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Abstract 

Purpose: Diffusion Tensor Imaging (DTI) is a noise-sensitive method, where a low Signal-to-Noise Ratio (SNR) 

results in significant errors in the estimated tensor field. This topic focuses on a comprehensive evaluation of 

various DTI estimation methods, such as Linear Least Squares (LLS), Weighted Linear Least Squares (WLLS), 

iterative re-weighted Linear Least Squares (IRLLS), and Non-linear Least Squares (NLS). The article will explore 

how each method performs in terms of accuracy, efficiency in estimating the diffusion tensor and robustness 

against noise.  

Materials and Methods: The study compares the methods using simulated diffusion-weighted Magnetic 

Resonance Imaging (MRI) data. Time complexity and performance of the LLS, WLLS, IRLLS, and NLS methods 

were evaluated across key metrics such as TRMSE, RMSE, MSD, and ΔSNR. 

Results: The results of the study demonstrate that LLS and IRLLS consistently outperform other methods in terms 

of TRMSE, MSD, and SNR, particularly in high-noise scenarios. NLS performs best in reducing RMSE but high 

noise causes it to fit to noise, so it is not robust. WLLS showed the weakest performance across all metrics. 

Conclusion: The paper suggests that LLS, despite its simplicity, remains a competitive option in terms of 

capturing the true underlying diffusion properties. IRLLS further refines this by iteratively reducing the effect of 

outliers in tensor estimation. 

Keywords: Diffusion Tensor Imaging; Diffusion Magnetic Resonance Imaging; Tensor Estimation Method; 

Cholesky Decomposition. 
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1. Introduction  

DTI is an advanced MRI technique that provides 

insights into the microstructural properties of tissues 

by measuring the diffusion of water molecules. In 

white matter, water diffusion is anisotropic, meaning 

it occurs more freely along the direction of aligned 

fibers, such as axons, and less freely across them. This 

directional dependence of diffusion is captured 

mathematically by a diffusion tensor, a second-order 

3x3 matrix that describes the rate and direction of 

water movement in three-dimensional space. The 

tensor's eigenvalues and eigenvectors provide 

valuable metrics such as Fractional Anisotropy (FA) 

and Mean Diffusivity (MD), which are used to assess 

tissue integrity and connectivity. By estimating the 

diffusion tensor for each voxel in the brain, DTI 

enables detailed visualization and analysis of white 

matter pathways, playing a vital role in neuroscience, 

clinical diagnostics, and research. 

DTI was introduced by Basser et al. in 1994 [1, 2]. 

In this method, diffusion in a voxel is represented by a 

second-rank tensor, which must be estimated for every 

voxel based on a series of Diffusion-Weighted MRI 

(DW-MRI) measurements [3-8], leading to an 

estimated tensor field. Diffusion tensor estimation 

involves various computational methods, each with its 

own strengths and limitations. LLS is a 

straightforward approach that uses ordinary linear 

regression after log-transforming the signal intensities 

[9]. It is simple and computationally efficient. WLLS 

tries to improve upon LLS by incorporating weights 

[7-10]. IRLLS further refines this approach by 

iteratively updating the weights to reduce the 

influence of outliers and improve accuracy. NLS 

avoids the need for a log transformation altogether, 

working directly with the nonlinear model. This 

allows NLS to make fewer assumptions about data 

uncertainty, albeit at the cost of increased 

computational complexity [8]. Each method strikes a 

different balance between accuracy, robustness, and 

efficiency, offering diverse options for diffusion 

tensor estimation. DTI has numerous applications 

across various fields, including neuroscience, clinical 

medicine, and research. Some key applications of DTI 

include mapping white matter tracts [11, 12], brain 

connectivity studies [13], neurological disorders [14, 

15], stroke and traumatic brain injury [16-19], 

psychiatric disorders [20, 21], etc.  

Since DTI has a wide range of applications, 

researchers in recent years have shown a tendency to 

use this method in new areas, while less emphasis has 

been placed on evaluating the performance of existing 

methods. We aim to compare LLS, WLLS, IRLLS, 

and NLS methods using new simulated dataset that 

closely resembles real brain structures and a 

Riemannian metric, which was not available when 

these methods were initially proposed. In this article, 

we delve into a detailed comparison of these DTI 

estimation methods, focusing on their accuracy, 

robustness to noise, and efficiency. In this context, 

accuracy refers to the extent to which the estimated 

diffusion tensor values reflect the true diffusion 

properties of the tissue. Computational efficiency 

refers to the ease of implementation and the 

computational time required. Robustness to noise 

indicates the resilience and reliability of a method 

under varying noise levels. To provide a 

comprehensive comparison, we employed a multi-

faceted approach using simulated data. Simulated 

data, which mimics the complexities of real brain 

tissue, offers insights into how these methods handle 

realistic scenarios with varying noise levels while 

allowing us to compare results to the known ground 

truth. 

The remaining sections of this paper are organized 

as follows. A brief description of the diffusion tensor 

is provided in Section 2.1. Approaches to estimate 

tensors, such as LLS, WLLS, IRLLS, NLS, and 

Cholesky decomposition, are outlined in Section 2.2. 

In Section 2.3, the time complexity of the mentioned 

methods is analyzed. The approach for calculating the 

distance between tensors is described in Section 3.1. 

In Section 3.2, the metrics used for comparing the 

methods are explained, followed by the simulated data 

and data analysis in Section 3.3. The results are 

presented in Section 4, while the discussion and 

conclusions are provided in Sections 5 and 6, 

respectively. 

1.1. Diffusion Tensor 

The diffusion tensor is a mathematical 

representation of the water diffusion process in three 

dimensions within a voxel. It describes the 
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relationship between the diffusion of water molecules 

within a voxel and the estimated diffusion tensor, 

which is central to understanding the microstructural 

properties of the tissue being imaged. In white matter, 

for example, the presence of myelinated axonal fibers 

constrains the movement of water molecules, allowing 

them to diffuse more freely along the length of the 

fibers (axial diffusion) and less freely across them 

(radial diffusion).  

DTI assumes that the diffusion of water molecules 

follows a Gaussian probability density function within 

each voxel [1, 22] (Equation 1): 

𝜌(𝑥|𝑥0, 𝜏)

=
1

√(4𝜋𝜏)3|𝐷|
 𝑒𝑥𝑝 [−

(𝑥 − 𝑥0)𝑇𝐷−1(𝑥 − 𝑥0)

4𝜏
] 

(1) 

The function expresses the probability that a water 

molecule, initially at 𝑥0 at time 0, reaches position 𝑥 

at time τ. Here, D, the diffusion tensor, describes the 

molecules displacement. The displacement is 

supposed to be uniform within the voxel. 

D represents a covariance matrix which is a 3 × 3 

symmetric positive definite (SPD) matrix. We denote 

the set of m × m SPD matrices by 𝒮𝑚
+ , so 𝐷 ∈ 𝒮3

+ 

describes how diffusion varies along different 

directions within the voxel (Equation 2). 

𝐷 =  [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑥𝑦 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑥𝑧 𝐷𝑦𝑧 𝐷𝑧𝑧

] (2) 

Where 𝐷𝑥𝑥, 𝐷𝑦𝑦, 𝐷𝑧𝑧 are the diffusion coefficients 

along the principal axes and 𝐷𝑥𝑦, 𝐷𝑦𝑧, 𝐷𝑥𝑧 are the 

diffusion coefficients that describe the coupling 

between different directions. This assumption 

simplifies the modeling and allows the diffusion 

process to be described by the diffusion tensor [23]. 

1.2. Tensor Estimation  

The relationship between the measured DW-MRI 

signal and the diffusion tensor is described by the 

Stejskal-Tanner model [22] (Equation 3):  

𝑆𝑖(𝐷, 𝑆0) = 𝑆0 𝑒𝑥𝑝(−𝑏𝑖𝑔𝑖
𝑇𝐷𝑔𝑖) (3) 

Where 𝑆𝑖(𝐷, 𝑆0) is a predictor of the DW-MRI 

signal measured in terms of a known direction of the 

diffusion sensitizing field gradient , represented by a 

unit vector 𝑔𝑖 ∈ ℝ3, a known scalar  𝑏𝑖 ∈ ℝ+(𝑠/𝑚𝑚2) 

representing the strength and timing of the diffusion 

sensitizing field gradient, an unknown reference T2-

weighted signal, 𝑆0 ∈ ℝ+, denoting the image 

intensity in the absence of diffusion sensitizing (i.e., 

when 𝑏𝑖 = 0), and an unknown SPD matrix  (𝑚𝑚2/𝑠). 

In the absence of noise, 𝑆𝑖(𝐷, 𝑆0)  =  𝑦𝑖 is 

established. However, Noise introduces a discrepancy 

between the predicted and the measured signal that 

usually called error (ε): 𝑆𝑖(𝐷, 𝑆0)  =  𝑦𝑖  +  𝜀𝑖. Given 

a sequence of DW-MRI measurements, 𝑦𝑖  (𝑖 =

 1, 2, . . . , 𝑛), with varying 𝑏𝑖 and 𝑔𝑖, the objective of 

DTI analysis is to estimate a diffusion tensor D and a 

baseline signal level 𝑆0 for each voxel to minimize the 

error. This is achieved by defining and minimizing a 

cost as a function of D and 𝑆0 [8]. One common 

approach is to use the least square error (Equation 4): 

𝐽𝑁𝐿𝑆(𝐷, 𝑆0) =  
1

2
∑(𝑦𝑖 − 𝑆𝑖(𝐷, 𝑆0))2

𝑛

𝑖=1

 (4) 

It is called the NLS method because (Equation 3) is 

not linear. 

While NLS typically works directly with the non-

linear model, sometimes the logarithmic 

transformation of (Equation 3) is used (Equation 5): 

𝐽𝐿𝐿𝑆(𝐷, 𝑆0) =  
1

2
∑(ln 𝑦𝑖 − ln 𝑆𝑖(𝐷, 𝑆0 ))2

𝑛

𝑖=1

 (5) 

It is called LLS. This method is computationally 

efficient and serves as a good starting point for more 

complex methods. 

The WLLS method assigns weights to (Equation 6): 

𝐽𝑊𝐿𝐿𝑆(𝐷, 𝑆0) =
1

2
∑ 𝜔𝑖

2(ln 𝑦𝑖

𝑛

𝑖=1

− ln 𝑆𝑖(𝐷, 𝑆0 ))2 

(6) 

The optimal weight is the measured signal [7, 8]. 

The implementation of these methods is thoroughly 

explained in [8]. The IRLLS repeatedly applies a 

WLLS procedure, where the weights are updated in 

each iteration [24]. This method aims to reduce the 

influence of outliers. 
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To ensure the estimated tensor is an SPD matrix, 

some constraints must be enforced on the tensor 

estimation methods. Using Cholesky decomposition, 

we can ensure that the estimated tensor is positive 

definite [25, 26]. Let ℒ𝑚 denote the set of all 𝑚 ×  𝑚 

lower-triangular matrices and ℒ𝑚
+  denote the subset of 

ℒ𝑚 with strictly positive diagonal elements. The 

Cholesky decomposition assigns to every 𝐴 ∈ 𝒮𝑚
+  a 

unique 𝐿 ∈ ℒ𝑚
+   such that (Equation 7): 

𝐴 = 𝐿𝐿𝑇 (7) 

Recalling the Cholesky decomposition to enforce 

positivity on the estimated diffusion tensor, we rewrite 

(Equation 3) as a function of the unconstrained 

𝐿 ∈ ℒ𝑚
+  as follows (Equation 8):  

𝑆𝑖(𝐿, 𝑆0) = 𝑆0 𝑒𝑥𝑝(−𝑏𝑖𝑔𝑖
𝑇𝐿𝐿𝑇𝑔𝑖) (8) 

The least square algorithms are reformulated 

according to (Equation 8). For example, the NLS 

algorithm in (Equation 4) is replaced by (Equation 9): 

𝐽𝐶𝑁𝐿𝑆(𝐿, 𝑆0) =  
1

2
∑(𝑦𝑖 − 𝑆𝑖(𝐿, 𝑆0))2

𝑛

𝑖=1

 (9) 

We refer to this method as constraint non-linear 

least squares (CNLS). In this way, we will have 

constraint linear least squares (CLLS), constraint 

weighted linear least squares (CWLLS) and constraint 

iterated re-weighted linear least squares (CIRLLS). 

Note that these constrained least squares problems are 

no longer linear because ln 𝑆𝑖(𝐿, 𝑆0) is not a linear 

function of L. The constrained methods are only 

applied when the tensor estimated using unconstrained 

methods is not SPD. 

1.3. Time Complexity  

The time complexity of an algorithm refers to the 

computational cost relative to the size of the input 

data. Grasping the time complexity of tensor 

estimation methods is crucial to assess their 

practicality in various research and clinical contexts, 

particularly when working with large datasets or 

requiring real-time processing. Time complexity 

evaluates how long an algorithm takes to execute, 

depending on the input size, typically denoted as 𝑇(𝑛) 

for an input size of 𝑛. It serves as a measure of the 

algorithm’s efficiency. To analyze an algorithm’s time 

complexity, the objective is to count the number of 

basic operations it performs as the input size grows. 

These basic operations are simple steps, like adding 

two numbers, which take a fixed amount of time 

regardless of input size. 

To analyze the time complexity of the LLS, WLLS, 

IWLLS, and NLS methods, we make the following 

assumptions: these methods operate on a point-wise 

basis, and the calculations are uniform across all brain 

voxels. Therefore, we calculate the time complexity 

for a single voxel, which will apply to all of them. 

Each method involves several matrix operations. For 

simplicity, we assume that all matrices are of size 

𝑛 × 𝑛 and vectors have a dimension of size 𝑛, solely 

for the purpose of time complexity calculation. We 

suppose n is the number of DW-MRI measurements. 

For matrix multiplication, although more efficient 

algorithms exist (such as the Strassen’s algorithm 

which has a complexity of (𝑛𝑙𝑜𝑔2
7
) [27]), we use the 

standard matrix multiplication algorithm with a time 

complexity of (𝑛3). The matrix inversion process also 

has a time complexity of (𝑛3) when using the 

Gaussian elimination method. Additionally, matrix 

transposition and Jacobian matrix computation both 

have a time complexity of (𝑛3). 

To estimate tensors by linear methods, LLS, WLLS, 

and IRLLS, the numerical approaches, including the 

normal equations method, are employed. The time 

complexity of LLS using normal equations is 

𝑇𝐿𝐿𝑆(𝑛)  =  4𝑛3 + 𝑛2 (three matrix multiplications, 

one matrix inversion and one matrix transpose). 

Similarly, 𝑇𝑊𝐿𝐿𝑆(𝑛)  =  6𝑛3 + 𝑛2 (five matrix 

multiplications, one matrix inversion and one matrix 

transpose). For IRLLS, there are 𝑚𝐼 iterations and 

each iteration has the same time complexity as WLLS. 

Therefore, the time complexity is given by 

𝑇𝑊𝐿𝐿𝑆(𝑛)  =  𝑚𝐼 (6𝑛3 + 𝑛2). In our implementation, 

we selected  𝑚𝐼 = 3. 

The NLS optimization problem is solved iteratively 

using numerical methods such as the Gauss-Newton 

and Levenberg-Marquardt algorithms. These methods 

require an initial estimate to initiate the optimization 

process. In the case of DTI, the initial guess for the 

tensors can be obtained from tensor estimates derived 

using linear methods. The number of iterations in 

these algorithms is not predefined; however, in our 

implementation, we set the maximum number of 
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iterations to 100. To approximate the time complexity 

of NLS, we focus on the Gauss-Newton method. At 

each iteration, the following equation must be solved 

(Equation 10): 

𝑋(𝑘+1)  =  𝑋(𝑘)  −  (𝐽𝑇𝐽)−1𝐽𝑇𝑆(𝑋(𝑘)) (10) 

Where 𝑋(𝑘) represents the solution at iteration 𝑘, 

𝑋(𝑘+1) is the updated solution at iteration 𝑘 +  1 and 

𝐽 is the Jacobian matrix of 𝑆(𝑋(𝑘)). For each iteration, 

the complexity time is approximated as 4𝑛3 + 2𝑛2. 

Assuming 𝑚𝑁 iteration, the complexity time of NLS 

is 𝑇𝑁𝐿𝑆(𝑛)  =  𝑚𝑁 (4𝑛3 + 2𝑛2). This estimation does 

not include the time complexity of the initial guess 

computation. 

2. Materials and Methods  

2.1. Log-Cholesky Distance  

To compare tensors, we need suitable metric 

between SPD matrices. In the context of DTI, previous 

studies have regarded the space of SPD matrices 𝒮𝑚
+  

as a Riemannian manifold. A Riemannian manifold is 

a type of smooth manifold equipped with a 

Riemannian metric, which allows for the definition of 

geometric concepts like distances, angles, and 

volumes on the manifold. The Riemannian metric 

gives a way to measure the distance between points on 

the manifold. Previously utilized metrics for this 

purpose are the Frobenius [28], the affine-invariant 

(Fisher) [29, 30], and the Log-Euclidean [31-33] 

metrics. The Log-Cholesky metric has been 

introduced recently [34] as an alternative with several 

advantages, including computational efficiency, no 

swelling effect, a closed-form formula for averaging, 

and parallel transport along the geodesic. We decide 

to use the Log-Cholesky metric to calculate the 

distance between tensors. 

The Log-Cholesky Riemannian metric uses 

Cholesky decomposition. Suppose 𝐷1, 𝐷2 ∈ 𝒮𝑚
+  and 

𝑑𝒮+
2 (𝐷1, 𝐷2) be the distance between 𝐷1 and 𝐷2. Let 

𝐿1, 𝐿2 ∈ ℒ𝑚
+   be the Cholesky decomposition of 

𝐷1, 𝐷2, respectively, and 𝑑ℒ+
2 (𝐿1, 𝐿2) be the Log-

Cholesky distance between 𝐿1 and 𝐿2.  𝑑ℒ+
2 (𝐿1, 𝐿2) is 

defined like this (Equation 11): 

𝑑ℒ+
2 (𝐿1, 𝐿2) =∥ 𝕃(𝐿1) − 𝕃(𝐿2) ∥𝐹

2 + 

     ∥ log 𝔻(𝐿1) − log 𝔻(𝐿2) ∥𝐹
2  

(11) 

That 𝕃(𝐿1) denotes the strictly lower-triangular part 

of 𝐿1,  𝔻(𝐿1) denotes the diagonal part of 𝐿1. For 

matrix 𝐴𝑚×𝑛 (Equation 12): 

∥ 𝐴 ∥𝐹
2=  ∑ ∑ 𝐴𝑖𝑗

2

𝑚

𝑗=1

𝑛

𝑖=1

 (12) 

Finally 𝑑𝒮+
2 (𝐷1, 𝐷2) is defined like this (Equation 

13): 

𝑑𝒮+
2 (𝐷1, 𝐷2) =   𝑑ℒ+

2 (𝐿1, 𝐿2) (13) 

2.2. Metrics 

For simulated, we can have noise-free signals that 

by using any tensor estimation method, we will have 

the origin tensor field. In this section, some 

quantitative metrics are presented for comparison 

between the methods using the noise-free signals and 

the origin tensor field. In the following, 𝑆𝑖(𝑣) is the 

noise-free DW-MRI, 𝑆̃𝑖(𝑣) is the noisy DW-MRI, and 

𝑆̂𝑖(𝑣) is the estimated DW-MRI, all at voxel 𝑣. The 

number of diffusion-sensitizing gradient directions is 

𝑛, 𝑁 is the number of voxels, and 𝑣 denotes the voxel 

coordinates. 

TRMSE: We also calculated the voxel-wise true 

root mean squared error (TRMSE) between the noise-

free DW-MRI signals 𝑆𝑖 and estimated DW-MRI 

signals 𝑆̂𝑖 for all voxels as follows (Equation 14): 

𝑇𝑅𝑀𝑆𝐸 =  
1

𝑁
∑ √

1

𝑛
∑(𝑆̂𝑖(𝑣) − 𝑆𝑖(𝑣))

2
𝑛

𝑖=1𝑣

 (14) 

RMSE: We calculated the mean of the voxel-wise 

root mean squared error (RMSE) between the noisy 

DW-MRI signals 𝑆̃𝑖 and estimated DW-MRI signals 

𝑆̂𝑖 averaged over all voxels as follows (Equation 15): 

𝑅𝑀𝑆𝐸 =  
1

𝑁
∑ √

1

𝑛
∑(𝑆̂𝑖(𝑣) − 𝑆̃𝑖(𝑣))

2
𝑛

𝑖=1𝑣

 (15) 
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MSD: The mean squared distance (MSD) is a 

metric between the origin tensor (𝐷) and the estimated 

tensor (𝐷̂) averaged over all voxels that is calculated 

as (Equation 16): 

𝑀𝑆𝐷 =  
1

𝑁
∑ 𝑑𝒮+

2 (𝐷(𝑣), 𝐷̂(𝑣))

𝑣

 (16) 

That 𝑑𝒮+  is the Log-Cholesky distance given by 

(Equation 12). 

∆SNR: Another quantity is ∆SNR (signal-to-noise 

rate) computed as follows (Equation 17): 

∆𝑆𝑁𝑅 

=  10 log (
∑ ∑ (𝑆̃𝑖(𝑣) − 𝑆𝑖(𝑣))

2𝑛
𝑖=1𝑣

∑ ∑ (𝑆̂𝑖(𝑣) − 𝑆𝑖(𝑣))
2𝑛

𝑖=1𝑣

) 
(17) 

2.3. Simulated Data and Data Analysis 

We used simulated DW-MRI to compare the LLS, 

WLLS, IRLLS, and NLS estimations. Simulated DW-

MRI generated 3 data called 1st, 2nd, and 3rd data 

using ExploreDTI software on matrices of 79 × 107 × 

60 voxels. 1st data has 32 directions with 2 images at 

b = 0 and 30 at b = 1000 s/mm2. 2nd data has 66 

directions with 6 images at b = 0 and 60 at b = 1200 

s/mm2, and 3rd data has 30 directions with 5 images at 

b = 0 and 25 at b = 2000 s/mm2. Simulated data were 

created at five SNR levels: SNR = 5, 10, 15, 25, and 

SNR = ∞ (noise-free). The tensor field estimated from 

noise-free signals using the CLLS method is 

considered as the reference (or origin) tensor field.  

To evaluate DTI applications and highlight their 

importance, we aim to compare the results of DTI 

reconstruction methods. In this paper, we specifically 

compare the results of the LLS, WLLS, IRLLS, and 

NLS methods. For all methods, when the estimated 

tensor is not SPD, the constrained method is used. The 

implementation of these methods is based on the 

description provided in [8]. All methods were 

implemented in Python. The tools MRTrix [35], 

Camino [36], ParaView [37], and ExploreDTI [38] 

were employed for visualization. 

3. Results 

Table 1 presents a comparison of the methods using 

TRMSE, RMSE, MSD, and ∆SNR metrics applied to 

the 1st, 2nd, and 3rd simulated datasets. The results in 

the table show that the LLS and IRLLS methods 

performed best in TRMSE, MSD, and ∆SNR at all 

SNR levels. Conversely, NLS excelled in RMSE 

across all SNR levels. The RMSE, which measures the 

discrepancy between noisy and estimated signals, is 

defined similarly to the NLS cost function (Equation 

9). While non-linear methods minimize the cost 

function effectively, the results demonstrate that they 

do not necessarily provide the best tensor estimation. 

Interestingly, the WLLS method consistently 

underperformed across all metrics. Its weighting 

scheme, designed to mitigate noise, appeared 

ineffective for this dataset, resulting in poorer 

outcomes than the simpler LLS or the more advanced 

NLS. Figure 1 illustrates voxel-wise histograms of the 

TRMSE and MSD at SNR=5 and 15. 

Figure 2 depicts the estimated tensor fields obtained 

using the LLS, WLLS, IRLLS, and NLS methods. 

Sections of the brain in the axial view are shown. 

Qualitatively, the figure indicates that at high SNR 

levels, all methods yield similar estimations, whereas 

at low SNR levels, the WLLS method performs worse 

than the others. 

Tractography was performed on the tensor field 

estimated using CLLS, CWLLS, CIRLLS, and CNLS 

as generated by the Camino package [36] and is shown 

in Figure 3. The results show that the WLLS method 

produced fewer tracts at all SNR levels. 

4. Discussion 

DTI has revolutionized our understanding of the 

brain’s structural connectivity and has become 

instrumental in both clinical and research settings. 

Clinically, it aids in the diagnosis and management of 

neurological disorders such as multiple sclerosis, 

stroke, and traumatic brain injury by highlighting 

abnormalities in white matter tracts. In research, DTI 

provides invaluable data for studying brain 

development, aging, and the effects of various 

neurodegenerative diseases. 
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There is ongoing debate regarding the use of linear 

methods in DTI analysis. Some argue that these methods 

distort the variance of DW signals due to logarithmic 

transformation, thereby violating the uniform variance 

(homoscedasticity) assumption required by LLS [1, 39]. 

Simulations conducted in [1] reveal that NLLS produces 

the most accurate estimates, followed by WLLS and then 

LLS, particularly under noisy conditions. These studies 

suggest that nonlinear methods should be preferred and 

explicitly recommend that, if linear methods are used, at 

a minimum, the WLLS method should be applied [1, 8, 

39]. 

In contrast, some argue that if the weighted signal 

follows a Rician distribution and SNR>2, and then the 

log-transformation ensures that the expected error 

becomes zero, resulting in an unbiased estimation [7, 

10]. Theoretically, there are many reasons that may lead 

to the violation of the two aforementioned conditions for 

the DW signal, one of which is the use of preprocessing 

methods. In such cases, it can be argued that linear 

estimation is biased. However, practical results have 

shown that LLS achieves higher accuracy compared to 

NLS. It should be noted that achieving higher accuracy, 

alongside the simplicity of the method, is highly 

important. Many methods have been proposed to 

enhance accuracy, but due to their high complexity, they 

have rarely been used in practice [40]. 

Table 1. The results of the methods on the 1st, 2nd, and 3rd simulated data 

SNR metric 
LLS WLLS IRLLS NLS 

1st 2nd 3rd Avg. 1st 2nd 3rd Avg. 1st 2nd 3rd Avg. 1st 2nd 3rd Avg. 

 TRMSE 142 110 184 145 270 272 314 285 155 119 190 154 164 145 221 176 

 RMSE 232 243 208 227 258 275 234 255 227 241 204 224 225 231 194 216 

5 MSD 0.40 0.29 0.51 0.4 0.62 0.84 0.72 0.72 0.40 0.40 0.51 0.43 0.40 0.36 0.59 0.45 

 ∆SNR 5.5 7.5 3.9 5.6 0.5 0.01 -0.5 0.0 5.4 6.3 3.6 5.1 4.4 5.2 2.4 4 

 TRMSE 69 50 79 66 99 98 132 109 67 50 78 65 69 55 88 70 

 RMSE 124 132 113 123 133 142 126 133 123 131 111 121 120 129 108 119 

10 MSD 0.19 0.13 0.21 0.17 0.25 0.22 0.33 0.26 0.18 0.13 0.21 0.17 0.18 0.13 0.23 0.18 

 ∆SNR 5.8 8.5 4.8 6.3 2.5 2.8 0.4 1.9 6.0 8.0 4.8 6.2 5.7 7.7 3.8 5.7 

 TRMSE 45 33 51 43 58 53 77 62 44 33 50 42 45 34 53 44 

 RMSE 84 89 79 84 88 94 86 89 83 89 78 83 83 88 76 82 

15 MSD 0.12 0.08 0.14 0.11 0.14 0.11 0.20 0.15 0.12 0.08 0.13 0.11 0.12 0.08 0.14 0.11 

 ∆SNR 6.1 8.8 5.0 6.6 3.9 4.6 1.5 3.3 6.2 8.2 5.1 6.5 6.1 8.4 4.5 6.3 

 TRMSE 27 19 30 25 30 25 39 31 26 19 29 24 26 19 30 25 

 RMSE 51 54 49 51 52 55 52 53 50 54 48 50 50 53 48 50 

25 MSD 0.07 0.05 0.08 0.06 0.07 0.06 0.1 0.07 0.07 0.05 0.08 0.06 0.07 0.06 0.08 0.07 

 ∆SNR 6.2 9.0 5.2 6.8 5.2 6.6 2.9 4.9 6.4 8.7 5.4 6.8 6.3 8.8 5.2 6.7 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1. The plots show the voxel-wise histogram of the TRMSE (panel (a),(b)) and the MSD (panel (c),(d)) of LLS, WLLS, 

IRLLS, and NLS methods 
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The use of weighting for linear methods has been 

suggested since the initial introduction of DTI, where the 

square of the DW signal, which is also noisy, is used as 

the weight. Many existing software tools utilize this 

approach for WLLS [10]. After some time, the stepwise 

weighting method was introduced that we called IRLLS, 

in which the weight is the square of the estimated signal. 

This method also acts as an outlier detection technique 

and has been shown to be one of the best methods for 

tensor estimation [22]. 

We decided to compare the LLS, WLLS, IRLLS, and 

NLS methods using simulated data across different SNR 

levels. To address some of the practical limitations of 

these methods, constrained versions of LLS, WLLS, 

IRLLS, and NLS referred to as CLLS, CWLLS, 

CIRLLS, and CNLS were developed. These constrained 

approaches enforce the positive definite condition on the 

estimated diffusion tensors, ensuring that the physical 

properties of diffusion are respected (i.e., the estimated 

diffusion tensors yield only positive eigenvalues). This 

constraint is particularly useful in regions with crossing 

fibers or low signal intensity, where unconstrained 

methods might produce physically unrealistic tensors. 

The use of Cholesky decomposition in these methods 

guarantees that the resulting tensors are positive definite. 

The TRMSE, MSD, and ∆SNR metrics at different 

SNR levels indicate that LLS and IRLLS outperform 

other methods in terms of true error reduction and 

maintaining tensor accuracy and robustness at all SNR 

levels. This suggests that, despite its simplicity, LLS 

remains a competitive option for capturing the true 

underlying diffusion properties. IRLLS further refines 

this by iteratively reducing the effect of outliers. The 

NLS method performed poorly only at the low SNR level 

(SNR = 5), indicating that it is not robust. The WLLS 

method, however, performed poorly across all noise 

levels. 

We have evaluated the methods in terms of 

computational time. LLS is the most efficient. The time 

complexity of WLS is slightly more than LLS. IRLLS 

runs 𝑚𝐼 (𝑚𝐼 is fixed) iteration for all voxels. Usually, 𝑚𝐼 

 

Figure 2. The images show the axial view of the simulated brain by the LLS, WLLS, IRLLS, and NLS methods at three 

SNR levels: SNR = 5,10,15 
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is less than 5 and each iteration has the complexity time 

of WLS. The implementation of LLS, WLS, and IRLLS 

is simple by using standard matrix operations. 

NLS operates directly on the nonlinear diffusion 

model, using iterative optimization algorithms like 

Gauss-Newton or Levenberg-Marquardt. Using the 

Gauss-Newton method, the time complexity of each 

iteration is near the LLS time complexity. Since NLS 

requires many iterations to converge, the overall time 

complexity increases significantly with the number of 

iterations. Also, NLS needs initial estimation to start. 

These cause NLS to be the most computationally 

expensive method. 

5. Conclusion 

This study provides a comprehensive comparison of 

various DTI estimation methods. We present a detailed 

comparative analysis of the efficiency, accuracy, and 

robustness of LLS, WLLS, IRLLS, and NLS methods, 

highlighting their performance across several critical 

metrics, including TRMSE, RMSE, MSD, and ∆SNR. 

LLS offers excellent accuracy, computational 

efficiency, and robustness, making it suitable for routine 

DTI analyses. IRLLS stands out for its robustness against 

outliers, offering a balance between computational 

efficiency and improved performance in complex 

regions. WLLS, however, emerges as the weakest 

 

Figure 3. Tractography on noise-free (origin, panel (a)) and tensor field estimates by the LLS method (panels (b), (f), 

(j)), the WLLS method (panels (c), (g), (k)), the IRLLS method (panels (d), (h), ( l)), and the NLS method (panels (e), 

(i), (m)) using 1st simulated brain DW-MRI data at SNR = 5 ( second row), SNR = 10 (third row), and SNR = 15 

(forth row) 

 

 

a ) origin  ( 

b ) LLS, ( SNR = 5 ( c ) WLLS, SNR = 5 ( d ) IRLLS, SNR = 5 ( e ) NLS, SNR = 5 

(f) LLS, SNR = 10 ( g ) WLLS, SNR = 10 ( h ) IRLLS, SNR = 10 i ) NLS, ( SNR = 10  

( k ) WLLS, SNR = 15 ( l ) IRLLS, SNR = 15 ( m ) NLS, SNR = 15  
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method, performing poorly across all metrics and failing 

to reconstruct tracts effectively. NLS, while 

computationally expensive, demonstrates good accuracy 

at high SNR levels but lacks robustness to noise due to 

fitting to noise. 

It is important to note that the presented results 

analyzed all brain voxels uniformly. For future research, 

the explored methods could be analyzed in key regions 

of interest, such as the corpus callosum, corticospinal 

tract, or hippocampus. 

Ultimately, we hope the findings of this study provide 

valuable guidance for researchers and clinicians in 

selecting the most appropriate DTI estimation method. 

Acknowledgment 

The authors would like to sincerely thank the 

National Brain Mapping Lab for their valuable support 

and contributions to this research. 

References  

1- P. J. Basser, "MR diffusion tensor spectroscopy and 

imaging." Biophys, Vol. 66pp. 259-67, (1994). 

2- J. Mattiello P. Basser, and D. LeBihan, "Estimation of 

the effective self-diffusion tensor from the NMR spin 

echo." Journal of Magnetic Resonance, Vol. 103pp. 247-

54, (1994). 

3- P. J. Basser, "Inferring microstructural features and the 

physiological state of tissues from diffusion-weighted 

images." NMR Biomedicine, Vol. 8pp. 333–44, (1995). 

4- D. L. Bihan, "Diffusion tensor imaging: Concepts and 

applications." Journal of Magnetic Resonance Imaging, 

(2001). 

5- P. J. Basser, "Microstructural and physiological features 

of tissues elucidated by quantitative-diffusion-tensor." 

Journal of Magnetic Resonance, Vol. 111pp. 209-19, 

(1996). 

6- P. J. Basser, "Diffusion-tensor MRI: theory, 

experimental design and data analysis - a technical 

review." NMR in Biomedicine, Vol. 15pp. 456–67, (2002). 

7- R. Salvador, A. Pena, D. K. Menon, T. A. Carpenter, J. 

D. Pickard, and E. T. Bullmore, "Formal characterization 

and extension of the linearized diffusion tensor model." 

Hum Brain Mapp, Vol. 24 (No. 2), pp. 144-55, Feb 

(2005). 

8- C. G. Koay, L. C. Chang, J. D. Carew, C. Pierpaoli, and 

P. J. Basser, "A unifying theoretical and algorithmic 

framework for least squares methods of estimation in 

diffusion tensor imaging." J Magn Reson, Vol. 182 (No. 

1), pp. 115-25, Sep (2006). 

9- C. G. Koay, "Least squares approaches to diffusion 

tensor estimation." in Diffusion MRI, D. Jones, Ed. New 

York: Oxford University Press, (2011), pp. 281-343. 

10- Veraart J., "Weighted linear least squares estimation of 

diffusion MRI parameters: strengths, limitations, and 

pitfalls." NeuroImage pp. 335-46, (2013). 

11- P. G. Nucifora, "Diffusion-tensor MR imaging and 

tractography: exploring brain microstructure and 

connectivity." Radiology, Vol. 2pp. 367-84, (2007). 

12- A. Faria K. Oishi, P. van Zijl, and S. Mori, MRI Atlas 

of Human White Matter. Elsevier Science, (2010). 

13- E. W. Lang, "Brain connectivity analysis: A short 

survey." Computational Intelligence and Neuroscience, 

Vol. 1(2012). 

14- B. Bodini and O. Ciccarelli, "Diffusion MRI in 

neurological disorders." in Diffusion MRI: Academic 

Press, (2014), pp. 241-55. 

15- T. Woo-Suk, "Current clinical applications of diffusion-

tensor imaging in neurological disorders." Journal of 

Clinical Neurology (2018). 

16- C. Cavaliere, "Diffusion tensor imaging and white 

matter abnormalities in patients with disorders of 

consciousness." Frontiers in Human Neuroscience, Vol. 

8(2015). 

17- M. Georgios, "Traumatic brain injuries and diffusion 

tensor imaging a review." Recent Patents on Medical 

Imaging, Vol. 2pp. 36-50, (2012). 

18- D. B. Douglas, "Diffusion Tensor Imaging of TBI: 

Potentials and Challenges." Topics in magnetic resonance 

imaging : TMRI, pp. 241-51, (2015). 

19- S. H. Jang, "Role of Diffusion Tensor Imaging in the 

Diagnosis of Traumatic Axonal Injury in Individual 

Patients with a Concussion or Mild Traumatic Brain 

Injury: A Mini-Review." Diagnostics, (2022). 

20- O. Abe  T. Shizukuishi, "Diffusion tensor imaging 

analysis for psychiatric disorders." Magnetic resonance in 

medical sciences : MRMS pp. 153-59, (2013). 

21- T. White, "Diffusion tensor imaging in psychiatric 

disorders." Topics in magnetic resonance imaging: TMRI, 

pp. 97-109, (2008). 

22- E. O. Stejskal and J. E. Tanner, "Spin Diffusion 

Measurements: Spin Echoes in the Presence of a Time‐

Dependent Field Gradient." The Journal of Chemical 

Physics, Vol. 42 (No. 1), pp. 288-92, (1965). 

23- A. L. Alexander, "A geometric analysis of diffusion 

tensor measurements of the human brain." Magnetic 

Resonance in Medicine, pp. 283-91, (2000). 

24- Q. Collier, J. Veraart, B. Jeurissen, A. J. den Dekker, 

and J. Sijbers, "Iterative reweighted linear least squares 

PROOF



 S. Jabari, et al.  

FBT, Vol. 13, No. 3 (Summer 2026) XX-XX XX 

for accurate, fast, and robust estimation of diffusion 

magnetic resonance parameters." Magn Reson Med, Vol. 

73 (No. 6), pp. 2174-84, Jun (2015). 

25- Z. Wang, B. C. Vemuri, Y. Chen, and T. H. Mareci, "A 

constrained variational principle for direct estimation and 

smoothing of the diffusion tensor field from complex 

DWI." IEEE Trans Med Imaging, Vol. 23 (No. 8), pp. 

930-9, Aug (2004). 

26- C. G. Koay, J. D. Carew, A. L. Alexander, P. J. Basser, 

and M. E. Meyerand, "Investigation of anomalous 

estimates of tensor-derived quantities in diffusion tensor 

imaging." Magn Reson Med, Vol. 55 (No. 4), pp. 930-6, 

Apr (2006). 

27- J. Nocedal, Numerical Optimization. Springer New 

York, (1999). 

28- D. Tschumperle, "Variational frameworks for DT-MRI 

estimation, regularization and visualization." in 

Proceedings Ninth IEEE International Conference on 

Computer Vision, (2003), pp. 116-21. 

29- M. Moakher, "A differential geometry approach to the 

geometric mean of symmetric positive-definite matrices." 

SIAM J Matrix Analy Applicat, pp. 734-47, (2005). 

30- Xavier Pennec, Pierre Fillard, and Nicholas Ayache, "A 

Riemannian Framework for Tensor Computing." 

International Journal of Computer Vision, Vol. 66 (No. 

1), pp. 41-66, 2006/01/01 (2006). 

31- Arsigny V, "Fast and simple calculus on tensors in the 

Log-Euclidean framework." in MICCAI, (2005), pp. 115-

22. 

32- Y. Kong, Y. Li, J. Wu, and H. Shu, "Noise reduction of 

diffusion tensor images by sparse representation and 

dictionary learning." Biomed Eng Online, Vol. 15p. 5, Jan 

13 (2016). 

33- P. Fillard, X. Pennec, V. Arsigny, and N. Ayache, 

"Clinical DT-MRI estimation, smoothing, and fiber 

tracking with log-Euclidean metrics." IEEE Trans Med 

Imaging, Vol. 26 (No. 11), pp. 1472-82, Nov (2007). 

34- Zhenhua Lin, Riemannian Geometry of Symmetric 

Positive Definite Matrices via Cholesky Decomposition. 

(2019). 

35- J. D. Tournier, "Mrtrix3: A fast, flexible and open 

software framework for medical image processing and 

visualization." Neuroimage, pp. 116-37, (2019). 

36- P. Cook and et al, "Camino: Open-source diffusion-

MRI reconstruction and processing." in 14th Scientific 

Meeting and Exhibition, (2006), pp. 27-59. 

37- B. Geveci J. P. Ahrens, and C. C. Law, Paraview: An 

end-user tool for large-data visualization. (The 

Visualization Handbook). (2005). 

38- A. Leemans, "ExploreDTI: a graphical toolbox for 

processing, analyzing, and visualizing diffusion MR 

data." (2009). 

39- D. K. Jones, "White matter integrity, fiber count, and 

other fallacies: The do’s and don’ts of diffusion MRI." 

Neuroimage, (2012). 

40- J. Veraart, "A comprehensive framework for accurate 

diffusion MRI parameter estimation." Magn Reson Med, 

(2012). 

 

PROOF


