of messages, visit duration of products, 

and total fixation duration of whole video ad. Yet no significant differences were found for self-report measures.   

Neuromarketing methods like eye-tracking may provide useful information on the performance of video 

advertisement, which can be used for advertising effectiveness evaluation along with self-report techniques for 

more in-depth analysis. 

Keywords: Neuromarketing; Aye-Tracking; Advertising; Marketing; Visual Attention; Audio-Visual 

Stimulation. 
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1. Introduction  

Nowadays, with the development of cable networks 

and social media and ease of sharing videos online, 

people are exposed to more and more video 

advertisements [1]. Given the cost of creating video 

ads and publishing or broadcasting them in this jungle 

of advertisements, winning viewers’ attention and 

effectively communicating marketing messages to 

customers has become a tougher marketing practice. 

Therefore, considering these difficulties, evaluating 

marketing stimuli before airing them seems to be a 

more vital move that companies should make. 

Video ads are one of the most effective 

advertisement means, and have recently been the 

subject of more academic studies [2- 4]. However, an 

important part of video ads, which is audio, has yet to 

be studied more precisely. In this study, 

neuromarketing methods, which are among the most 

accurate and dependable methods for analyzing 

marketing stimuli, were used to evaluate the effect of 

audio on advertising effectiveness, along with 

traditionally used questionnaires. 

Various electrophysiological devices and methods 

have been used in marketing and video advertisement 

studies, including FMRI, EEG, GSR, HRV, and eye-

tracking [5]. Eye-tracking, which directly measures 

overt visual attention, has gained special attention 

among other methodologies for evaluating video 

advertisements [6]. Several researchers had used eye-

tracking methods to study print ads by 1990 [7]. 

However, Aoki and Kenji of Tokyo Institute of 

Technology were the first academics to use eye-

tracking methodology to scientifically evaluate video 

advertisements [8]. They proposed an analysis method 

for the cognitive attitude of a commercial film viewer. 

Two years later, Ale Smidts coined the term 

"neuromarketing" [9]. 

Earlier studies used recognition and recall tests to 

evaluate advertising methods, including video 

advertising [10]. After Aoki's work, more studies on 

video advertising were conducted using eye-tracking 

research. For instance, Siefert et al. compared viewers' 

attention to advertisements under fast forward and 

normal playing speed conditions in 2008 [11]. Later 

Feng, Cheung, Le Callet, and Ji used eye-tracking 

methods to reduce the need for conducting eye-

tracking experiments for evaluating video ad elements' 

saliency analysis in 2012 [12]. Despite these attempts 

to reduce the need for actually using eye-tracking 

technique in experiments, due to cultural and 

individual level variations eye tracking experiments 

have continued to grow in the field of video 

advertising effectiveness studies.  

One of the key components of video advertising is 

audio, which plays a crucial role in conveying the 

message and capturing the attention of the audience 

[13]. A considerable body of literature has examined 

the impact of audio on various aspects of video 

advertising, such as attention, recall, and persuasion. 

Some studies have suggested that the addition of audio 

to video advertisements can enhance attention and 

recall, as it provides additional sensory cues that help 

to capture and retain the audience's attention [14]. 

Other studies have highlighted the potential for audio 

to increase persuasion in video advertising, as it can 

create emotional connections with the audience and 

enhance the message's impact [15]. However, the role 

of audio in video advertising is not always 

straightforward, and there are also studies that have 

suggested that audio can have negative effects on 

video advertising effectiveness. For instance, some 

research has highlighted that the use of background 

music in video advertising can distract the audience 

and reduce recall and comprehension of the message 

[16].  

The aim of this study is to investigate the effect of 

audio on the performance of an audiovisual 

advertisement stimulus, using both eye tracking 

technology and self-report measures of effectiveness, 

affectiveness, perceptibility, and attractiveness. The 

study is designed to evaluate whether the presence or 

absence of audio in video advertising affects attention 

and other eye tracking measures, as well as subjective 

measures of advertising effectiveness. By using both 

objective and subjective measures, the study aims to 

provide a comprehensive understanding of the role of 

audio in enhancing or detracting from advertising 

performance. 
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2. Materials and Methods 

2.1. Participants 

Sixty-eight participants, most of whom were 

university students, were recruited for this research. 

Seven participants were excluded during the recording 

or analysis phase due to incomplete tests or 

insufficient recorded data. The study employed a non-

probability random sampling method. 

For the first phase of the experiments, 36 healthy 

Iranian participants were recruited, with four 

participants excluded from the study due to invalid 

data. Of the 31 remaining participants, 16 were female 

and 15 were male, with an average age of 24.2 

(SD=5.3). The second group of subjects recruited for 

the second phase of the experiments consisted of 33 

subjects, with three excluded due to incomplete tasks 

or invalid data. Fifteen of the participants in the second 

group were female, and the other half were male, with 

an average age of 25.2 (SD=8.8). All participants had 

normal or corrected-to-normal eyesight. 

2.2. Material 

The video ad selected for presentation in the 

experiments was a product-oriented ad for a well-

known Iranian frying oil company. The original ad 

featured background guitar music and a narrative 

reading the ad messages, which were displayed as text 

on the video. The stimulus presented to the first group 

of participants was identical to the original ad, but 

without audio. The second stimulus presented to the 

second group of participants was the original video ad. 

The stimulus had a length of 37 seconds, with a frame 

size of 1280x720 and a frame rate of 25 frames per 

second. 

Following the video presentation, four 

questionnaires were sequentially presented on the 

computer monitor, asking participants to rate the 

attractiveness, effectiveness, affectiveness, and 

perceptibility of the advertisement they viewed. 

2.3. Design 

This research employed a two-sample between-

subjects design, with both groups of participants 

presented with the same stimulus, except for its audio. 

The independent variable in this study was the audio 

of the video ad, while the dependent variables were the 

eye-tracking metrics and the self-reported attitudes of 

the participants towards the advertisement they 

viewed. The study was designed to enable a 

comparison of the eye-tracking and self-report 

measures between the two groups, as well as an 

investigation of the association between the eye-

tracking metrics and self-report attitude towards the ad 

measure. The design of the stimulus presentation was 

recorded using Tobii Pro Studio software, as shown in 

Figure 1. 

The questionnaires used in this research were 

designed in a five-point Likert scale format, resulting 

in the self-report data being of ordinal type. In 

contrast, the eye-tracking metrics were of scale type. 

 

Figure 1. stimuli timeline of design and record tab in Tobii Pro Studio 
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2.4. Procedure 

The procedure began by seating participants in a 

comfortable chair in a moderately lit room. After 

receiving an explanation of the experiment's safety 

and providing informed consent, the main experiment 

procedure commenced. Prior to stimulus presentation, 

participants performed a five-point calibration of the 

eye-tracking system. Participants were instructed to 

attentively watch the content displayed on the PC 

monitor and answer questions when prompted . 

The first group of participants had their eye 

movements recorded while watching the video ad with 

its audio removed, followed by completing a 

questionnaire designed to obtain their self-reported 

attitude towards the ad. The second group of 

participants watched the original video ad while their 

eye movements were recorded. 

2.5. Analysis 

A total of 24 areas of interest (AOIs) were defined 

for each video, with seven AOIs corresponding to the 

products displayed in the ad, eight AOIs 

corresponding to the messages presented in the 

advertisement, eight AOIs corresponding to the faces 

of actors and actresses featured in the video, and one 

AOI defined for the entire area of the video displayed 

from start to finish. An example of the AOIs defined 

in the video is shown in Figure 2. 

 

AOIs related to each of these four element 

categories were grouped together for further analysis. 

Eye-tracking metrics for each AOI group were 

calculated using Tobii I-VT Filter (Olsen, 2012), 

including Fixation Duration (FD), Total Fixation 

Duration (TFD), Fixation Count (FC), Visit Duration 

(VD), Total Visit Duration (TVD), and Visit Count 

(VC). These metrics were calculated for each AOI and 

AOI group and imported into the IBM SPSS software 

package (Nie, Bent, & Hull, 1975) for statistical 

analysis. Self-report measures of effectiveness, 

attractiveness, perceptibility, and affectiveness were 

also imported into SPSS for analysis. 

3. Results 

Statistical analysis proves some eye tracking 

metrics different for two conditions, yet self-report 

measures were not different for two conditions.  The 

descriptive statistics for all eye-tracking variables are 

presented in Figure 3. 

Since most of the data were not normally 

distributed, we used non-parametric Mann-Whitney 

test to compare means of eye tracking metrics for two 

conditions, with and without audio. Results of this test 

indicated that Fixation Count on messages for the 

condition without audio was significantly greater 

(U=313, p=0.028), Visit Count on products was 

significantly greater for the condition with audio 

(U=331, p=0.048), Visit Duration on messages was 

greater for the condition without audio (U=313, 

p=0.028), Total Fixation Duration on the whole 

duration of video ad was significantly greater for the 

condition without audio (U=2.000, p=0.000). Eye 

tracking metrics on faces were not significantly 

different for the two conditions.  

Kolmogorov-Smirnov test was used to compare 

means of self-report measures for two conditions. No 

statistically significant difference was yielded for 

affectiveness (Z=0.803, p=0.541), perceptibility 

(Z=0.802, p=0.541), effectiveness (Z=0.395, 

p=0.998), and attractiveness (Z=0.273, p=1.000).  

The Squared Eta correlation was calculated in order 

to measure the strength of the relationship between 

self-report metrics and eye tracking metrics. See Table 

1 for the results of the tests. 

 

Figure 2. A demonstrates how face AOIs were selected 

and B shows product and text AOIs 
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4. Conclusion 

This study shows that the self-report measures of 

higher-order metrics about video advertisement are 

not statistically different between the conditions with 

and without audio. However, the audio, including 

narrative and background music, affects the visual 

attention of viewers on different ad elements, 

including text messages and products presented in the 

ad. Additionally, the results of this research suggest 

that Total Fixation Duration and Total Visit Duration 

metrics can potentially be used to predict the attitude 

of viewers towards the advertisement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Descriptive statistics of eye-tracking metrics 
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Table 1. Squared correlation coefficient 

whole video ad area faces 

effectiveness affectiveness effectiveness affectiveness 

metrics η2 metrics η2 metrics η2 metrics η2 

FD 0.278784 FD 0.287296 FD 0.5329 FD 0.49 

TFD 0.917764 TFD 0.913936 TFD 0.893025 TFD 0.927369 

FC 0.6241 FC 0.599076 FC 0.183184 FC 0.192721 

VC 0.120409 VC 0.088209 VC 0.171396 VC 0.108241 

VD 0.627264 VD 0.717409 VD 0.765625 VD 0.715716 

TVD 0.627264 TVD 0.717409 TVD 1 TVD 0.962361 

attractiveness perceptibility attractiveness perceptibility 

metrics η2 metrics η2 metrics η2 metrics η2 

FD 0.379456 FD 0.439569 FD 0.492804 FD 0.4096 

TFD 0.956484 TFD 0.919681 TFD 0.929296 TFD 0.813604 

FC 0.651249 FC 0.755161 FC 0.126025 FC 0.284089 

VC 0.047524 VC 0.125316 VC 0.142129 VC 0.123904 

VD 0.724201 VD 0.767376 VD 0.6889 VD 0.7056 
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messages products 

effectiveness affectiveness effectiveness affectiveness 

metrics η2 metrics η2 metrics η2 metrics η2 

FD 0.407044 FD 0.358801 FD 0.4489 FD 0.443556 
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FC 0.136161 FC 0.177241 FC 0.190096 FC 0.076176 
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VD 0.5329 VD 0.613089 VD 0.850084 VD 0.817216 

TVD 0.937024 TVD 0.933156 TVD 0.8464 TVD 0.915849 

attractiveness perceptibility attractiveness perceptibility 

Metrics η2 metrics η2 metrics η2 metrics η2 

FD 0.3969 FD 0.2809 FD 0.389376 FD 0.284089 

TFD 0.978121 TFD 0.966289 TFD 0.839056 TFD 0.898704 

FC 0.273529 FC 0.278784 FC 0.105625 FC 0.058081 

VC 0.101124 VC 0.173889 VC 0.100489 VC 0.139129 

VD 0.497025 VD 0.568516 VD 0.646416 VD 0.622521 

TVD 0.9025 TVD 0.915849 TVD 0.9025 TVD 0.904401 
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Abstract 

Bilingualism is a skill that I can bring from childhood to adulthood. Few studies have been done on the brain 

structure of these people so far. In this article, with 56 resting state fMRI dataset including 28 subjects were native 

speakers of Mandarin Chinese living in the United States and the second 28 subjects were native speakers of 

Mandarin Chinese who lived in China, brain volume clusters were found for these people with p-FDR < 0.005 

using the conn software. Each cluster compared to a known distribution of expected cluster sizes under the null 

hypothesis. at the end we got 8 cluster in compression group bilingual> control group. 

Keywords: Resting State functional Magnetic Resonance Imaging; Bilingual; Cluster; Volume Base. 
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1. Introduction  

Second language skills can be acquired from 

infancy to adulthood, so bilingualism is a useful model 

for examining neural brain changes that occur during 

a person's development [1]. According to 

neuroimaging research, it shows that bilingualism 

affects not only the shape and volume of the gray 

matter of the brain but also the white matter of the 

brain, indicating, for example, talented bilinguals 

display higher axonal density or myelination in white 

matter tracts that connect regions which can be critical 

for bilingual language processing, inclusive of the 

bilateral inferior frontal gyrus, the left advanced 

temporal gyrus, and the caudate nucleus [2-4].  

One useful tool for investigating the brain's intrinsic 

functional networks by identifying similar patterns of 

shared functional activity between separate brain 

regions when the brain is not processing external 

stimuli is resting-state functional connectivity MRI. 

Among specific brain intrinsic functional networks, 

three networks are identified to be involved in 

cognitive control, of which language control is one 

factor. The frontoparietal network which incorporates 

the anterior prefrontal, the dorsolateral prefrontal, the 

dorsomedial superior frontal/anterior cingulate, the 

inferior parietal lobule, and the anterior insular cortex 

is this type of network [5]. 

2. Materials and Methods 

The dataset contains the bilingual adult subset (in 

these case subjects are 19-38 years old) of the Reading 

Brain Project (RBP) data [6], 56 participants who 28 

subjects were native speakers of Mandarin Chinese 

living in the United States (group a) and the second 28 

subjects were native speakers of Mandarin Chinese 

who lived in China (group b). Resting state fMRI 

scanning was conducted using a 3T MRI scanner. 

After standard pre-processing according to pre-

processing pipeline suggested by CONN for volume-

based analysis, including realigned and unwrapped 

and correction and slice-time corrected and Artifact 

reduction tools usage and co-registration [7, 8] and 

therefore MNI segmentation and normalization using 

the SPM 12 [9]. 

In method, we survey the probability of clusters. 

This survey is done on each voxel and it must go above 

a threshold of this activity, and the connection of all 

voxels to form a cluster is done by checking the False 

Discovery Rate (FDR) of topological features. The 

search in the null hypothesis space for Finding the 

cluster by considering the threshold is called Gaussian 

processes. Suppose for the clustering of excursions for 

the set u and i are clusters and we have i=1,..,c 

(Equation 1): 

𝑃(𝐶≥𝑘𝑖,𝑢 ≥ 1) (1) 

 

Figure 1. 8 clusters- cluster inferences in null hypothesis group a greater group b. In this form, the clusters may be in 

different areas or at a distance from each other, for example, “cluster c” contains several areas with different centers 
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This is the probability of cluster formation u, and 

the number of clusters in the set u has a volume equal 

to or greater than the cluster threshold value k that has 

a size equal to or greater than the clusters observed in 

c, and this must be greater than 1. 

3. Results 

As the result we got 8 cluster including a-h in Figure 

1. Every size and location of them explained in Table 

1. Condition of results is based on Cluster threshold: 

p<0.05 cluster size p-FDR corrected and voxel 

threshold: p<0.001 p-uncorrelated. 

4. Conclusion 

As in Li's article [5], the following regions are 

distinguished in terms of structure in people who have 

a second language in the reading task (Figure 2), in the 

findings of this research, comparing group a > group 

b, the following regions are present in the clustering. 

In fact, the effect of group a, which is bilingual people, 

on the brain regions seen in Figure 1 is shown. Here, 

active volumes were found using FDR and 

determining the desired threshold for activity. It was 

assumed that the activity of group 1 is more than group 

2. It means that people who are bilingual are more 

active in these voxels and put in a one cluster. You can 

see multiple regions with their center are reported in 

Table. Like cluster d has two center of voxels (+32, -

80, -46) and (-46, +22,0) (Table 1). 
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Figure 2.  Key brain structures that support reading 

comprehension (based mostly on narrative text reading) 

 

Table 1. Cluster position and size and size p-FDR and size p-uncorrelated and peak p-uncorrelated 
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Abstract 

Magnetoencephalography is a brain imaging method with high temporal-spatial resolution, whose data quality is 

reduced due to the failure of sensors. This study aimed to reconstruct the low-quality data of 

magnetoencephalography signals using surface reconstruction methods, partial differential equations algorithms, 

and finite element-based methods. To evaluate the performance of each method, R-square, root mean square error, 

and signal-to-noise ratio were calculated. The relation between these criteria was checked through proper 

statistical tests with a significance level of 0.05. The median method with mean and variance of R-square equal 

to 0.87±0.03 was better than the other methods. 

Keywords: Data Inpainting; Data Quality Enhancement; Magnetoencephalography; Signal Reconstruction. 
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1. Introduction  

Electrophysiological activities in the human brain 

generate a weak magnetic field called 

Magnetoencephalography (MEG) in the spatial range 

of each active neuron. Combining the distribution of 

magnetic fields recorded by SQUID sensors with brain 

anatomy images can prepare a reliable functional map 

of active brain neurons. Magnetoencephalography has 

a better temporal-spatial resolution (1mm-1ms) 

compared to other imaging methods. Valuable 

information is lost and signal analysis is distorted by 

the low amplitude of a MEG signal compared to 

artifacts due to body, environment, or SQUID sensors. 

High-quality MEG signals are used to reconstruct 

neural sources and reveal interactions between 

different brain regions. So far, standard methods have 

been proposed for the inverse reconstruction of neural 

sources. Although the performance of each method 

has been acceptable in some cases, they have not had 

an acceptable response in the presence of combined 

noises [1, 2]. Considering that the number of active 

neurons is much more than the number of sensors; 

therefore, it is a serious problem to determine how to 

combine sources, spatial distribution, orientation, and 

periods when neurons are active. What is common in 

all of the studies, related to the reconstruction of neural 

sources, is the complete removal of noisy or low-

quality channel data in the signal pre-processing stage 

[3, 4]. 

The studies have not considered the recovery and 

reconstruction of the lost signal of some MEG signal 

channels. Therefore, the recovery of this information 

is particularly important because noise reduction 

methods cannot reconstruct the signal of these 

channels. The importance of this research is lost in 

reducing the amount of information. Reconstruction of 

damaged or lost data can play an important role in a 

better understanding of brain interactions and 

disorders. 

2. Materials and Methods 

In this study, the magnetoencephalography signals 

of eleven healthy children with no history of brain 

disease registered at the Barcelona Children's Hospital 

were used and made available through a joint project 

in progress with us. 4D-Neuroimaging recording 

device with 148 channels and a sampling frequency 

was 678.17 Hz. The duration of recording the signal 

was 10 minutes continuously and without interruption. 

Also, the position and orientation of each signal 

recording sensor were measured relative to the head 

center of the subject. 

Since there was no gold standard for the data, to 

determine whether the data was intact or damaged, 

after dividing the signal of each channel into epochs 

of 500 milliseconds, they were visually examined by 

the researcher. After identifying intact epochs, some 

were randomly considered damaged epochs to be 

interpolated with the data from adjacent channels by 6 

reconstruction methods. Image inpainting algorithms 

based on surface reconstruction, Partial Differential 

Equation (PDE), and interpolation algorithms based 

on Finite Element Method (FEM) were used to 

reconstruct the selected epochs by the signal of 

adjacent channels. 

In two surface reconstruction methods, the mean 

and/or median of the 13 nearest neighbors were taken 

to reconstruct each selected epoch. In another method, 

after mapping the sensors from 3 dimensions to 2 

dimensions, the modified Poisson equation was used 

as a PDE method with the help of 8 nearest neighbors’ 

information of each sensor. In the FEM algorithm, 

four-node quadrilateral elements were used 

considering the 4 nearest neighbors.  

After reconstructing the selected epochs, the 

performance of each reconstruction method was 

calculated by comparing the reconstructed signal with 

the original signal. To this, the R-square, Root Mean 

Square Error (RMSE), signal-to-noise ratio, Average 

Nearest Neighbor (ANN), Local Image Contrast 

(LIC), and the Percentage of the Outlier Border (POB) 

were calculated. The relation between the R-square, 

the RMSE, and the signal-to-noise ratio with the ANN, 

the LIC, and the POB with proper statistical tests and 

a significance level of 0.05 for each method were 

analyzed. 

3. Results 

After measuring the correlation coefficient and the 

level of significance of the relationship between the 

criteria of R-square and signal-to-noise ratio with the 

ANN and the POB using the bivariate Pearson 
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correlation statistical test, the P-value and the level of 

correlation for all selected epochs in all methods were 

more than 0.05 and less than 0.30, respectively. Then, 

to check the relationship between the R-square and the 

signal-to-noise ratio, and the LIC, using the bivariate 

Pearson correlation statistical test, the P-value and the 

correlation level for all the selected epochs in all 

methods were obtained less than 0.05 and more than 

0.30, respectively. 

The ratio of reconstructed epochs with an R-square 

greater than 0.70 to all of the reconstructed epochs, the 

average required time of an epoch reconstruction, and 

the average RMSE of the reconstructed epochs for 

each method are reported in Table 1. 

4. Conclusion 

For the modified Poisson equation, not only was the 

R-square ratio of the reconstructed epochs less than 

other methods (equal to 52.80%), but it also required 

a longer time (665.9 microseconds) to reconstruct an 

epoch. Among the other three methods, the mean and 

the median methods had the highest percentage of 

reconstructed epochs with an R-square greater than 

0.70, equal to 97.09% and 99.33%, respectively. The 

average required time for mean and median methods 

was about 3.5 and 5.9 microseconds, respectively. 

Finally, the median method with the least average 

RMSE equal to 0.016±0.009 has recorded the best 

performance. The importance and innovation of this 

study is the damaged data reconstruction can be 

effective in reducing the elimination of data, and 

subsequently in increasing the results quality of neural 

sources inverse reconstruction. 

 

 

Acknowledgments 

We are very grateful for the cooperation of 

Professor Michael Angel Menanas (Polytechnic 

University of Catalonia-Spain) who provided pediatric 

magnetoencephalography signals and the University 

of Isfahan for financial support of this study. 

References 

1- Alain de Cheveigné and Dorothée Arzounian, "Robust 

detrending, rereferencing, outlier detection, and 

inpainting for multichannel data." NeuroImage, Vol. 

172pp. 903-12 ,(2018) . 

2- Masashi Sato, Okito Yamashita, Masa-aki Sato, and 

Yoichi Miyawaki, "Information spreading by a 

combination of MEG source estimation and multivariate 

pattern classification." PLOS ONE, Vol. 13 (No. 6), p. 

e0198806 ,(2018) . 

3- Makoto Fukushima, Okito Yamashita, Thomas R. 

Knösche, and Masa-aki Sato, "MEG source 

reconstruction based on identification of directed source 

interactions on whole-brain anatomical networks." 

NeuroImage, Vol. 105pp. 408-27, (2015) . 

4- Alain de Cheveigné, "Sparse time artifact removal." 

Journal of Neuroscience Methods, Vol. 262pp. 14-20  ,

(2016) . 

 

Table 1. The statistics of different reconstruction methods 

Epoch 

reconstruction 

average time 

(𝝁s) 

RMSE 

(Mean±𝐒𝐃) 

Percentage of 

reconstructed 

epochs with 

R-

square≥0.70 

Reconstruction 

method 

3.5 0.016±0.009 97.09 Mean 

5.9 0.016±0.009 99.33 Median 

665.9 0.021±0.005 52.80 
Modified 

Poisson 

2.9 0.236±0.813 59.29 FEM 
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Abstract 

Glioma is the most common type of intracranial tumor, and surgery followed by radiation therapy is the best 

treatment for high-grade glioma. Presurigical planning for glioma tumor resection and radiotherapy treatment 

require proper delineation of tumoral and peritumoral areas of brain. 
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1. Introduction  

Glioma is the most common type of intracranial 

tumor, and surgery followed by radiation therapy is 

the best treatment for high-grade glioma. Presurigical 

planning for glioma tumor resection and radiotherapy 

treatment require proper delineation of tumoral and 

peritumoral areas of brain Studies have shown that 

advanced functional imaging can be useful to 

Differentiation of Edematous, Tumoral and Normal 

Areas of Brain. One of these methods is diffusion MRI 

(DWI), which investigates the diffusion of water 

molecules and the obstacles in their diffusion path. 

With advances in imaging protocols and analysis of 

diffusion images, it is possible to obtain parameters 

that express microstructural changes in brain tissue [1-

3]. 

The objective of this study is to investigate the 

significance of various diffusion parameters, 

particularly the MK parameter, in differentiating 

between relapsed tumor regions, edematous regions, 

and normal regions (Figure 1). 

2. Materials and Methods 

13 patients with peritumoral edema underwent 3T 

multi-shell diffusion imaging with b-values of 1000 

and 2000 smm-2 in 30 gradient directions. We fitted 

DTI and DKI to data in manually drawn regions of 

interest which were sized and matched to the MRS 

voxel and used their derived parameters (FA, MD, 

MK, and ADC) to characterize edematous, tumoral 

and normal brain areas. Initially, the assumption of 

normality of the data was rejected by the Shapiro-Wilk 

test. Therefore, non-parametric tests were used for 

group comparisons. The Wilcoxon test was used to 

determine the significance of the parameters between 

the three groups of relapsed, edematous, and normal. 

To determine significance, which means having a 

smaller p-value than 0.05, the parameters of ADC, 

MD, and MK were significantly different between the 

three aforementioned groups. The Mann-Whitney test 

was used to determine significance between the two 

groups of relapsed and normal, as well as between 

relapsed and edematous. 

 

 

Figure 1. An example of ROI drawing of relapsed, edematous, and normal areas 
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3. Results 

the parameters of ADC and MD were significantly 

different between the two groups of relapsed and 

normal, with a p-value of 0.041 (p<0.05). 

Additionally, there was a significant difference in MK 

between the two groups of relapsed and normal, with 

a p-value of 0.02 (p<0.05). The results of this study 

are reported in Table 1. 

4. Conclusion 

The MK parameter has shown better potential than 

other diffusion parameters in distinguishing between 

relapsed and normal regions.  As glioblastoma is a 

highly invasive tumor that can spread from the 

primary tumor site, the masks drawn in the edematous 

regions may contain some tumor tissue in addition to 

edema. As a result, there may be no significant 

difference in the mean diffusion parameters between 

the edematous and relapsed regions, as well as 

between the edematous and normal regions. 

Therefore, none of the diffusion parameters under 

study may be able to differentiate between the 

edematous regions and other areas. 
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Table 1. Average studied diffusion parameters in three groups of relapsed, edematous, and normal regions 

 Region Count Mean S.D. Median p-value1 p-value2 
p-

alue3 p-value4 

ADC 

Recurrence 13 0.00164 0.00065 0.00150 

0.03 1.000 0.041 0.132 Edema 13 0.00155 0.00055 0.00157 

Normal 13 0.00122 0.00037 0.00121 

FA 

Recurrence 13 0.20 0.10 0.18 

0.093   Edema 13 0.22 0.13 0.19 

Normal 13 0.28 0.14 0.24  

MD 

Recurrence 13 0.00163 0.00065 0.00151 

0.03 1.000 0.041 0.132 Edema 13 0.00155 0.00054 0.00157 

Normal 13 0.00122 0.00036 0.00121 

MK 

Recurrence 13 0.51 0.15 0.50 

0.002 0.737 0.002 0.066 Edema 13 0.60 0.24 0.54 

Normal 13 0.76 0.21 0.73 

 p-value1: Wilcoxon Test, Comparison of three regions 

 p-value2: Adjusted Mann-Whitney Comparison between Recurrence And Edema Region 

 p-value3: Adjusted Mann-Whitney Comparison between Recurrence And Normal Region 

p-value4: Adjusted Mann-Whitney Comparison between Normal And Edema Region 
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Abstract 

The human brain consists of various parts, each with its own specific role in directing behaviors. Even simple 

tasks involve the coordinated activities of multiple brain regions. Cognitive activities, in general, rely on the 

ability to retain and adaptively manipulate information. This crucial capability is often attributed to Working 

Memory (WM). The current study aimed to gain a deeper insight into the neural mechanism of WM and 

understood how the neural activities were coordinated across brain regions. To achieve this objective, the 

invasively recorded electrophysiological activities from Medial Temporal (MT) cortex using high number of 

electrodes were analyzed. The human subjects did a verbal working memory task including three phases: 

encoding, maintenance and retrieval. Graphs of brain networks were generated using the Phase Locking Value 

(PLV), a functional connectivity metric, across six conventional frequency bands. In conclusion, a noteworthy 

observation was made regarding the reinforcement of a majority of brain connections during maintenance. Beta 

oscillations between the posterior and anterior hippocampus showed increased synchrony during maintenance of 

WM. This finding opens up the possibility of formulating a hypothesis regarding the flow of information between 

different brain regions during the maintenance state. 

Keywords: Brain Connectivity; Working Memory; Maintenance; Phase Locking Value; Intracranial 

Electroencephalography. 
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1. Introduction  

The disruption of brain oscillations and their 

synchrony is observed in various mental disorders, 

indicating their significance in normal brain function. 

These changes in neural synchrony not only contribute 

to understanding the underlying pathological 

mechanisms but also hold potential as a biological 

diagnostic method [1]. Early detection of these 

disruptions can aid in the development of effective 

treatments. Among the cognitive functions affected by 

these disorders, working memory stands out as a 

fundamental aspect. Disorders such as schizophrenia, 

bipolar disorder, autism disorder, attention deficit and 

hyperactivity disorder can be treated if we know about 

the neural mechanism of WM [2].  

The increased phase locking between spikes an 

alpha-beta rhythms during WM in sensory areas was 

reported [3]. Besides an increased synchronous 

activities between frontal areas and temporal cortex 

was another que of the role of brain oscillations during 

WM [4]. The recent studies showed that hippocampus 

was involved in coordination of WM induced brain 

activities. The maintenance of WM information was 

associated with heightened low-frequency activity in 

both the anterior and posterior hippocampus. 

Furthermore, they observed an increase in theta/alpha 

band phase synchronization (3 to 12 Hz) between the 

anterior and posterior subregions, indicating a 

correlation between WM and synchronized neural 

activity in these regions [1]. However, the exact 

mechanism of hippocampal formation remain elusive. 

In this study we want to address this issue using graph 

network methods based on signals simultaneously 

recorded from high number of electrodes. 

2. Materials and Methods 

The used database consists of iEEG signals of 

Medial Temporal cortex (MT) from 9 individuals with 

epilepsy (using in average 56 electrodes per subject). 

These individuals underwent implantation of depth 

electrodes in their MT lobe for therapeutic 

interventions. All participants had normal or 

corrected-to-normal vision and were right-handed. A 

verbal working memory task performed by these 

individuals involved the visual Sternberg test, which 

comprised four states: fixation, encoding, 

maintenance, and retrieval [5]. 

Among the methods used to estimate functional 

connections, the "phase locking value (PLV)" was the 

most commonly employed. The analysis of recorded 

signals from each pair of electrodes involved several 

steps: 

1- Preprocessing of iEEG signals to remove noise, 

artifacts, and extract signals in specific frames 

and frequency bands. 

2- Quantification of the connection between pairs 

of iEEG channels using PLV metric. By 

employing "Equation 1", the PLV metric can be 

calculated between signals X and Y, 

considering parameters such as the number of 

time points (N) and the relative phase (∆𝜑𝑟𝑒𝑙) 

between X and Y (Equation 1). 

𝑃𝐿𝑉(𝑋, 𝑌) = |
1

𝑁
∑𝑒𝑖∆𝜑𝑟𝑒𝑙(𝑡𝑛)
𝑁

𝑛=1

| (1) 

3- Determining appropriate thresholds to build a 

functional neural network. To determine 

significant PLV, a statistical comparison 

between PLVs and corresponded shuffled 

values was applied. This involved generating 

50 trial-shuffled values for each electrode pair 

in each frequency and each period of task. The 

distribution of these permuted PLV values were 

then compared to the actual PLV values using a 

significance level of 0.02. Subsequently, the 

insignificant connections were removed based 

on this analysis. 

4- To compare the state of maintenance and 

encoding periods, the values of PLV were 

normalized with respect to the fixation baseline 

state. The comparison was performed using a 

signrank statistical test at a significance level of 

0.01. 

3. Results 

To investigate the difference between the 

distributions of the PLV values at Encoding-

maintenance, we ran a statistical test after calculating 

the shuffle corrected PLV values for each stage of the 

working memory. As an example, Figure1a shows the 
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average PLV of all electrode pairs for the two areas 

Amygdala and Anterior Hippocampus Left in alpha 

(8-12 Hz) band, during the first session of the subject 

number 7. Star signs were used to identify the 

significantly different values. 

The maintenance of working memory at low 

frequencies (theta/alpha) involved the amygdala and 

both the anterior and posterior hippocampus, whereas 

higher frequencies (beta/gamma) show stronger 

connectivity between the posterior and anterior 

hippocampus, the cortical entorhinal junction, and the 

posterior hippocampus. 

4. Conclusion 

This article partially validates the previous study's 

findings on neural synchronization between the 

anterior and posterior hippocampus in the alpha/theta 

frequency band during information storage. 

Furthermore, the majority of frequency bands exhibit 

a closed-loop functional connection network, leading 

to the hypothesis that information circulates within the 

brain circuit while preserving its integrity. To confirm 

this hypothesis, a directed analysis of the network is 

required. 
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                                         a                                                                                        b 

Figure 1. (a) the average PLV of all electrode pairs for the two areas Amygdala and Anterior Hippocampus Left in 

alpha (8-12 Hz) band, during the first session of the subject number 7. (b) PLV Comparison of Encoding and 

Maintenance States: five Brain Regions, six Frequency Bands. Red: Increased PLV in Maintenance. Blue: Decreased 

PLV in Maintenance. Black: Varied observations; with some individuals showed increased PLV while others 

exhibited a decrease. Line thickness indicates connection strength 
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Abstract 

Brain networks differ in connectivity and function at different ages. In this research, we use functional Magnetic 

Resonance Imaging (fMRI) data to extract functional brain connectivity based on correlation. Our aim is to 

classifying brain networks based on their age in 3 classes using Graph Attention Network (GAT). Our results 

show that brain graphs are well classifiable in 3 distinct classes (3-5 years, 7-12 years, and adults) by GAT 

network with validation accuracy=72% and test accuracy=62.5%. 

Keywords: Functional Magnetic Resonance Imaging; Functional Brain Connectivity; Correlation; Graph 

Attention Network. 
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1. Introduction  

The main aim of this study is to classify brain 

graphs with GNN based on their age. GNNs are a 

general framework for defining deep neural networks 

on graph data. The main idea of GNNs is to generate 

representations (embedding vectors) of nodes that 

depend on the structure of the graph as well as on the 

features of nodes. GNNs contain three important parts: 

1) message passing 2) aggregation 3) update [1]. GAT 

network uses an attention mechanism to learn the 

importance of each neighbor for a given node. This 

allows the model to focus on the most relevant 

information, which can improve performance. GAT 

network is a GNN with special architecture 

constructed by several graph attention convolution 

layers based on attention. We expect GAT network 

can classify correctly brain graphs due to differences 

in the strength of region of interests (ROIs) 

connections at different ages [2]. 

Equation 1 represents a graph attention convolution 

layer where 𝑽𝑖
𝑘−1 and 𝑽𝑗

𝑘−1 represent the information 

(embedding vector) of 𝑖th node and the information of 

the adjacent nodes of 𝑖th node (𝒩(𝑖)), respectively. 

superscript 𝑘 is the index of network layer. In addition, 

𝛼𝑖,𝑖
𝑘−1 and 𝛼𝑖,𝑗

𝑘−1 are attention weights for node 𝑖th 

information and it adjacent nodes, respectively. ∑ 

operator is the aggregation part. The update part is 

summation of feature vectors of adjacent nodes and 

feature vectors of the main node. For the first layer, we 

use one-hot encoding vector for 𝑉𝑖
0 (all zero vector 

with only one 1 in 𝑖th element) and similarly for 

𝑉𝑗
0; 𝑗 ∈ 𝒩(𝑖). 

𝑽𝑖
𝑘 = 𝛼𝑖,𝑖

𝑘−1𝑽𝑖
𝑘−1 + ∑ 𝛼𝑖,𝑗

𝑘−1𝑽𝑗
𝑘−1

𝑗∈𝒩(𝑖)

 (1) 

Equation 2 calculates the attention coefficients 

using softmax function. In fact, 𝑒𝑖,𝑗 represents power 

of connection between nodes 𝑖 and 𝑗. Furthermore, it’s 

a scalar. Equation 3 calculates 𝑒𝑖,𝑗  used in “Equation 

2”. 𝑒𝑖,𝑗
𝑘−1 is the output of LeackyReLU activation 

function. ∥ is concatenation symbol. 𝑊𝑘−1 is the 

weights matrix of fully connected layer (trainable 

parameters). Vector 𝑎𝑘−1 is multiplied by 

concatenated vector to turn it to a scalar and it also 

contains trainable parameters.  

𝛼𝑖,𝑗
𝑘−1 =

exp(𝑒𝑖,𝑗
𝑘−1)

∑ exp(𝑒𝑖,𝑗
𝑘−1)𝑘∈𝒩(𝑖)∪{𝑖}

 (2) 

𝑒𝑖,𝑗
𝑘−1 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 ( (𝒂𝑘−1)𝑇(𝑊𝑘−1𝑽𝑖

𝑘−1

∥ 𝑊𝑘−1𝑽𝑗
𝑘−1)) 

(3) 

2. Materials and Methods 

The fMRI data that are analyzed in this study 

include 122 children aged 3 to 12 and 33 adults aged 

18 to 34 who watched passively a short movie while 

undergoing MRI scanner. We have used 25 ROIs to 

mask data similar to original study [3]; see Figure 1A. 

First, we calculated correlation matrix as graphs 

adjacency matrix and p-value of 25 BOLD signals (to 

hold only significant correlation coefficients less than 

0.0001) for all subject. Correlation matrix of one of 

subjects is shown in Figure 1B. Second, we used GNN 

to solve classification task that is briefly shown in 

Figure 1C. We divided the data into three classes. 

Since the classes were unbalanced, we used random 

under sampling method to balance the classes. We 

randomly chose 33 subjects (33 is the size of the 

smallest class) from each class. Then we divided new 

dataset into test and train sets (number of test set = 24, 

number of train set = 75). After that we divided the 

train set into train and validation sets using k-fold 

cross validation (k=5) method. Figure 1D. shows the 

architecture of proposed network. This architecture 

includes three residually-connected graph attention 

layers, three ReLU activation functions, three batch 

norm layers, one pooling layer, and one fully 

connected layer. We used cross entropy loss as the loss 

function and stochastic gradient descent with nesterov 

and momentum=0.9 as optimizer in 183 epochs. 

Inputs of the architecture are 25-dimentional one-hot 

encoding vectors, i.e., the vector of ith node is an all-

zero vector that only ith element is one (1st part of 

Figure 1D). The outputs of both primary layers are 64-

dimensional vectors. We concatenated these outputs to 

use the extracted features of these layers in the input 

of third layer (2nd part of Figure 1D). In fact, our 

problem was graph level so that we turned the boosted 

graphs (3rd part of Figure. 1D) to vectors to classify by 

global mean pool layer (4th part of Figure 1D) which 

averages each vector along its rows. Furthermore, 
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these obtained vectors (5th part of Figure 1D) are 

inputs of fully connected layer. This layer classifies its 

inputs into three classes (6th part of Figure 1E). 

3. Results 

Confusion matrix of k-fold cross validation for 

validation data is shown in Figure 2A. Accuracy of 

these sets (75 samples) is equal to 72% (F1 score for 

class 3-5 years, 7-12 years, and adults are equal to 

0.71, 0.60, and 0.78, respectively). Figure 2B shows 

accuracy of validation history. Accuracy of test set (24 

samples) is equal to 62.5% (F1 score for class 3-5 

years, 7-12 years, and adults are equal to 0.73, 0.56, 

and 0.53, respectively). 

 

4. Conclusion 

Results show that proposed GAT network 

misclassify samples of 3-5 years class and 7-12 years 

class more which it means that the functional 

connectivity of these two classes are more similar than 

the functional connectivity of adults class. We can 

conclude that since movie watching highlights 

important states in brain network with respect to 

subject’s age, then GAT network can decode age due 

to its attention mechanism. 
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Figure 1. Summary of whole process. (A) Subjects watch passively a movie during fMRI recording; some BOLD 

signals of one of the subjects is shown; (B) Correlation matrix (adjacency matrix of brain connectivity graph) of one 

of the subjects; (C) Graph neural network problem (x is input vector, w is a trainable weight matrix, yp is predicted 

label, yt is true label, and e is the error); (D) Proposed Graph Attention Network: (1) One-hot encoding vectors of 

nodes. (2) Graph attention convolution layers (GNN layers) and activation functions. The purple part after second 

layer is a concatenation symbol. (3) Augmented, boosted, and final vectors. (4) Global mean pool layer. (5) A pooled 

vector. (6) Fully connected layer 

 

Figure 2. Summary of results. (A) Confusion matrix of 

validation sets. (B) Accuracy increase process versus 

epochs 
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Abstract 

Driver fatigue is a major cause of road accidents and automatic fatigue detection can help preventing these 

injuries. Electroencephalogram (EEG) microstate analysis has gained popularity as a tool for detecting brain state, 

mental workload and brain disease. The aim of this research is analyzing the EEG microstate features to 

effectively detect the driver fatigue state based on microstate features and Support Vector Machine (SVM) 

classifier. The global field power of EEG and its local maximum are calculated and then clustered in to four 

microstates. Four features were calculated for each segment of the data including duration, occurrence, time 

coverage and power. The extracted features in conjunction with SVM classifier have been used for automatic 

detection of fatigue state. The quantitative results based on leave-one-out approach using EEG data of 10 healthy 

subjects show that the proposed method has accuracy of 75%. To examine the optimal region of the brain and 

electrode selection, we divided the electrodes into four distinct regions and evaluated the accuracy of fatigue 

detection for each region. Our findings indicate that the central region yielded the best results. 

Keywords: Driver Fatigue Detection Electroencephalogram; Microstate; Support Vector Machine. 
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1. Introduction  

Mental fatigue affects driver’s performance which 

posed threats to their safety. Frequently used methods 

of evaluating fatigue are based on physiological 

parameters such as ECG, EOG, and EEG signals [1]. 

EEG is widely used in studies, according to EEG 

characteristic, which is the fastest dynamic response 

of brain. EEG microstate is a new approach in 

analyzing EEG signals. Lehman et al. [2] proposed 

that EEG map topographies have quasi stable pattern. 

Their assumption is based on presence of single state 

for brain in a period of 60~120 milliseconds. They 

called it: “atoms of thoughts” or microstate. In this 

study we applied microstate analysis to extract 

microstate features consisting of duration, occurrence, 

time coverage and power for detecting fatigue and 

normal brain state. Finally, SVM classifier was used 

to validate the effectiveness of the proposed methods. 

2. Materials and Methods 

2.1. Subjects 

Ten young healthy men participated in a driving 

simulation experiment. Five minutes of EEG 

recording was during normal state and five minutes 

was recorded during mental fatigue. The sampling 

frequency was 1000 Hz. These two five minutes 

divided in to 1sec segment. Considering all 

participants, we have 3000 segments for fatigue state 

and 3000 segments for normal state. 

2.2. Methods 

The block diagram of the proposed method is 

shown in Figure 1. The preprocessing includes 1-40 

Hz filtering and removing baselines to eliminate the 

deviation of EEG signal. In this stage, the signal is 

filtered to four sub bands including 0.5~4, 4~8, 8~12 

and 2-20 Hz. 

2.3. Microstate Analysis and Classification 

In the initial step, we calculated the Global Field 

Power (GFP) for each time point [3]. Next, we utilized 

the EEG topographies that corresponded to the 

maximum of GFP in the clustering algorithm. This 

was done under the assumption that EEG signals at the 

time point of GFP maxima have a relatively high 

signal-to-noise ratio. The polarity of each topography 

was disregarded. For each subject, we repeated the 

procedure while varying the number of clusters from 

3 to 4. In the subsequent step, we obtained the group-

level microstate classes by conducting a second 

clustering procedure. This was done using the 

topographies of microstates of each subject as 

clustering samples after the subject-level microstate 

analysis. Finally, we allocated EEG topographies at 

each time point to one of the mean microstate classes 

by determining the maximum spatial correlation 

coefficient between the topography of each time point 

and the group-level mean microstate maps. We 

calculated four features for each segment, including 

occurrence (i.e., the number of a given microstate per 

second), duration (i.e., the mean duration time of a 

microstate in seconds), coverage (i.e., the proportion 

of a given microstate), and mean power of each 

microstate in each segment. These four features were 

used for the classification of brain fatigue state via an 

 

Figure 1. The block diagram of the proposed method for driver fatigue detection 
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SVM classifier. Furthermore, we evaluated the impact 

of different brain regions, including frontal, central, 

occipital, and temporal, on classification accuracy. 

3. Results 

Figure 2 displays the average accuracy of the 

proposed classification method across different 

frequency bands (a) and various brain regions within 

the 2-20 Hz frequency band (b). Our results indicate 

that the best accuracy was achieved at 2-20 Hz when 

using all electrodes. Additionally, the central lobe 

exhibited higher accuracy as compared to the other 

lobes within the 2-20 Hz frequency band.  

4. Conclusion 

The results indicate that microstate features can be 

utilized to detect the fatigue and normal state of the 

brain. The addition of these features to classical ones, 

such as frequency features, may lead to improved 

results. Furthermore, other classifiers, such as deep 

learning-based methods, have the potential to yield 

even better results. These assumptions could be 

investigated in future research. 
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Figure 2. Accuracy of the proposed method for 

classification of driver fatigue using EEG. a) Classification 

using different EEG frequency bands, b) classification 

accuracy in different brain regions in 2~20 Hz  
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