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Abstract 

Radiopharmaceuticals are combinations of two main components including a pharmaceutical ingredient that 

targets specific moieties, and radionuclide, which acts through spontaneous degradation to create diagnostic or 

therapeutic effects, as well as both effects simultaneously known as theranostics. By combining diagnostic and 

therapeutic methods, radiotheranostics play an important role in reducing patient radiation dosages, increasing 

treatment effectiveness, controlling side effects, improving patient outcomes, and reducing overall treatment 

costs. Despite the diagnostic and therapeutic roles, radiopharmaceuticals are beneficial for assessing prognosis, 

disease progression, and the possibility of recurrences, treatment planning strategies, and assessing response to 

treatment. The most incredible role of radiopharmacy is establishing new radiopharmaceuticals with the aim of 

better targeting functions and enhanced tolerability for imaging and treatment purposes in a clinic. These 

approaches are supported by nuclear medicine non-invasive procedures. It is crucial for radiopharmaceuticals that 

drug delivery occurs in a highly selective and sensitive manner to minimize the potential radiation risk to non-

targeted organs of patients. This report will provide an overview of basic pharmacological patterns related to 

clinical radiopharmaceuticals for diagnosis and therapy, including the latest radiotheranostic tracers, key concerns 

within the field, and future trends and prospects. Additionally, the available and useful radiopharmaceuticals are 

categorized into separate tables based on their specific characteristics. Presenting information in table format 

enhances organization and makes the data more understandable and accessible for users. This structured approach 

allows users to quickly locate relevant information, compare different radiopharmaceuticals, and grasp essential 

details at a glance. By utilizing tables, we ensure that critical information is not only easy to read but also 

effectively highlights the unique attributes of each radiopharmaceutical, ultimately improving the decision-

making process for healthcare professionals. 
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1. Introduction  

Radiopharmaceuticals were first reported by the 

Federal Register in the United States with the discovery 

of carbon-14 (14C) and potassium-40 (40K). These 

unstable nuclei decay spontaneously to nuclear particles, 

which has proven advantageous in medicine for 

diagnostic purposes [1]. The field of nuclear medicine 

was revolutionized by the restraint of these radioactive 

isotopes for innovative approaches to the diagnosis and 

treatment of patients. Currently, radiopharmaceuticals’ 

usage can be classified into four main purposes, 

including research, diagnosis, treatment, and 

environmental applications [2]. This classification 

highlights the radiopharmaceuticals’ integral role and 

diversity in advancing medical science and patient care. 

Due to the critical role of radiopharmaceuticals in 

research and preclinical studies, they allow scientists to 

follow the pharmacological parameters of new 

pharmaceuticals in clarified manners. These tracers help 

researchers gather crucial data on drug behavior, like 

absorption, distribution, metabolism, and excretion. The 

evaluated pharmacokinetics and pharmacodynamics 

data are essential for understanding how investigational 

radiopharmaceuticals will act in clinical settings when 

administrated in non-radioactive forms [2]. Furthermore, 

radiopharmaceuticals in the field of research make 

efforts for personalized medicine by identifying how 

different patients may respond to specific treatments 

based on their unique biological profiles [3]. 

In nuclear medicine, radiopharmaceuticals have been 

mainly used as diagnostic agents. Numerous chemical 

compounds are designed to specifically and sensitively 

target considered organs, aiding in the diagnosis and 

imaging of physiological deficiencies. This specificity is 

vital for accurate diagnosis and treatment planning. This 

is achieved through the incorporation of gamma (γ) or 

positron (β+) emitting radionuclides, which enhance the 

visibility of targeted areas during imaging procedures [4, 

5].  

Certain radionuclides, like alpha (α) or beta (β) 

particle emitters, have therapeutic applications, 

particularly in oncology. Therapeutic 

radiopharmaceuticals are developed to emit radiation 

specifically at cancerous cell sites, effectively targeting 

and destroying malignant cells [3]. This targeted 

approach minimizes damage to surrounding healthy 

tissue, making treatment more effective and reducing 

side effects. Radiopharmaceutical Therapy (RPT) is 

defined as a novel therapeutic method with outstanding 

advantages over the common radiotherapy procedures 

which are going to be explained in this report. The 

ongoing research and development in this area have 

promising effects to expand the range of treatable 

cancers and improve patient outcomes significantly. 

Additionally, radionuclides can serve as references for 

monitoring waste radioactivity released into the 

environment, ensuring safety and compliance with 

regulatory standards [2]. This application highlights the 

importance of radiopharmaceuticals beyond clinical 

settings, extending their impact on environmental health 

and safety. By tracking and managing radioactive waste, 

we can mitigate potential risks associated with radiation 

exposure in the community and ensure responsible use 

of nuclear materials. 

We are going to concentrate on the basic 

characterizations of radiopharmaceuticals in diagnosis 

and therapy, their recent advancements and future trends 

will be discussed, and key concerns regarding their use 

in nuclear medicine will be investigated. Our mission is 

to provide a comprehensive overview of the evolving 

landscape of radiopharmaceuticals and their impact on 

patient care together with medical research. This report’s 

important factor is the classification of 

radiopharmaceuticals in table format. The presentation 

of the data in a tabular form enhances accessibility and 

clarity, allowing healthcare professionals, researchers, 

and students to reference critical information quickly [6]. 

Tables are powerful tools to concisely summarize 

complex data, such as the characteristics, applications, 

and dosimetry of various radiopharmaceuticals, making 

it easier to compare and contrast different agents. A 

structured approach not only helps in retrieving 

information but also supports informed decision-making 

in clinical and research settings. By providing a clear and 

concise overview, we hope to enhance understanding 

and prompt more research into the helpful and effective 

use of radiopharmaceuticals in modern healthcare. 

1.1. Diagnostic Radiopharmaceuticals  

Diagnostic radiopharmaceuticals are essential tools in 

nuclear medicine, enabling healthcare providers to 

visualize and assess various physiological processes 

within the body [7]. These radiolabeled tracers are 
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typically monitored using collimated external gamma (γ) 

ray detectors through techniques such as Single Photon 

Emission Computed Tomography (SPECT) or Positron 

Emission Tomography (PET). These modalities detect γ 

rays emitted by radiopharmaceuticals that are 

administered to patients, by gamma cameras to produce 

images of the distribution within the body. Diagnostic 

radiopharmaceuticals help differentiate abnormalities in 

anatomy, physiology, and biochemistry, providing 

critical information for diagnosis and treatment planning  

[8-10].  

SPECT radiopharmaceuticals are generally more 

accessible and cost-effective compared to their PET 

counterparts [11]. Common SPECT γ-emitting 

radionuclides can be include as technetium-99m (99mTc), 

iodine-123 (123I), iodine-131(131I), indium-111(111In), 

gallium-67 (67Ga), thallium-201 (201Tl), krypton-81m 

(81mKr), and xenon-133 (133Xe). These radionuclides 

have specific characteristics that make them suitable for 

imaging of particular organs or conditions. For example, 
99mTc is favored for its ideal half-life (6 h) and its ability 

to easily chelate into a variety of pharmaceutical 

compounds, making it the workhorse of nuclear 

medicine agents [12, 13]. 

On the other hand, PET radiopharmaceuticals benefit 

from higher resolution and sensitivity, making them 

particularly valuable for detecting metabolic changes 

such as (fluorine-18-fluorodeoxyglucose ([18F]FDG)) 

which can be associated with cancer conditions. PET 

imaging relies on β+ emitting radionuclides, such as 

carbon-11 (11C), fluorine-18 (18F), and gallium-68 

(68Ga). During the annihilation process, the emitted 

positrons interact with electrons in the body, resulting in 

the emission of γ rays that are detected to create detailed 

images of metabolic activity. The development of  

[18F]FDG has revolutionized oncology, allowing for the 

detection of tumors based on their increased glucose 

metabolism [12, 13].  

Both SPECT and PET radiopharmaceuticals must 

meet precise qualifications to be considered effective 

diagnostic imaging agents. These include high 

specificity to target tissue, high binding affinity to 

relevant biological sites, low toxicity to minimize 

adverse effects, stability against degradation in plasma, 

rapid clearance from non-targeted tissues to reduce 

background noise, accessibility at low costs, and 

regulatory approval for clinical use [14]. Importantly, 

while diagnostic radiopharmaceuticals are designed to 

provide imaging information, they exert neither 

pharmacological effects nor significant side effects in 

patients. This safety profile is crucial, as the goal of 

diagnostic imaging is to gather information without 

causing harm to the patient [4]. 

Understanding the mechanisms involved in the 

localization of these radiopharmaceuticals at target sites 

is crucial for their successful application in clinical 

practice. Table 1 summarizes the localization 

mechanisms of the main common diagnostic 

radiopharmaceuticals. 

1.2. Therapeutic Radiopharmaceuticals   

Radiopharmaceutical Therapy (RPT) represents a 

significant advancement in the treatment of various 

malignancies, utilizing the fact that the applied 

radionuclide delivers cytotoxic radiation directly to 

the tumor cells. This approach involves the 

radiolabeling of tumor-targeting agents, such as 

antibodies, proteins, small molecules, and 

Nanoparticles (NPs), which can selectively bind to 

neoplastic cells [30]. Alternatively, these agents can 

concentrate in tumors through physiological 

mechanisms that are predominantly active in 

cancerous tissues. The effectiveness of therapeutic 

radiopharmaceuticals depends on the precise 

calculation of radioactivity that is transferred to the 

targeted tissue without affecting normal tissues [30]. 

Therapeutic radiopharmaceuticals may be curative or 

palliative and can be categorized based on their 

emission characteristics, including α, and β, as well as 

auger-electron emitting radionuclides. This 

classification is crucial for understanding their 

mechanisms of action in therapeutic application [31].  

α-emitting radionuclides, including astatine-211 

(211As), bismuth-213 (213Bi), actinium-225 (225Ac), 

and radium-223 (223Ra), have garnered attention for 

their potential in targeted α- particle therapy (TAT) 

(Table 7) [32-34]. The unique properties of α-emitters, 

including their high Linear Energy Transfer (LET) and 

short path length in tissue, make them suitable 

particularly for treating small-volume, homogeneous, 

disseminated cancers [35]. For instance, [223Ra]Ra 

chloride has shown significant efficacy in treating 

Castrate-Resistant Prostate Cancer (CRPC) and bone 

metastases. Clinical studies have shown that 223Ra can 

improve overall survival and reduce skeletal-related 

PROOF



 Radiopharmaceuticals in Nuclear Medicine 

XX  FBT, Vol. 12, No. 2 (Spring 2026) XX-XX 

metastasis in patients with advanced prostate cancer 

[36-38]. This targeted delivery minimizes the 

exposure of surrounding healthy tissues to radiation, 

thus reducing potential side effects. 

β-emitting radionuclides, like 131I and lutetium-177 

(177Lu), are widely used in PRT. 131I has been a 

longstanding treatment radiopharmaceutical for 

differentiated thyroid cancer. The β  radiation emitted 

from 131I not only destroys cancerous thyroid tissue 

but also helps in the ablation of residual thyroid tissue 

after surgery [38]. 177Lu, often used in Peptide 

Receptor Radionuclide Therapy (PRRT), targets 

specific receptors on tumor cells, such as somatostatin 

receptors in Neuroendocrine Tumors (NETs) [20].  

Auger-electron emitting radionuclides, have a high 

LET, resulting in a high radiotoxicity similar to alpha 

particles. These radionuclides can cause significant 

damage to cells at very short ranges, making them 

suitable for targeting small tumors such as individual 

cells, micrometastases, or small clusters of tumor cells 

[39]. While still largely in experimental stages, auger 

electron therapy holds promise for treating certain 

types of cancers where conventional therapies have 

limited efficiency.   

The RPT radiopharmaceuticals available in clinical 

applications are optimistically increasing [30]. The 

localization mechanisms of the most important 

therapeutic radiopharmaceuticals are summarized in 

Table 2. 

1.3. Theranostic Radiopharmaceuticals   

One of the brilliant concepts in nuclear medicine is 

radio-theranostics. The backbone of radio-theranostics 

refers to the simultaneous or sequential 

accomplishment of therapeutic agents with diagnostic 

tracers in a single framework [43, 44]. As you can see 

in Figure 1, there are two main approaches to radio-

theranostics. One-pair radio-theranostics utilizes 

different radioisotopes of the same element or one 

radioisotope with varying emissions, while the second 

form (two-pair radio-theranostics) uses the same 

molecular probe labeled with different radionuclides 

Table 1. Localization mechanism of diagnostic radiopharmaceuticals 

Radiopharmaceuticals Mechanism of Localization & Action References 

[99mTc]Tc-ECD 
Diffusion into the brain, and retention in the brain due to conversion to a 

hydrophilic species and enzymatic metabolism 
[15] 

[99mTc]Tc-HMPAO 
Once across the blood-brain barrier, it enters the neuron and becomes a 

polar hydrophilic molecule trapped inside the cell 
[16] 

[99mTc]Tc-Sestamibi 
Lipophilic diffusion & binding to negative electrical charges of 

mitochondria 
[17] 

[99mTc]Tc-MAA capillary blockade [17] 

[99mTc]Tc-MDP Chemisorption [17] 

[99mTc]Tc-DMSA Accumulation in proximal tubular cells of kidneys [18] 

[99mTc]Tc-Trodat Binding to dopamine transporters [19] 

[99mTc]Tc-HYNIC-TOC Somatostatin receptor subtype 2-mediation [20] 

[67Ga]Ga-Citrate Binding to transferrin [21] 

[201Tl]thallous chloride Analogous to potassium ion (K+) [22] 

[123I]MIBG Taken up by the postganglionic, presynaptic nerve endings [23] 

[18F]Florbetapir 

[18F]Flutemetamol 

[18F]Florbetaben 

 

Binding to β-amyloid in human brain tissue 
[17] 

[18F]FDG Analogous to glucose internalization through GLUT1 [24] 

[68Ga]Ga-FAPI 
Inhibition of FAP which is overexpressed by cancer-associated 

fibroblasts of several tumor entities 
[25] 

[18F]Flurpiridaz The Structural analog of pyridaben binds with high affinity to the 

mitochondrial complex. 
[26] 

[82Rb]-RbCl Analogous to potassium ion (K+) [27] 

[68Ga]Ga-PSMA 
Targeting Prostate-specific membrane antigen (PSMA) which is 

commonly upregulated in prostate carcinoma (PCa) 
[28] 

[68Ga]Ga-Pentixafor Binding to CXCR4 (significantly upregulated under hypoxic conditions) [29] 

ECD: Ethyl Cysteinate Dimer, FAPI: Fibroblast Activation Protein Inhibitor, HMPAO: Hexa-Methyl Propylene Amine 

Oxime, MAA: Macro-Aggregated Albumin, MDP: Methyl Di-Phosphonate, DMSA: Di-Mercapto Succinic Acid, MIBG: 

Meta-Iodo Benzyl Guanidine, FDG: Fluoro Deoxy Glucose, PSMA: Prostate-Specific Membrane Antigen 
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based on their diagnostic versus therapeutic purposes 

[45]. 

Recently, the United States Food and Drug 

Administration (US FDA) has approved several 

theranostic radiopharmaceuticals, including 177Lu-

labeled anti-somatostatin peptide (Lutathera®) and 
177Lu-labeled anti-PSMA antigen (PluvictoTM). These 

agents are remarkable examples, for treating 

somatostatin receptor-positive Gastroenteropancreatic 

Neuroendocrine Tumors (GEP-NETs) and PC, 

respectively [46, 47]. The relevant impressive ligands 

for imaging and therapy of NET and PC, respectively, 

are DOTA-Phe1-Tyr3-Octreotide (DOTA-TOC), 

DOTA-DPhe1,Tyr3-octreotate (DOTA-TATE), and 

PSMA-617, PSMA-11, and PSMA-I&T, which are 

used worldwide [48-52].  

Finally, the most considerable theranostic 

“radiopharmaceutical pair” (68Ga/ 177Lu-FAPI) has 

attracted so much attention in Cancer-Associated 

Fibroblasts (CAFs) in nuclear medicine [53]. 

Pharmacologically, there is increased expression of 

CAFs in damaged cells compared to normal cells [53].  

Table 2. Localization mechanism of therapeutic radiopharmaceuticals 

Radiopharmaceuticals Mechanism of Localization & Action References 

[131I]- Sodium iodide 
Thyroid function (taken up by the sodium iodide symporter as is the 

case for normal, nonradioactive iodide) 
[40] 

[131I]-MIBG Taken up by the postganglionic, presynaptic nerve endings [23] 
32P Colloid Cell proliferation and protein synthesis [40] 

32P Sodium Phosphate Cell proliferation and protein synthesis [40] 

[225Ac]Ac/[177Lu]Lu-

PSMA 

Targeting Prostate-specific membrane antigen (PSMA) which is 

commonly upregulated in prostate carcinoma (PCa) 
[28] 

[177Lu]Lu-DOTA-TATE Somatostatin receptor subtype 2-mediation [20] 

[153Sm]Sm-EDTMP Binding to hydroxyapatite [40] 

[186Re]Re-HEDP Binding to hydroxyapatite [40] 

[177Lu]Lu-FAPI 
Inhibition of FAP which is overexpressed by cancer-associated 

fibroblasts of several tumor entities 
[25] 

[223Ra]RaCl 
Localizing to sites of bone (calcium mimetic) turnover apposite to 

skeletal metastases 
[41, 42] 

[90Yb]Yb-Ibritomumab Lymphocyte antigen CD20 [40] 

HEDP: Hydroxy Ethylidene Di-Phosphonate, EDTMP: Ethylene Diamine Tetra (Methylene Phosphonic acid) 

 

 

Figure 1. Backbone of radio-theranostics 
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Based on this fact radiolabeled FAPI derivatives can 

be a better alternative to [18F]-FDG. It was 

demonstrated that radiolabeled FAPI derivatives 

showed better Tumor-to-Background Ratios (TBR) in 

the broad spectrum of cancers [53, 54]. Besides the 

absence of relevant adverse effects or poor tolerability 

profiles such as dietary restrictions, makes 

radiolabeled FAPI derivatives a superior choice 

compared to [18F]-FDG [54-56]. Figure 2 represents 

the chemical structures of some of these radiotracers 

which have demonstrated a role in cancer treatment. 

For a clearer perception of one-pair or two-pair 

theranostic radiopharmaceuticals, the physical 

characteristics of theranostic radionuclides are shown 

in Table 3 and the functional mechanisms of the most 

important ones are summarized in Table 4. 

 

1.4. Recent Advancements and Development 

of Popular Radiopharmaceuticals 

In Table 5, we summarized radiopharmaceuticals 

are approved for clinical applications in nuclear 

medicine with diagnostic indications, to have a 

perspective on the field of radiopharmaceuticals used 

in nuclear medicine.  

The development of novel radio-ligands in 

corporations with appropriate radionuclides for cancer 

diagnosis and treatment with optimal characterizations 

led to considerable advancements in nuclear medicine 

[3, 58, 59]. For instance, targeting of albumin or 

immunoglobulin binding sites, Fibroblast Activation 

Protein (FAP), PSMA, or somatostatin receptors 

 

Figure 2. The chemical structure of DOTA-TATE, PSMA-617, and FAPI-46 
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(SSTRs 1-5) can be mentioned as remarkable targets 

for diagnostic or therapeutic purposes to related 

dysfunctions [60-64]. A variety of PSMA derivatives 

have been radiolabeled with 68Ga, including the 

widely used [68Ga]Ga-PSMA-11 as a PET diagnostic 

tracer. It is well known today that PSMA-based 

radiopharmaceuticals act superior to conventional 

diagnostic agents for PC, such as choline-based 

radiopharmaceuticals [65, 66].  

Recently developed 68Ga radiolabeled FAPI 

derivatives are limelight for the detection of various 

types of cancers. They have been approved for use in 

28 kinds of cancers due to their rapid and high tumor 

uptake [25].  

Based on easy accessibility, convenient production, 

and favorable physical characteristics that were 

mentioned in Table 3, 68Ga has been one of the most 

used radionuclides recently [67, 68]. We summarized 

some of the 68Ga-based radiopharmaceuticals in Table 

6. 

From a therapeutic perspective, 177Lu holds 

significant therapeutic potential in recent clinical 

studies [69, 70]. FDA-approved Lutathera® 

([177Lu]Lu-DOTA-TATE) has been used successfully 

as theranostic pair of available [68Ga]Ga-DOTA-

TATE/ DOTA-TOC/ DOTA-NOC in clinical trials 

[49, 71]. Generally, due to the concern about the 

therapeutic aims, β emitting radionuclides (177Lu, 90Y), 

as well as α emitting radionuclides (223Ra, 225Ac), are 

emerging as potent and promising documentaries 

(Table 7) [72, 73].  

It should be pointed out that the implementation of 

α Targeted Therapy (TAT) as theranostic pairs is a 

consequential issue that is rapidly moving forward. 

Individual and exclusive properties of α- emitting 

radionuclides make them more considerable choices 

for therapy objectives [34]. Shorter penetration rate 

compared to β-emitting radionuclides, the capability 

of producing double-strand DNA breaking, severe 

chromosomal damage such as shattered chromosomes 

at mitosis and complex chromosomal rearrangements,  

Table 3. Physical characteristics of theranostic radionuclides 

Radionuclide Half-Life Production Form 
Imaging 

Modality 
Emission 

Therapeutic Radioisotopes 
131I 8.05 days 130Te(n,γ)131Te→131I SPECT γ, β- 
90Y 2.67 days 90Sr/90Y generator PET/SPECT β-/ bremsstrahlung 

153Sm 46.3 hours 152Sm (n,γ)  →153Sm SPECT γ, β- 
177Lu 6.65 days 176Yb(n,γ)177Yb → 177Lu SPECT γ, β- 
223Ra 11.4 days 227Ac(n,γ)227Th → 223Ra SPECT α, γ, β- 

Diagnostic Radioisotopes 
68Ga 68 minutes 68Ge/68Ga generator PET β+ 

99mTc 6 hours 99Mo/99mTc generator SPECT γ 
111In 67.9 hours 112Cd (p,2n) 111In SPECT γ 
123I 13.27 hours 124Xe (p,2n) 123Cs → 123I SPECT γ 

 

Table 4. Localization mechanism of theranostic radiopharmaceuticals 

Radiopharmaceuticals Mechanism of Localization & Action References 

[131I]- Sodium iodide Thyroid function [40] 

[131I]-MIBG Taken up by the postganglionic, presynaptic nerve endings [23] 

[177Lu]Lu-PSMA 617/ 11/ 

I&T 

Targeting Prostate-specific membrane antigen (PSMA) which 

is commonly upregulated in prostate carcinoma (PCa) 
 [28] 

[177Lu]Lu-DOTA-TATE/ 

TOC 
Somatostatin receptor subtype 2-mediation [20] 

[153Sm]Sm-EDTMP Binding to hydroxyapatite [40, 57] 

[177Lu]Lu-FAPI 
Inhibition of FAP which is overexpressed by cancer-associated 

fibroblasts of several tumor entities 
[25] 
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Table 5. General perspective of common diagnostic radiopharmaceuticals in nuclear medicine [82-84] 

Organ/ 

Radiopharmaceutical 

characterizations 

Diagnostic Indication 
Recommended 

Doses (mCi) 

Administration 

Method 

Imaging 

Protocol 

Central Nervous 

System 

[99mTc]Tc-

HMPAO 

[99mTc]Tc-

ECD 

[99mTc]Tc-

Trodat 

[11C]C-

Flumazenil 

[18F]F-DOPA 
 

 

 

[123I]I-

Ioflupane 

[18F]-FDG 

[18F]F-

Florbetapir 

[18F]F-

Flutemetamol 

[18F]F-

Florbetaben 

Brain perfusion 

imaging 

Brain perfusion 

imaging 

Neurodegenerative 

disease detection 

Neurodegenerative 

disease detection 

Neurodegenerative 

disease detection 

 

 

 

Neurodegenerative 

disease detection 

Brain metabolic 

imaging 

Cognitive impairment 

detection 

Cognitive impairment 

detection 

Cognitive impairment 

detection 

10-20 

10-20 

20 

20 

5-10 

 

 

 

3-5 

10-15 

10 

5 

8.1 

IV injection 

IV injection 

IV injection 

IV injection 

IV injection 

 

 

 

IV injection 

IV injection 

IV injection 

IV injection 

IV injection 

 

20-120min PI 

20-40min PI 

4hPI 

30-60min PI 

Began at the 

start of the 

tracer 

infusion over 

94min 

3-6h PI 

45-60min 

10-50 PI 

90 min PI 

45-130min PI 

 

[111In]In-

DTPA 

Cisternography 0.5 

Lumbar 

puncture 

injection 

(sarachnoid 

space) 

4, 24-48 h PI 

Obstructive 

hydrocephalus 

 

0.5 

Lumbar 

puncture 

injection 

0.5-1 h PI 

Detection of the 

actual site of CSF 

leakage 

2-3 

Injected via the 

reservoir for VP 

shunt and via 

lumbar 

puncture needle 

in subarachnoid 

space for LP 

shunt 

4, 24-48 h PI 

Lacrimal Glands [99mTC]TcO4
- Dacryoscintigraphy 0.05-0.2 

A drop should 

be placed near 

the center of the 

cornea 

1-5min PI 

Salivary Glands [99mTC]TcO4
- 

Salivary gland 

function scintigraphy 
5-10 IV injection 

5min intervals 

for 30min 

Thyroid 
[123/131I]-NaI 

[99mTC]TcO4
- 

Thyroid function 

imaging 

Thyroid function 

imaging 

0.1 (131I), 0.3 

(123I) 

10 

Oral 

IV injection 

24h PI 

10-30min PI 
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Lungs 

[99mTc]Tc-MAA 
133Xe Gas 

[99mTc]Tc-

DTPA 

[99mTc]Tc-

Technegas 

[67Ga]Ga-Citrate 

Lung perfusion imaging 

Lung ventilation imaging 

Lung ventilation imaging 

Lung ventilation imaging 

Lung nonembolic disease 

2-4 

10-15 

30 

0.5-1 

5-10 

IV injection 

Inhalation 

Inhalation 

Inhalation 

IV injection 

Immediately 

PI 

Immediately 

PI 

Immediately 

PI 

Immediately 

PI 

48-72h 

Heart 

[201Tl]Tl-

Thallous 

Chloride 

MPI Stress: 2-3 IV injection 5-10 min PI 

[99mTc]Tc-

Sestamibi 
MPI 

2-day 

protocol: 

Stress:20-25 

Rest:20-25 

 

IV injection 

 

 

 

15min PI 

46-60 min PI 

[99mTc]Tc-

Tetrafosmin 
MPI 

Stress:15-30 

Rest:8-10 

IV injection 

 

30-60 min PI 

46-60 min PI 

[82Rb]-RbCl MPI 
Stress:60 

Rest:60 

IV injection 

 

Immediately 

PI 

Immediately 

PI 

[18F]-Flurpiridaz MPI Rest+stress≤14 IV injection 
Immediately 

PI 

[18F]-FDG Myocardial metabolic 

imaging 
10-15 IV injection 1h PI 

[99mTc]Tc-

Pyrophosphate 

Myocardial infarct 

imaging 
10-15 IV injection 1-2 h PI 

[123I]-MIBG Cardiac innervation 

imaging 
5-10 

IV injection 

 
3, 24, 48h PI 

Liver 

[99mTc]Tc-IDA 

Derivatives 

[99mTc]Tc-Sulfur 

Colloid 
 

 

 

[99mTc]Tc-RBC 

Hepatobiliary function 

imaging 

liver imaging (Kupffer 

cells function) 

Focal lesion detection in 

the liver 

liver imaging (Kupffer 

cells function) 

 

 

Liver hemangioma 

imaging 

3-5 

2-4 

10-15 

 

 

 

25 

IV injection 

IV injection 

Bolus injection 

 

 

 

IV injection 

3-4h PI 

5-10 min PI 

Rapid 

Sequential 

Imaging PI 

 

 

Immediately 

PI 

Spleen 

[99mTc]Tc-

denatured RBC 

[99mTc]Tc-Sulfur 

Colloid 

Spleen structure/ any 

abnormality 

Spleen function imaging 

2-3 

2-3 

IV injection 

IV injection 

30-60 min PI 

15-30 min PI 

Kidneys 

[99mTc]Tc-

MAG3 
Renal function assessment 5-10 IV injection 

Immediately  

PI (Dynamic) 

[99mTc]Tc-

DMSA Renal imaging 2-5 IV injection 
2-4h PI 

(Static) 

[99mTc]Tc-

DTPA 
GFR measurement 10-15 IV injection 

By tracer 

administration 

(Dynamic) 

[99mTc]TC-EC Renal function assessment 5-8 IV injection 
Immediately  

PI (Dynamic) 

Skeleton 

[99mTc]Tc-

Phosphonate 

Compounds 

[18F]-NaF 

Bone imaging 

 

Bone imaging 

10-20 

 

4 

IV injection 

 

IV injection 

2-3 h PI 

15-30 min PI 

IV: Intravenous, PI: Post-Injection, MPI: Myocardial Perfusion Imaging, CSF: CerebroSpinal Fluid, GFR: Glomerular 

Filtration Rate, VP: Ventriculo-Peritoneal, LP: Lumbar Puncture 
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 Table 6. Introduction of 68Ga-labeled radiopharmaceuticals [49, 85-94] 

https://clinicaltrials.gov/ct2/results?recrs=&cond=68Ga&term=&cntry=&state=&city=&dist=#wrapper  

Radiopharmaceutical Indication Mechanism of Action 
Doses 

(mCi) 

Imaging 

Protocol 

DOTANOC NET 

GPCR Targeting: 

sst2 receptor 

agonist 

3-5 60min PI 

DOTATOC NET 

GPCR Targeting: 

sst2 receptor 

agonist 

3-5 60min PI 

DOTATATE NET 

GPCR Targeting: 

sst2 receptor 

agonist 

5 60min PI 

OPS202 NET 
GPCR Targeting: 

sst2 receptor antagonist 
4 60min PI 

FAPI-46/ 04/ CHX Tumor imaging FAP Inhibition 3-8 15-30min PI 

PSMA-11/ R2 PC PSMA Targeting 3-7 50-100min PI 

Pentixafor CNS Lymphoma 
Chemokine receptors 

Targeting 
2.2-4.2 60min PI 

RGD Coronary Artery Disease 
Interaction with integrin 

αVβ3 
5 70min PI 

Bisphosphonates: 

DOTAMPAM 

DOTAMZOL 

BPAMD 

NO2APBP 

Bone metastases Binding to HA 

3-5 

4-5 

12-13 

3-5 

60min PI 

45min PI 

50min PI 

30min PI 

NeoBOMB1 

Breast Cancer 

Prostate Cancer 

Colorectal Cancer 

Non-Small Cell Lung 

Cancer 

Small Cell Lung Cancer 

Binding to GRPR 3.5-6.5 120min PI 

FAPI-2286 Tumor imaging FAP Inhibition 6 60min PI 

ICAM-1pep Cancer NA 6 60min PI 

N188 Neoplasms Nectin-4 Targeting 4-6 60min PI 

NODAGA-

E[c(RGDyK)]2 

Neuroendocrine 

Carcinoma 

Breast Cancer 

Ovarian Cancer 

Interaction with integrin 

αVβ3 
5 60min PI 

PSMA-617 PC PSMA Targeting 3-7 50-100min PI 

Grazytracer 
NSCLC 

Melanoma 

Identification of tumor 

responses to immune 

checkpoint inhibitory 

cancer therapy 

5 60min PI 

BNOTA-PRGD2 Rheumatoid Arthritis 
Interaction with integrin 

αVβ3 
5 60min PI 

RM2/ 26 

Stage II Prostate 

Adenocarcinoma 

Stage III Prostate 

Adenocarcinoma 

Stage IV Prostate 

Adenocarcinoma 

Targeting GRPR that are 

overexpressed in several 

human tumors 

3-4 40-90min PI 

ABY-025 

Esophageal Neoplasms 

Gastric Neoplasms 

Malignant 

Breast Cancer 

HER2-positive Gastric 

Cancer 

HER2 Targeting 2.5 2-3h PI 

NY104/105/108 Renal Cell Carcinoma NA 2-5 45 -75PI 
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P16-093 PC PSMA Targeting 4-5 60min PI 

HX01 Malignant Neoplasm 

Interaction with 

aminopeptidase N 

(APN/CD13) and/or 

integrin αvβ3 

NA 30min PI 

BNU-PSMA 
Primary and metastatic 

lesions 
   

Citrate Fever of Unknown Origin 
Fe(III) biomimetic that 

binds to apo-transferrin 
11.5 45-60min PI 

FAP-RGD 
Imaging agent for various 

cancers 
FAP Inhibition 4-7 50-100min PI 

FF58     

NOTA-SNA002 Solid Tumor  1-5  

NODAGA-exendin 4 Insulinoma 

targeting the glucagon-

like peptide-1 receptor 

(GLP-1R) 

3.5 60min PI 

HTK03149 

Prostate Cancer 

Prostatic Neoplasm 

Prostatic Disease 

Urogenital Neoplasms 

Disease Attributes 

Neoplasms 

PSMA Targeting 6.5 60min PI 

DOTA-JR11 Neuroendocrine Tumors Somatostatin Antagonist 4.5-6.5 60min PI 

P16-093 PC PSMA Targeting 4-6 60min PI 

BMV101 
Idiopathic Pulmonary 

Fibrosis 

Macrophage response to 

inflammation 
3.5 60min PI 

NOTA-NFB 
Glioma 

Breast Cancer 
CXCR4 Targeting 5 NA 

DOTA-NT-20.3 
Pancreatic Ductal 

Adenocarcinoma 
NTR-1 Targeting 4.5-9 60min PI 

CBP8 

Lung Cancer 

Radiation Fibrosis 

Radiation-Induced Lung 

Injury 

Pancreas Cancer 

Targeting collagen type I 

(detection of detecting 

collagen deposition) 

  

NEB Lymphatic Disorders 

Forms a complex with 

serum albumin in the 

interstitial fluid after it is 

locally injected 

2-3 20-40min PI 

Sgc8 Colorectal Cancer Targeting CCK4 

0.3-0.6 

after 
18FDG 

routine 

injection 

30-60min PI 

DOTA-5G 

Metastatic Pancreatic 

Cancer 

Locally Advanced 

Pancreatic 

Adenocarcinoma 

NA NA NA 

NOTA-AE105 

Lung CancerRadiation 

FibrosisRadiation Induced 

Lung InjuryPancreas 

Cancer 

uPARs Targeting 5-6 20min PI 

P16-093/ 15-041 PC PSMA Targeting 4-5 60min PI 

OPS202 NET  4-5 30min PI 

DOTA-Siglec-9 Synovitis detection 

Targeting Vascular 

Adhesion Protein 

1(inflammation imaging) 

5 60min PI 
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destruction of tumoral cells independently of 

oxygenation, and the potential to overcome resistance 

against β-emitters can be mentioned as some of the 

brilliant properties of α emitters [74, 75]. [213Bi]Bi-

DOTA-TOC has demonstrated optimistic results in 

resistant NET cases to [177Lu]Lu-DOTA-TATE 

therapeutic procedure [76] Multi-center studies on 

[225Ac]Ac-PSMA-617 as a TAT agent have been 

started to confirm efficacy, safety profile, probable 

side effects, and toxicities in clinical applications [77, 

78]. Recently, [225Ac]Ac-PSMA-617 has been 

considered a well-tolerated radiopharmaceutical with 

acceptable side effects [79, 80]. 

Currently, different kinds of FAPIs’ derivatives 

have been developed and radiolabeled with imaging 

and therapeutic radionuclides which were used in 

different clinical indications [81]. 

2. Conclusion 

The application of radiopharmaceuticals is an 

appropriate consequential method not only for the 

management of disease or dysfunctions but also for 

the evaluation of disorders creations, which could 

be applicable for the developments of therapeutic 

procedures. In recent years so much precious 

progress in diagnostic and therapeutic processes in 

nuclear medicine has been accomplished. Nuclear 

medicine protocols were based on 131I, 99mTc, 201Tl, 

and 32P for a long time. The introduction of 153Sm 

and after that 177Lu as theranostic agents was a 

significant milestone in nuclear medicine. The 

concept of theranostics led to opening new 

horizons to simultaneously diagnose and treatment 

of NET and PC with significant optimistic results. 

An important paradigm took place in nuclear 

medicine parallel to the application of new PET 

radiotracers that paved the way for diagnosis with 

DPI-4452 

Clear Cell Renal Cell 

Cancer (ccRCC) 

Pancreatic Ductal 

Adenocarcinoma (PDAC) 

Colorectal Cancer (CRC) 

NA NA NA 

IMP-288 

HER2 Negative Breast 

Carcinoma Expressing 

CEA 

TF2 antibody 4-5 60-120min PI 

NODAGA-LM3 NET sst2 receptor agonist 4.5-6.5 60min PI 

Tilmanocept SLN mapping 

binding to a cell surface 

receptor unique to 

macrophages and dendritic 

cells 

0.3 30-90min PI 

MSA Lymph node imaging NA NA NA 

PLN-74809 
Idiopathic Pulmonary 

Fibrosis 
NA NA NA 

VMT02 Melanoma diagnosis NA NA NA 

MLN6907 
Imaging of Solid 

Gastrointestinal Tumors 
NA NA NA 

BAY86-7548 PC 
Targeting bombesin 

receptor subtype II (PC) 
4-5 60min PI 

PNT6555 

Pancreatic Ductal 

Adenocarcinoma 

Colorectal Cancer 

Esophageal Cancer 

Melanoma (Skin) 

Soft Tissue Sarcoma 

FAP inhibition NA 60min PI 

NET: Neuroendocrine Tumor, GRPR: Gastrin-releasing peptide receptor, HER2: Human epidermal growth factor 

receptor type 2, MSA: Mannosylated human serum albumin, PC: Prostate cancer, PSMA: Prostate specific membrane 

antigen, uPARs: urokinase-type plasminogen activator receptors, HA: Hydroxyapatite, NTR-1: Neurotensin receptor 1, 

CCK4: Colon carcinoma kinase-4, NA: Not Available 
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higher accuracy and resolution in cancer care 

protocols. Recently developed 18F- and 68Ga-based 

radiopharmaceuticals offer improved resolution 

and higher quantities. Additionally, they allow for 

the utilization of biological molecules as marker 

ligands, including analogs of glucose, antibodies, 

and amino acids. Furthermore, zirconium-89 (89Zr) 

is well suited for immuno-targeted PET imaging 

with slow kinetics. It also provides opportunities 

for pre-targeting with mAb followed by89Zr-

chelator binding and PET imaging. 

The theranostic approach is gaining increasing 

interest, using the same vector primarily with β+/ 

γ emitter radionuclides for diagnostic purposes, 

and β/ α emitters for targeted radionuclide therapy 

purposes. Long-lived β+ emitter radionuclides 

have attracted significant attention for clinical 

applications in recent years. 89Zr, 45Ti, 64Cu, and 
44Sc with half-lives of 78.41 hours, 184.8 minutes, 

Table 7. General perspective of common therapeutic radiopharmaceuticals in nuclear medicine 

Radiopharmaceutical Indication 
Recommended 

Doses (mCi) 

Administration 

Method 
Reference 

[223Ra]Ra-Chloride Skeletal metastases 0.1 IV Injection [95-97] 

[90Y]Y-Glass 

Microspheres 
Hepatic carcinoma 60-70 

Delivery into 

the hepatic 

artery by slow 

injection 

[98-100] 

[90Y]Y-Resin 

Microspheres 
Hepatic carcinoma 30-80 

Delivery into 

the hepatic 

artery by slow 

injection 

[98, 100, 

101] 

[131I]-NaI 

Differentiated thyroid cancer 

Graves’ disease Hyperfunctioning 

nodules 

4-200*a Oral [102-104] 

[153Sm]Sm-EDTMP Skeletal metastases 30-70 IV Injection [105, 106] 

[177Lu]Lu-EDTMP Skeletal metastases 30-70 IV Injection [105] 

[186Re]Re-HEDP Skeletal metastases 70-140 IV Injection [107, 108] 

[131I]-MIBG 

phaeochromocytomas 

neuroblastomas 

ganglioneuroblastomas 

ganglioneuromas 

paragangliomas 

carcinoid tumors 

medullary thyroid carcinomas 

Merkel cell tumors 

MEN2 syndromes 

100-300 IV Injection [109, 110] 

[177Lu]Lu-PSMA-617 PCa 200/cycle IV Injection [47, 111] 

[177Lu]Lu-PSMA-

I&T 
PCa 200/cycle IV Injection [112, 113] 

[177Lu]Lu-

DOTATATE 
NET 150-200 IV Injection [114] 

[177Lu]Lu-

DOTATOC 
NET 150-200 IV Injection [114] 

[225Ac]Ac-PSMA-617 PCa 0.2/cycle IV Injection [77, 115] 

[225Ac]Ac-PSMA-

I&T 
PCa 0.2/cycle IV Injection [116, 117] 

[225Ac]Ac-

DOTATATE 
NET 0.2/cycle IV Injection [118, 119] 

[225Ac]Ac-

DOTATOC 
NET 0.2/cycle IV Injection [120, 121] 

[90Y]Y-DOTATATE NET 68-120*b IV Injection [114] 

[90Y]Y-DOTATOC NET 68-120*b IV Injection [114] 
*a It depends on the indication, *b It depends on the number of therapeutic cycles, NET: Neuroendocrine Tumor, IV: 

Intravenous, PCa: Prostate Cancer 
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12.7 hours, and 4.042 hours respectively are more 

applicable compared to PET radionuclides with 

short half-lives. It is estimated that a widespread 

list of long-life PET radionuclides will be added to 

the diagnostic process in nuclear medicine. 

Preclinical trials are currently underway to 

investigate their effectiveness.  

Recently, α-emitter therapeutic radionuclides 

including 211At for glioblastoma, 225Ac for 

leukemia and prostate cancer, 212Pb for breast 

cancer, and 223Ra for prostate cancer have been 

extensively studied. Some of them have also been 

used in clinical trials, as mentioned previously. It 

is anticipated that the use of α-emitting 

radiopharmaceuticals for treating difficult-to-treat 

cancers will continue to grow, based on the 

substantial clinical results of α-emitters in nuclear 

medicine. 
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