
Copyright © 2026 Tehran University of Medical Sciences.  
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International 
license (https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work 
are permitted, provided the original work is properly cited.  
DOI:  

 

 

Frontiers in Biomedical Technologies Vol. 13, No. 4 (Autumn 2026) XX-XX 

 

 

 

 

 

Intelligent Diagnosis in Trauma: Exploring Machine Learning and Radiomics for 

Kidney Injury Assessment 

Hanieh Alimiri Dehbaghi 1, Karim Khoshgard 2* , Hamid Sharini 2, Samira Jafari Khairabadi 1 

1 Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran 

2 Department of Medical Physics, Kermanshah University of Medical Sciences, Kermanshah, Iran 

*Corresponding Author: Karim Khoshgard 

Email: khoshgardk@gmail.com 

Received: 31 October 2024 / Accepted: 02 June 2025  

Abstract 

Purpose: The initial evaluation of trauma poses a formidable and time-intensive challenge. This study aims to 

scrutinize the diagnostic efficacy and utility of integrating machine learning models with radiomics features for 

the identification of blunt traumatic kidney injuries in abdominal CT images. 

Materials and Methods: This investigation involved the collection of 600 CT scan images encompassing 

individuals with varying degrees of kidney damage resulting from trauma, as well as images from healthy 

subjects, sourced from the Kaggle dataset. An experienced radiologist performed the segmentation of axial 

images, and radiomics features were subsequently extracted from each region of interest. Initially, 30 machine 

learning models were deployed, with a final selection narrowed down to three models: Light Gradient-Boosting 

Machine (LGBM), Ridge Classifier, and Adaptive Boosting (AdaBoost). The performance of these chosen 

models was subjected to a more comprehensive examination. 

Results: The AdaBoost model exhibited notable performance in diagnosing mild kidney injury, achieving 

accuracy and sensitivity rates of 93% and 94%, respectively. Furthermore, for severe kidney injury, the AdaBoost 

model demonstrated a remarkable sensitivity of 96% and an accuracy of 97%. The Area Under the Curve (AUC) 

values for this model were also calculated, yielding values of 92.91% and 97.04% for mild and severe renal 

injuries, respectively. 

Conclusion: The artificial intelligence models employed in this study hold significant potential to enhance patient 

care by providing valuable assistance to radiologists and other medical professionals in the diagnosis and staging 

of trauma-related kidney injuries. These models offer the capability to prioritize positive studies, expedite 

evaluations, and accurately identify more severe injuries that may necessitate immediate intervention. 

Keywords: Kidney; Blunt Trauma; Radiomics; Computed Tomography Scan; Machine Learning; Artificial 

Intelligence. 
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1. Introduction  

The kidney, as the primary excretion filter organ 

within the human body, is susceptible to trauma that 

may manifest as damage to the parenchyma or renal 

vasculature, leading to bleeding or injury to the 

collecting system with potential urine leakage. The 

kidney, while situated in a relatively safeguarded 

retroperitoneal area, is the organ most frequently 

harmed in the genitourinary system due to trauma [1]. 

Renal trauma constitutes a notable portion of overall 

trauma cases, ranging from 1% to 5%, with the 

majority attributed to blunt abdominal trauma, 

accounting for 80% to 90% of cases [2-4]. Renal 

trauma primarily impacts males, constituting 72% to 

93% of reported cases. This type of injury is also more 

prevalent among younger individuals, with the 

average age ranging from 31 to 38 years [5]. Blunt 

renal trauma, more prevalent than penetrating trauma, 

is often caused by Incidents such as motor vehicle 

collisions, falls, injuries from sports activities, and 

pedestrian accidents. The mechanisms of blunt renal 

trauma include a direct impact on the organ, 

compression against the paravertebral muscles, or 

rapid deceleration forces. The incidence of illness and 

death connected to renal trauma is closely tied to the 

grade of injury, concurrent injuries, and the 

effectiveness of management interventions [6]. 

Contrast-enhanced computed tomography is 

currently regarded as the preferred imaging technique 

for hemodynamically stable patients who have 

experienced blunt or penetrating renal trauma [5]. CT 

is frequently the primary diagnostic modality in 

patients with suspected or confirmed renal trauma, 

particularly in large trauma centers dealing with 

multiple-system injuries. In cases of acute trauma, CT 

plays a crucial role by offering comprehensive 

anatomical and physiological information that aids in 

distinguishing minor injuries from those necessitating 

intervention [7]. Despite its diagnostic utility, 

challenges arise in the timely interpretation of CT 

scans, particularly when dealing with abdominal CT 

examinations that cannot be promptly reviewed [8]. 

Additionally, not all imaging departments have round-

the-clock on-site experienced radiologist coverage; 

although artificial intelligence techniques cannot 

replace radiologists, they can assist less experienced 

radiologists in order to reach the correct diagnosis [9]. 

The subsequent concern revolves around the 

formidable workload confronting radiologists within a 

department. In the daily operations of radiology, 

radiologists bear the responsibility of interpreting 

medical images sourced from diverse modalities. 

Their roles often necessitate thorough analyses and 

evaluations of these images within constrained 

timeframes. However, with the continuous evolution 

of modern medical technologies, the abundance of 

imaging data is on a swift upward trajectory. Notably, 

contemporary CT examinations feature thinner slices 

compared to historical practices [10]. Consequently, 

the development of an artificial intelligence model for 

the diagnosis of renal injuries aims to support 

radiologists in the identification, quantification, and 

analysis of changes in lesion size over time.  

Artificial Intelligence (AI) has increasingly become 

a part of our everyday experiences, encompassing a 

range of technologies and methodologies rooted in 

computer science, statistics, and data science. 

Machine learning, a subset of artificial intelligence 

(AI), utilizes algorithms to autonomously detect 

patterns within data and make predictions or decisions 

based on these patterns, emphasizing reduced human 

intervention [11, 12].  

In the field of medical image analysis, significant 

progress has been made in recent decades, enabling 

the extraction of quantitative features that may not be 

visible through visual inspection [13]. This 

methodology, known as radiomics, captures tissue and 

lesion characteristics, such as heterogeneity and 

shape, and utilizes these features to predict current and 

future variables, including disease presence or 

absence, treatment response, and time to recurrence 

[14, 15]. 

Yang et al. conducted a study focusing on the 

classification of small renal masses through machine 

learning techniques applied to CT scans. Their 

research involved data from 163 patients with small 

renal masses, which included 118 scans of Renal Cell 

Carcinoma (RCC) cases and 45 scans of renal 

angiomyolipoma without visible fat (AMLwvf). The 

researchers extracted textual features using the 

Pyradiomics package, applying it to the Regions Of 

Interest (ROI) generated with the ITK-SNAP tool. 

They employed eight different machine learning 

techniques in their analysis, with experimental results 

indicating that Support Vector Machines (SVM) 
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utilizing t-score and relief methods achieved 

commendable performance, reaching an area under 

the curve (AUC) of 90% in the classification tasks 

[16]. Radiomics functions as an automated 

methodology for feature generation, extracting a 

myriad of quantitative phenotypes (radiomics 

features) from radiological images [15, 17]. 

Subsequently, Machine Learning (ML) algorithms can 

be trained to discern relationships between these 

radiomics features and patient diagnoses [18]. 

The purpose of this study is to investigate the 

efficiency of implementing machine learning models 

using radiomics features in the diagnosis of kidney 

injuries caused by trauma. In this study, the 

effectiveness of three machine learning models in 

diagnosing mild and severe injuries has been 

investigated using the criteria of accuracy, precision, 

F1 score, specificity, AUC, and sensitivity. If these 

artificial intelligence tools have an acceptable 

performance, they can help improve their performance 

as assistants alongside less experienced radiologists. 

Especially in emergency departments, where due to 

the heavy workload of physicians and the need to 

quickly interpret the images, there is a greater 

possibility of mistakes. 

2. Materials and Methods  

The outline of the present research is shown in 

Figure 1.  

2.1. Data Collection  

In this investigation, a total of 600 axial CT slices 

sourced from the Kaggle database 

[https://kaggle.com/competitions/rsna-2023-

abdominal-trauma-detection, 2023] were employed. 

These comprised 200 slices depicting a healthy 

kidney, another 200 slices exhibiting mild kidney 

damage, and the remaining 200 slices manifesting 

severe kidney damage resulting from blunt trauma. 

The images were in DICOM format with a matrix size 

of 512×512. The slice thickness ranged from 0.5 to 5 

mm.   

2.2. Segmentation 

A fundamental step in quantitative image analysis, 

image segmentation involves the identification and 

delineation of regions of interest within an image. In 

this investigation, the region encompassing the kidney 

on each axial CT slice was identified and isolated. This 

segmentation process was executed by a skilled 

radiologist with more than 15 years of experience in 

interpreting trauma images, using 3D Slicer software. 

2.3. Feature Extraction   

In this study, this step refers to the concept of 

radiomics. In general, radiomics aims to extract 

quantitative and ideally repeatable information from 

diagnostic images, including complex patterns that are 

 

Figure 1. The outline of the research 
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difficult to detect or quantify by the human eye [15]. 

Employing the Radiomics toolbox within 3D Slicer 

software, this step involved the extraction of features, 

comprising first-order statistical features and texture 

features such as Gray Level Dependence Matrix 

(GLDM), Gray Level Run Length Matrix (GLRLM), 

Gray Level Size Zone Matrix (GLSZM), and 

Neighboring Gray Tone Difference Matrix 

(NGTDM). Wavelet filters with various 

decompositions, including HHH, HHL, HLH, HLL, 

LHH, LHL, LLH, and LLL, were applied to obtain 

these features in all three dimensions. The results were 

recorded in an Excel file. Wavelet analysis of an image 

is possible using a pair of square mirror filters, a high-

pass filter, and a low-pass filter [19]. The high-pass 

filter highlights the changes in the gray level and 

therefore emphasizes the details of the image, while 

the low-pass filter smoothes the image in terms of the 

gray level and removes the details of the image [15]. 

First-order features: These features describe the 

intensity distribution of pixels or voxels in the image 

area defined by the mask through common and basic 

criteria [20]. 

Gray Level Dependence Matrix (GLDM): The 

features of this group define the gray level 

dependencies in an image. Gray-level dependency is 

defined as the number of related voxels within a 

certain distance that is dependent on the central voxel 

[20]. 

Gray Level Run Length Matrix (GLRLM): These 

features provide information about the spatial 

distribution of the run of consecutive pixels with the 

same gray level, in one or more directions, in 2 or 3 

dimensions [15]. 

Gray Level Size Zone Matrix (GLSZM): GLSZM 

is based on a similar principle to GLRLM, but here, 

counting the number of groups (so-called regions) of 

contiguous adjacent pixels or voxels with the same 

gray level forms the basis of the matrix. A tissue with 

more homogeneity creates a wider and flatter matrix 

[20, 21]. 

Neighboring Gray Tone Difference Matrix 

(NGTDM): NGTDM calculates the sum of 

differences between the gray level of a pixel or voxel 

and the average gray level of pixels or voxels adjacent 

to it at a predetermined distance [15]. 

2.4. Training of Machine Learning Models  

In this study, 75% of the data (slices) was used for 

training, and 25% of the data was also assigned to test 

the algorithms. These kinds of issues are supervised 

learning issues; they need labels. In supervised 

learning, each sample contains two parts: one is input 

observations or features, and the other is output 

observations or labels [22, 23]. In this study, the input 

observations are radiomics features, and the output 

observations are the presence or absence of kidney 

injuries. The purpose of supervised learning is to 

conclude a functional relationship from training data 

that generalizes well to testing data [10].  

Here is a brief description of each of the models : 

LGBM is a high-speed, distributed, high-

performance machine learning framework based on a 

decision tree algorithm. This framework can be used 

in various tasks such as sorting, classification, 

regression, and other machine learning tasks. By 

maintaining accuracy, the speed of this framework 

increases about ten times, and the amount of occupied 

memory is about three times less. This framework has 

advantages such as high training efficiency, low 

memory occupancy, high precision, and support for 

parallelization, and it can also be implemented using a 

GPU to process large data [24, 25]. 

Ridge Classifier is a linear classification algorithm 

that is based on the Ridge regression algorithm. It is 

used to classify data into two or more classes based on 

features. In Ridge regression, the objective is to 

minimize the sum of squared errors between the 

predicted values and the actual values while also 

incorporating a penalty term to prevent overfitting. 

This penalty term is based on the L2 norm of the 

coefficients, which helps to shrink the coefficients of 

less important features towards zero [26]. 

Among the various ensemble learning algorithms, 

adaptive boosting (AdaBoost) [27] is one of the most 

prominent. The fundamental concept behind ensemble 

learning is to train multiple weak learners using 

training data and then combine these weak learners to 

create a strong learner. Weak learners are typically 

based on individual learning algorithms, such as 

Artificial Neural Networks (ANN) or Support Vector 

Machines (SVM) [28].  
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During preliminary experiments, these three 

models consistently achieved the highest accuracy, 

sensitivity, and specificity on our validation data, 

outperforming other algorithms in terms of 

classification metrics. LGBM and AdaBoost are 

ensemble methods known for their ability to handle 

high-dimensional, heterogeneous data and reduce 

overfitting challenges in radiomics. Ridge Classifier, 

with its regularization capability, performed well with 

correlated features, which are common in radiomics 

datasets. 

These models demonstrated efficient training and 

prediction times, making them suitable for potential 

clinical application where rapid decision support is 

valuable [24, 26]. All three models provide 

mechanisms for feature importance ranking, which 

was essential for our goal of identifying clinically 

relevant radiomics features. 

Hyperparameter tuning is the process of 

systematically selecting the best set of configuration 

values (hyperparameters) for a machine learning 

model to optimize its performance. Unlike model 

parameters, which are learned during training, 

hyperparameters are set before training and control 

how the model learns or how complex it can become 

[29]. 

Below are brief definitions of some commonly 

tuned hyperparameters: 

• learning_rate: Controls how much the model’s 

weights are updated during training.  

• max_depth: Specifies the maximum depth of 

each decision tree in ensemble models. 

• min_child_weight: Sets the minimum sum of 

instance weights (or number of samples) 

required in a child node.  

• n_estimators: The number of trees (for 

ensemble methods like boosting or bagging) or 

iterations used in the model.  

• penalty: Used in linear models (e.g., logistic 

regression), this hyperparameter determines the 

type of regularization applied to prevent 

overfitting. Common options include ‘l1’ 

(lasso), ‘l2’ (ridge), or ‘elasticnet’ (a 

combination of both). 

• solver: Specifies the algorithm used to optimize 

the model’s parameters during training (e.g., 

‘liblinear’, ‘saga’, ‘lbfgs’ in logistic regression) 

[29-31]. 

The results of hyperparameter tuning for all three 

models are given in Tables 1 and 2. 

 

In the course of this study, a dedicated feature 

selection stage was not incorporated into our 

methodology. An intrinsic advantage of the employed 

machine learning models lies in their capacity to 

perform feature selection seamlessly during algorithm 

execution. This eliminates the necessity for a discrete 

step labeled 'feature selection. The most important 

features selected by all three models are shown in 

Table 3. 

Since these features have shown their importance in 

the diagnosis of trauma-related kidney injuries, they 

can be considered good candidates for biomarkers of 

kidney complications [32], so it is suggested that in 

future studies, the correlation between these features 

and clinical parameters can be investigated. 

Radiomics features identified as most important by 

the models are clinically relevant because they 

quantitatively capture underlying pathological  

Table 1. The results of Hyperparameter tuning (Mild 

renal injury) 

LGBM 

learning_rate = 1.0 

max_depth = 5 

min_child_weight = 1.0 

n_estimators = 200 

AdaBoost 
n_estimators = 30 

learning_rate = 0.97 

Ridge Classifier 
penalty = l2 

solver = “liblinear” 

 

Table 2. The results of Hyperparameter tuning (Severe 

renal injury) 

LGBM 

learning_rate = 0.1 

max_depth = 5 

min_child_weight = 3.0 

n_estimators = 25 

AdaBoost 
n_estimators = 30 

learning_rate = 0.99 

Ridge Classifier 
penalty = l2 

solver = “liblinear” 
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 Table 3. The most important features selected by all three models in CT scan images 

LGBM AdaBoost Ridge Classifier 

First order 

Mean (HLL) 

10Percentile 

10Percentile (LLH) 

Mean (LLH) 

Minimum (LLH) 

Mean Absolute Deviation (LHL) 

Entropy (LHH) 

Kurtosis (LLH) 

Mean (LHH) 

GLCM 

Idn 

Imc1 (HHL) 

Cluster Shade (LHL) 

Cluster Shade (HLL) 

Difference Variance (HHL) 

GLDM 

Gray Level Non Uniformity 

Dependence Non Uniformity (LLH) 

Dependence Non Uniformity Normalized 

(LHL) 

Large Dependence High Gray Level 

Emphasis 

Small Dependence Low Gray Level 

Emphasis (LLH) 

Dependence Non Uniformity Normalized 

(HLL) 

Dependence Variance (HHL) 

GLRLM 

Run Entropy (LLL) 

Gray Level Variance 

Long Run Emphasis (HHL) 

Run Variance (HHH) 

GLSZM 

Gray Level Non Uniformity Normalized 

Small Area Emphasis (LHL) 

Low Gray Level Zone Emphasis (HLL) 

Zone Entropy (HLL) 

Size Zone Non Uniformity Normalized 

(LHL) 

Small Area Emphasis (LHL) 

Gray Level Variance (HHH) 

NGTDM 

Busyness (LLL) 

Busyness 

Contrast 

First order 

Entropy (LHH) 

Mean (LHH) 

Mean (HLL) 

Median (HLH) 

Kurtosis (HHL) 

Mean Absolute Deviation (HHH) 

Robust Mean Absolute Deviation 

Skewness 

Mean (HLL) 

Skewness (HLL) 

Maximum (LLL) 

GLCM 

Contrast (HLL) 

Inverse Variance (HLH) 

Correlation (HHL) 

Imc1 (HHL) 

MCC (HHH) 

MCC (LHL) 

Cluster Shade (HLL) 

Imc2 (HLH) 

Imc2 (HHL) 

GLDM 

Dependence Variance (HLL) 

Dependence Variance 

Small Dependence Low Gray Level 

Emphasis (LLH) 

Dependence Non Uniformity Normalized 

(LHL) 

Dependence Non Uniformity Normalized 

(HLH) 

Large Dependence Emphasis (HHH) 

GLRLM 

Short Run Low Gray Level 

Emphasis (LLH) 

Run Length Non Uniformity 

Run Percentage (HLL) 

Run Variance (HLH) 

Short Run Low Gray Level Emphasis 

(LLH) 

Long Run Emphasis (HHL) 

Run Entropy (HHL) 

GLSZM 

Size Zone Non Uniformity Normalized 

(LLH) 

Size Zone Non Uniformity Normalized 

(LHL) 

Zone Entropy (LHL) 

Zone Percentage (HHL) 

NGTDM 

Busyness (LHL) 

First order 

90Percentile (LLL) 

10Percentile 

90Percentile 

Maximum 

Mean 

Median 

Minimum 

Range 

Variance 

Variance (LLH) 

10Percentile (LLL) 

GLCM 

Cluster Prominence (LLH) 

GLDM 

Large Dependence High Gray Level 

Emphasis (LLL) 

Large Dependence High Gray Level  

Emphasis 

GLRLM 

High Gray Level Run Emphasis (LLL) 

Long Run High Gray Level Emphasis 

(LLL) 

Run Length Non Uniformity (LLL) 

Short Run High Gray Level Emphasis 

(LLL) 

GLSZM 

High Gray Level Zone Emphasis (LLL) 

Large Area High Gray Level Emphasis 

(LLL) 

Small Area High Gray Level Emphasis 

(LLL) 

Zone Variance (LLL) 

Large Area Emphasis 

Large Area High Gray Level Emphasis 

Zone Variance 

Large Area High Gray Level Emphasis 

(LLH) 

Large Area Emphasis (LHL) 

Large Area High Gray Level Emphasis 

(LHL) 

Zone Variance (LHL) 

Large Area Emphasis (LHH) 

Large Area High Gray Level Emphasis 

(LHH) 

Large Area Low Gray Level Emphasis 

(LHH) 

Zone Variance (LHH) 

Large Area Emphasis (HLL) 

Large Area High Gray Level Emphasis 

(HLL) 

Large Area Low Gray Level Emphasis 

(HLL) 

Zone Variance (HLL) 

Large Area Low Gray Level Emphasis 

(HHL) 

Large Area Emphasis (HHH) 

 

Large Area Low Gray Level Emphasis 

(HHH) 

NGTDM 

strength 

strength (LLL) 

Busyness (LHH) 

Complexity (LLL) 

 

 

PROOF



 H. Alimiri Dehbaghi , et al.  

FBT, Vol. 13, No. 4 (Autumn 2026) XX-XX XX 

changes in kidney tissue. For example, texture features 

like GLCM, GLDM, etc. reflect tissue heterogeneity, 

which increases with fibrosis, scarring, or hemorrhage 

following trauma. Intensity-based (first-order 

features) features may reveal changes in tissue density 

from bleeding, edema, or necrosis. These quantitative 

markers have been shown to correlate with kidney 

function, fibrosis severity, and overall disease 

progression, making them valuable for non-invasive 

detection and assessment of traumatic kidney injuries 

[33]. 

2.5. Evaluation of Machine Learning Models 

The confusion matrix is a valuable tool for 

evaluating the performance of classification models. It 

provides a detailed breakdown of the model's 

predictions compared to the actual outcomes, allowing 

for a comprehensive assessment of its effectiveness. It 

provides a more detailed understanding of how well 

the model is performing across different classes. In 

this research, in order to evaluate the performance of 

machine learning models, the evaluation criteria of the 

confusion matrix, including accuracy, precision, F1 

score, specificity, sensitivity, as well as the area under 

the ROC curve (AUC), and misclassification, were 

used. Relations 1 to 6 show how to calculate these 

criteria [34, 35]. 

In our study: 

 TP (True Positive): Instances where the model 

correctly predicts the presence of renal injury in 

samples that have this injury. 

 TN (True Negative): Instances where the model 

correctly predicts the absence of renal injury in 

samples that do not have this injury. 

 FP (False Positive): Instances where the model 

incorrectly predicts the presence of renal injury in 

samples that do not have this injury. 

 FN (False Negative): Instances where the 

model incorrectly predicts the absence of renal injury 

in samples that have this injury. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦: 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

Precision ∶
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

Sensitivity: 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

Specificity: 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (4) 

F1 score: 
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (5) 

Misclassification: 1-accuracy (6) 

3. Results 

The confusion matrix for all three models is shown 

in Table 4. 

According to Table 5, in terms of accuracy, the 

AdaBoost and LGBM models have the best 

performance with values equal to 93% and 92%, 

respectively, in diagnosing mild kidney damage and 

97% for severe kidney damage. In terms of precision 

criteria, the AdaBoost model, with values equal to 

92.59% and 98.07%, respectively, for detecting mild 

and severe kidney damage, showed a stronger 

performance than the two other models. Of course, the 

LGBM model has the same performance as the 

AdaBoost model, with a precision of 92.45% in 

detecting mild kidney damage. The AUC value for the 

AdaBoost model in diagnosing mild kidney injuries 

was 92.91% and for severe injuries was 97.04%, 

which indicates a stronger performance of this model 

in comparison with other models. 

The ROC curves for all three models are shown in 

Figures 2 and 3. 

Regarding the sensitivity criterion, the AdaBoost 

model has surpassed the other two models with values 

of 94% and 96%, respectively, in detecting mild and 

severe injuries. This model achieved 91% specificity 

in detecting mild kidney injuries and 98% for severe 

injuries. The F1-score, which is a combination of 

precision and recall criteria, was calculated as 93% 

and 97% for the AdaBoost model in detecting mild 

and severe kidney damage, respectively. 

Misclassification indicates the number of samples that 

have been incorrectly classified, and in this sense, the 

LGBM and AdaBoost models have a better 

performance. 
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4. Discussion 

In this study, we used machine learning models and 

radiomics features to facilitate and accelerate the 

diagnosis of renal injuries caused by blunt trauma in 

CT scan images. Using artificial intelligence to 

analyze medical images in emergency departments 

helps doctors quickly diagnose and treat patients who  

 

need urgent care." The proposed framework allows for 

an objective and quantitative evaluation of kidney 

trauma, contrasting with the often subjective 

assessments currently used in clinical practice. This 

advancement has the potential to improve real-time 

diagnostics for kidney trauma and serve as an effective 

triage tool. 

Renal injuries, while uncommon, are not rare 

occurrences. The diagnosis and treatment of such  

Table 4. Confusion matrix for mild and severe renal injuries 

Mild renal injury 

LGBM 

 Predicted Negative Predicted Positive 

Actual Negative 43 (TN) 4 (FP) 

Actual Positive 4 (FN) 49 (TP) 

AdaBoost 

 Predicted Negative Predicted Positive 

Actual Negative 43 (TN) 4 (FP) 

Actual Positive 3 (FN) 50 (TP) 

Ridge Classifier 

 Predicted Negative Predicted Positive 

Actual Negative 42 (TN) 5 (FP) 

Actual Positive 12 (FN) 41 (TP) 

Severe renal injury 

LGBM 

 Predicted Negative Predicted Positive 

Actual Negative 45 (TN) 2 (FP) 

Actual Positive 1 (FN) 52 (TP) 

AdaBoost 

 Predicted Negative Predicted Positive 

Actual Negative 43 (TN) 4 (FP) 

Actual Positive 12 (FN) 41 (TP) 

Ridge Classifier 

 Predicted Negative Predicted Positive 

Actual Negative 46 (TN) 1 (FP) 

Actual Positive 2 (FN) 51 (TP) 

 

Table 5. The results of implementing the machine learning models 

F_1 

Score 
Specificity Sensitivity 

Mis-

Classification 
AUC Precision Accuracy Models Injury 

92% 91% 92% 8% 91.97% 92.45% 92% LGBM 

Mild 93% 91% 94% 7% 92.91% 92.59% 93% AdaBoost 

83% 89% 77% 17% 83.36% 89.13% 83% 
Ridge 

Classifier 

97% 96% 98% 3% 96.92% 96.29% 97% LGBM 

Severe 97% 98% 96% 3% 97.04% 98.07% 97% AdaBoost 

84% 91% 77% 16% 84.42% 91.11% 84% 
Ridge 

Classifier 

 

PROOF



 H. Alimiri Dehbaghi , et al.  

FBT, Vol. 13, No. 4 (Autumn 2026) XX-XX XX 

 

injuries demand a comprehensive understanding of the 

retroperitoneal region. These injuries can manifest 

with diverse patterns, often necessitating intricate 

diagnostic and therapeutic evaluations [36]. The 

workload burden on radiologists in emergency 

departments may contribute to delays in diagnosing 

these complications. Studies have indicated that, in 

certain instances, general radiologists must interpret 

an image every three to four seconds throughout an 

eight-hour workday to meet the demands of their 

workload [37]. The proliferation of AI in medical 

imaging is primarily motivated by the need to enhance 

the efficiency and efficacy of clinical care. The 

volume of radiological imaging data is expanding at 

an unprecedented rate in comparison to the available 

number of skilled readers. Concurrently, diminishing 

reimbursement for imaging procedures is compelling  

 

healthcare providers to address the challenge through 

heightened productivity [38].  

Kate et al. conducted a study utilizing logistic 

regression (LR), support vector machines (SVM), 

decision trees, and naïve Bayes to detect undiagnosed 

Acute Kidney Injury (AKI) in a large population of 

hospitalized elderly patients aged over 60 years. The 

study reported area under the ROC curves (AUC) 

ranging from 0.66 to 0.74, indicating moderate 

performance in identifying undiagnosed AKI within 

this demographic [39]. Yap et al. conducted a study on 

the classification of renal masses using machine 

learning techniques applied to CT scans. The dataset 

included CT scans from 735 patients, comprising 196 

scans of benign masses and 539 scans of malignant 

cases. The researchers manually segmented the scans 

using the 3D Synapse 3D tool, collaborating with two 

 

Figure 2. ROC curves for all three models in the detection of mild kidney injuries: A: LGBM, B: AdaBoost, 

and C: Ridge Classifier 
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expert radiologists to extract features based on shape 

and texture matrices. The study utilized two machine 

learning algorithms: AdaBoost and random forest. The 

experimental results indicated that the random forest 

model achieved high performance, with Area Under 

the Curve (AUC) values ranging from 68% to 75% for 

classifying renal masses [40]. Uhlig et al. conducted a 

study focused on classifying renal tumor subtypes 

using machine learning techniques applied to CT 

scans. In their approach, features were extracted 

through manual segmentation with the aid of 3D Slicer 

and PyRadiomics, which generated Region Of Interest 

(ROI) features from the axial slices of the renal scans. 

The proposed model utilized a random forest 

algorithm for the multi-class classification of renal 

tumors, achieving a notable performance with an area 

under the curve (AUC) of 78% after excluding the 

oncocytoma subtype [41]. There is an increasing 

interest in the role of Artificial Intelligence (AI) in 

emergency abdominal imaging. However, abdominal 

imaging poses more intricate and specific challenges 

compared to other areas, such as skeletal fracture 

detection. This complexity arises from the diverse 

anatomy of the abdomen and the intricate imaging 

characteristics involved [42]. 

At the beginning of the study, 30 machine learning 

models were implemented on the data, and after 

examining these models, it was found that three 

models, LGBM, AdaBoost, and Ridge Classifier, 

perform better than other models. Another advantage 

of these models is that they do not need a separate 

feature selection algorithm. 

In recent years, deep learning-a specialized area 

within machine learning-has gained substantial 

attention in the field of medical imaging because of its 

 

Figure 3. ROC curves for all three models in the detection of severe kidney injuries: A: LGBM, B: AdaBoost, and C: 

Ridge Classifier 
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capacity to transform how diseases are diagnosed and 

risks are predicted. By automatically identifying and 

categorizing radiographic features, deep learning 

models help minimize observer bias, enhance the 

reliability of diagnoses, and overcome many 

challenges associated with traditional manual 

assessments [43, 44]. But this technology has 

limitations. Deep learning is a resource-intensive 

technology. To train the models, more powerful 

graphics processors, high-performance graphics 

processing units (Graphics Processing Units), a lot of 

storage space, etc., are needed; in this sense, the 

machine learning techniques used in our research are 

simpler and less expensive. Unlike traditional machine 

learning methods, deep learning models are often 

considered 'black boxes' because it is difficult to 

understand how they make decisions. While we can 

see the input and the resulting output, it is usually 

unclear which features the model used or how it 

arrived at its final classification of an image as healthy 

or diseased [45, 46]. The use of other clinical 

information of patients along with radiomics features 

in the training of machine learning models can lead to 

a more accurate evaluation of the performance of these 

models. Lack of access to this information is one of 

the limitations of this study. 

5. Conclusion 

The artificial intelligence models presented in this 

research have significant potential to diagnose and 

grade renal injuries caused by trauma and can help 

radiologists and other doctors to speed up and 

facilitate the diagnosis of these complications in 

emergency departments. The use of artificial 

intelligence models in this way can help to prioritize 

positive studies for faster diagnosis and identify more 

severe complications that necessitate prompt 

intervention. 
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