Frontiers in Biomedical Technologies Vol. 13, No. 4 (Autumn 2026) XX-XX

ORIGINAL ARTICLE

Intelligent Diagnosis in Trauma: Exploring Machine Learning and Radiomics for
Kidney Injury Assessment

Hanieh Alimiri Dehbaghi %, Karim Khoshgard > *= , Hamid Sharini 2, Samira Jafari Khairabadi *

1Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran

2Department of Medical Physics, Kermanshah University of Medical Sciences, Kermanshah, Iran

*Corresponding Author: Karim Khoshgard Received: 31 October 2024 / Accepted: 02 June 2025

Email: khoshgardk@gmail.com

Abstract

Purpose: The initial evaluation of trauma poses a formidable and tim
scrutinize the diagnostic efficacy and utility of integrating machine 1e
the identification of blunt traumatic kidney injuries in abdominal i

tensive challenge. This study aims to
els with radiomics features for

Materials and Methods: This investigation involved the
individuals with varying degrees of kidney damage resul
subjects, sourced from the Kaggle dataset. An experi

T scan images encompassing
a, as well as images from healthy

region of interest. Initially, 30 machine
] down to three models: Light Gradient-Boosting
(AdaBoost). The performance of these chosen

learning models were deployed, with a final sele
Machine (LGBM), Ridge Classifier, and Adap

values for this model werg
injuries, respectively.

Conclusion: The artificial intelligenge models employed in this study hold significant potential to enhance patient
care by providing valuable assistance to radiologists and other medical professionals in the diagnosis and staging
of trauma-related kidney injuries. These models offer the capability to prioritize positive studies, expedite
evaluations, and accurately identify more severe injuries that may necessitate immediate intervention.
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Al and Radiomics for Kidney Trauma

1. Introduction

The kidney, as the primary excretion filter organ
within the human body, is susceptible to trauma that
may manifest as damage to the parenchyma or renal
vasculature, leading to bleeding or injury to the
collecting system with potential urine leakage. The
kidney, while situated in a relatively safeguarded
retroperitoneal area, is the organ most frequently
harmed in the genitourinary system due to trauma [1].
Renal trauma constitutes a notable portion of overall
trauma cases, ranging from 1% to 5%, with the
majority attributed to blunt abdominal trauma,
accounting for 80% to 90% of cases [2-4]. Renal
trauma primarily impacts males, constituting 72% to
93% of reported cases. This type of injury is also more
prevalent among younger individuals, with the
average age ranging from 31 to 38 years [5]. Blunt
renal trauma, more prevalent than penetrating trauma,
is often caused by Incidents such as motor vehicle
collisions, falls, injuries from sports activities, and
pedestrian accidents. The mechanisms of blunt rena
trauma include a direct impact on the org
compression against the paravertebral muscle
rapid deceleration forces. The incidence of i

grade of injury, concurrent inj

experienced blunt or penetrating renal trauma [5]. CT
is frequently the primary diagnostic modality in
patients with suspected or confirmed renal trauma,
particularly in large trauma centers dealing with
multiple-system injuries. In cases of acute trauma, CT
plays a crucial role by offering comprehensive
anatomical and physiological information that aids in
distinguishing minor injuries from those necessitating
intervention [7]. Despite its diagnostic utility,
challenges arise in the timely interpretation of CT
scans, particularly when dealing with abdominal CT
examinations that cannot be promptly reviewed [8].
Additionally, not all imaging departments have round-
the-clock on-site experienced radiologist coverage;
although artificial intelligence techniques cannot
replace radiologists, they can assist less experienced
radiologists in order to reach the correct diagnosis [9].

XX

The subsequent concern revolves around the
formidable workload confronting radiologists within a
department. In the daily operations of radiology,
radiologists bear the responsibility of interpreting
medical images sourced from diverse modalities.
Their roles often necessitate thorough analyses and
evaluations of these images within constrained
timeframes. However, with the continuous evolution
of modern medical technologies, the abundance of
imaging data is on a swift upward trajectory. Notably,
contemporary CT examinations feature thinner slices
compared to historical practices [10]. Consequently,
the development of an artificial intelligence model for
the diagnosis of renal injuries aims to support
radiologists in the identification, quantification, and

day experiences, encompassing a
ies and methodologies rooted in
statistics, and data science.
g, a subset of artificial intelligence
algorithms to autonomously detect

In the field of medical image analysis, significant
progress has been made in recent decades, enabling
the extraction of quantitative features that may not be
visible through visual inspection [13]. This
methodology, known as radiomics, captures tissue and
lesion characteristics, such as heterogeneity and
shape, and utilizes these features to predict current and
future variables, including disease presence or
absence, treatment response, and time to recurrence

[14, 15].

Yang et al. conducted a study focusing on the
classification of small renal masses through machine
learning techniques applied to CT scans. Their
research involved data from 163 patients with small
renal masses, which included 118 scans of Renal Cell
Carcinoma (RCC) cases and 45 scans of renal
angiomyolipoma without visible fat (AMLwvf). The
researchers extracted textual features using the
Pyradiomics package, applying it to the Regions Of
Interest (ROI) generated with the ITK-SNAP tool.
They employed eight different machine learning
techniques in their analysis, with experimental results
indicating that Support Vector Machines (SVM)
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utilizing t-score and relief methods achieved
commendable performance, reaching an area under
the curve (AUC) of 90% in the classification tasks
[16]. Radiomics functions as an automated
methodology for feature generation, extracting a
myriad of quantitative phenotypes (radiomics
features) from radiological images [15, 17].
Subsequently, Machine Learning (ML) algorithms can
be trained to discern relationships between these

radiomics features and patient diagnoses [18].

The purpose of this study is to investigate the
efficiency of implementing machine learning models
using radiomics features in the diagnosis of kidney
injuries caused by trauma. In this study, the
effectiveness of three machine learning models in
diagnosing mild and severe injuries has been
investigated using the criteria of accuracy, precision,
F1 score, specificity, AUC, and sensitivity. If these
artificial intelligence tools have an acceptable
performance, they can help improve their performance
as assistants alongside less experienced radiologists.
Especially in emergency departments, where due
the heavy workload of physicians and the neeg
quickly interpret the images, there is a g
possibility of mistakes.

2. Materials and Methods

The outline of the presg is wn in
Figure 1.

Figure 1. The outline of the research
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2.1. Data Collection

In this investigation, a total of 600 axial CT slices
sourced from the Kaggle
[https://kaggle.com/competitions/rsna-2023-
abdominal-trauma-detection, 2023] were employed.
These comprised 200 slices depicting a healthy
kidney, another 200 slices exhibiting mild kidney

database

damage, and the remaining 200 slices manifesting

severe kidney damage resulting from blunt trauma.
The images were in DICOM format with a matrix size
of 512x512. The slice thickness ranged from 0.5 to 5

[erpreting trauma images, using 3D Slicer software.
Feature Extraction

In this study, this step refers to the concept of
radiomics. In general, radiomics aims to extract
quantitative and ideally repeatable information from
diagnostic images, including complex patterns that are

>

« first order
+GLCM ~
+GLSZM . *what kind of
+GLDM *LightGBM intervention
*GLRLM *AdaBoost is required?
*NGTDM *Ridge Classifier
»Shape
\ S
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difficult to detect or quantify by the human eye [15].
Employing the Radiomics toolbox within 3D Slicer
software, this step involved the extraction of features,
comprising first-order statistical features and texture
features such as Gray Level Dependence Matrix
(GLDM), Gray Level Run Length Matrix (GLRLM),
Gray Level Size Zone Matrix (GLSZM), and
Neighboring Gray Tone Difference Matrix
(NGTDM).  Wavelet filters with  various
decompositions, including HHH, HHL, HLH, HLL,
LHH, LHL, LLH, and LLL, were applied to obtain
these features in all three dimensions. The results were
recorded in an Excel file. Wavelet analysis of an image
is possible using a pair of square mirror filters, a high-
pass filter, and a low-pass filter [19]. The high-pass
filter highlights the changes in the gray level and
therefore emphasizes the details of the image, while
the low-pass filter smoothes the image in terms of the
gray level and removes the details of the image [15].

First-order features: These features describe the
intensity distribution of pixels or voxels in the image
area defined by the mask through common and basjg
criteria [20].

Gray Level Dependence Matrix (GLDM):
features of this group define the (gre
dependencies in an image. Gray-levelddependgncy is
defined as the number of related els
certain distance that is depend ]
[20].

lev

(GLRLM): These
ut the spatial
pixels with the

Gray Level Run Length
features provide information
distribution of the run of consecuti
same gray level, in one or more directions, in 2 or 3

dimensions [15].

Gray Level Size Zone Matrix (GLSZM): GLSZM
is based on a similar principle to GLRLM, but here,
counting the number of groups (so-called regions) of
contiguous adjacent pixels or voxels with the same
gray level forms the basis of the matrix. A tissue with

more homogeneity creates a wider and flatter matrix
[20, 21].

Neighboring Gray Tone Difference Matrix
(NGTDM): NGTDM calculates the sum of
differences between the gray level of a pixel or voxel
and the average gray level of pixels or voxels adjacent
to it at a predetermined distance [15].

XX

2.4. Training of Machine Learning Models

In this study, 75% of the data (slices) was used for
training, and 25% of the data was also assigned to test
the algorithms. These kinds of issues are supervised
learning issues; they need labels. In supervised
learning, each sample contains two parts: one is input
observations or features, and the other is output
observations or labels [22, 23]. In this study, the input
observations are radiomics features, and the output
observations are the presence or absence of kidney
injuries. The purpose of supervised learning is to
conclude a functional relationship from training data
that generalizes well to testing data [10].

Here is a brief description of each of the models:

other machine learning tasks. By
uracy, the speed of this framework

jory is about three times less. This framework has
tages such as high training efficiency, low
ory occupancy, high precision, and support for
parallelization, and it can also be implemented using a
GPU to process large data [24, 25].

Ridge Classifier is a linear classification algorithm
that is based on the Ridge regression algorithm. It is
used to classify data into two or more classes based on
features. In Ridge regression, the objective is to
minimize the sum of squared errors between the
predicted values and the actual values while also
incorporating a penalty term to prevent overfitting.
This penalty term is based on the L2 norm of the
coefficients, which helps to shrink the coefficients of
less important features towards zero [26].

Among the various ensemble learning algorithms,
adaptive boosting (AdaBoost) [27] is one of the most
prominent. The fundamental concept behind ensemble
learning is to train multiple weak learners using
training data and then combine these weak learners to
create a strong learner. Weak learners are typically
based on individual learning algorithms, such as
Artificial Neural Networks (ANN) or Support Vector
Machines (SVM) [28].

FBT, Vol. 13, No. 4 (Autumn 2026) XX-XX
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During preliminary experiments, these three

models consistently achieved the highest accuracy,
sensitivity, and specificity on our validation data,
outperforming other algorithms in terms of
classification metrics. LGBM and AdaBoost are
ensemble methods known for their ability to handle
high-dimensional, heterogeneous data and reduce
overfitting challenges in radiomics. Ridge Classifier,
with its regularization capability, performed well with
correlated features, which are common in radiomics
datasets.
These models demonstrated efficient training and
prediction times, making them suitable for potential
clinical application where rapid decision support is
valuable [24, 26]. All three models provide
mechanisms for feature importance ranking, which
was essential for our goal of identifying clinically
relevant radiomics features.

Hyperparameter tuning is the process of
systematically selecting the best set of configuration
values (hyperparameters) for a machine learning
model to optimize its performance. Unlike mod,
parameters, which are learned during trai
hyperparameters are set before training and co
how the model learns or how complex it ¢

[29].

each decision tree in ensemble models.

e min_child_weight: Sets the minimum sum of
instance weights (or number of samples)
required in a child node.

e n_estimators: The number of trees (for
ensemble methods like boosting or bagging) or

iterations used in the model.

e penalty: Used in linear models (e.g., logistic
regression), this hyperparameter determines the
type of regularization applied to prevent
overfitting. Common options include ‘I1’
(lasso), ‘12> (ridge), or ‘elasticnet’ (a
combination of both).

FBT, Vol. 13, No. 4 (Autumn 2026) XX-XX

e solver: Specifies the algorithm used to optimize
the model’s parameters during training (e.g.,
‘liblinear’, ‘saga’, ‘Ibfgs’ in logistic regression)
[29-31].

The results of hyperparameter tuning for all three
models are given in Tables 1 and 2.

Table 1. The results of Hyperparameter tuning (Mild
renal injury)

learning _rate = 1.0
max_depth =5
min_child weight=1.0
n_estimators = 200

LGBM

n_estimators = 30

AdaBoost

learning_rate = 0.97

penalty =12
solver = “liblinear”

f Hyperparameter tuning (Severe

learning_rate = 0.1
max_depth =5
min_child weight =3.0
n_estimators = 25

n_estimators = 30

AdaBoost
aboos learning_rate = 0.99

penalty =12

Ri lassifi
idge Classifier solver = “liblinear”

In the course of this study, a dedicated feature
selection stage was not incorporated into our
methodology. An intrinsic advantage of the employed
machine learning models lies in their capacity to
perform feature selection seamlessly during algorithm
execution. This eliminates the necessity for a discrete
step labeled 'feature selection. The most important
features selected by all three models are shown in
Table 3.

Since these features have shown their importance in
the diagnosis of trauma-related kidney injuries, they
can be considered good candidates for biomarkers of
kidney complications [32], so it is suggested that in
future studies, the correlation between these features
and clinical parameters can be investigated.

Radiomics features identified as most important by
the models are clinically relevant because they
quantitatively capture underlying pathological

XX
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Table 3. The most important features selected by all three models in CT scan images

Ridge Classifier AdaBoost LGBM
First order
90Percentile (LLL)
10Percentile
90Percentile
Maximum
Mean
Median
Minimum First order
Range Entropy (LHH)
Variance Mean (LHH) First order
Variance (LLH) Mean (HLL) Mean (HLL)
10Percentile (LLL) Median (HLH) 10Percentile
GL.CM Kurtosis (H.HI.“) 10Percentile (LLH)
Cluster Prominence (LLH) Mean Absolute Deviation (HHH) Mean (LLH)
GLDM Robust Mean Absolute Deviation Minimum (LLH)
Large Dependence High Gray Level Skewness A
. Mean Absolute Deviation (LHL)
Emphasis (LLL) Mean (HLL) Entropy (LHH)
Large Dependence High Gray Level Skewness (HLL) Kurtosis (LLH)
Emphasis Maximum (LLL) Mean (LHH)
GLRLM GLCM GLCM
High Gray Level Run Emphasis (LLL) Contrast (HLL) Idn
Long Run High Gray Level Emphasis Inverse Variance (HLH) Imel (HHL)
(LLL) Correlation (HHL Cluster Shade (LHL)
Run Length Non Uniformity (LLL) Imc1 (HHL Cluster Shade (HLL)
Short Run High Gray Level Emphasis MCC (HH . .
Difference Variance (HHL)
(LLL) MCC (LH GLDM
GLSZM Clustr Shade Gray Level Non Uniformity

High Gray Level Zone Emphasis (LLL)

Large Area High Gray Level Emphasis
(LLL)
Small Area High Gray Level Emphasis
(LLL)
Zone Variance (LLL)
Large Area Emphasis
Large Area High Gray Level Emphasis
Zone Variance
Large Area High Gray Level Emp
(LLH)
Large Area Emphasis (
Large Area High Gray Level
(LHL)
Zone Variance (LHL)

Large Area Emphasis (LHH)
Large Area High Gray Level Emphasis
(LHH)

Large Area Low Gray Level Emphasis
(LHH)

Zone Variance (LHH)

Large Area Emphasis (HLL)
Large Area High Gray Level Emphasis
(HLL)

Large Area Low Gray Level Emphasis
(HLL)

Zone Variance (HLL)

Large Area Low Gray Level Emphasis
(HHL)

Large Area Emphasis (HHH)

Large Area Low Gray Level Emphasis
(HHH)
NGTDM
strength
strength (LLL)
Busyness (LHH)
Complexity (LLL)

(HLH)
&Dependence Emphasis (HHH)
GLRLM
Short Run Low Gray Level
Emphasis (LLH)
Run Length Non Uniformity
Run Percentage (HLL)
Run Variance (HLH)
Short Run Low Gray Level Emphasis
(LLH)
Long Run Emphasis (HHL)
Run Entropy (HHL)
GLSZM
Size Zone Non Uniformity Normalized
(LLH)
Size Zone Non Uniformity Normalized
(LHL)
Zone Entropy (LHL)
Zone Percentage (HHL)
NGTDM
Busyness (LHL)

Dependence Non Uniformity (LLH)

Dependence Non Uniformity Normalized

(LHL)
Large Dependence High Gray Level
Emphasis
Small Dependence Low Gray Level
Emphasis (LLH)

Dependence Non Uniformity Normalized

(HLL)
Dependence Variance (HHL)
GLRLM
Run Entropy (LLL)
Gray Level Variance
Long Run Emphasis (HHL)
Run Variance (HHH)
GLSZM
Gray Level Non Uniformity Normalized
Small Area Emphasis (LHL)
Low Gray Level Zone Emphasis (HLL)
Zone Entropy (HLL)
Size Zone Non Uniformity Normalized
(LHL)

Small Area Emphasis (LHL)
Gray Level Variance (HHH)
NGTDM
Busyness (LLL)

Busyness
Contrast

XX
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changes in kidney tissue. For example, texture features
like GLCM, GLDM, etc. reflect tissue heterogeneity,
which increases with fibrosis, scarring, or hemorrhage
following trauma. Intensity-based (first-order
features) features may reveal changes in tissue density
from bleeding, edema, or necrosis. These quantitative
markers have been shown to correlate with kidney
function, fibrosis severity, and overall disease
progression, making them valuable for non-invasive
detection and assessment of traumatic kidney injuries
[33].

2.5. Evaluation of Machine Learning Models

The confusion matrix is a valuable tool for
evaluating the performance of classification models. It
provides a detailed breakdown of the model's
predictions compared to the actual outcomes, allowing
for a comprehensive assessment of its effectiveness. It
provides a more detailed understanding of how well
the model is performing across different classes. In
this research, in order to evaluate the performance of
machine learning models, the evaluation criteria of th
confusion matrix, including accuracy, precisio
score, specificity, sensitivity, as well as the area
the ROC curve (AUC), and misclassifice
used. Relations 1 to 6 show how to
criteria [34, 35].

In our study:

[1 TP (True Positive):
correctly predicts the presenc@fof renal injury in

samples that have this injury.

[1 TN (True Negative): Instances where the model
correctly predicts the absence of renal injury in
samples that do not have this injury.

[1 FP (False Positive): Instances where the model
incorrectly predicts the presence of renal injury in
samples that do not have this injury.

[l FN (False Negative): Instances where the
model incorrectly predicts the absence of renal injury
in samples that have this injury.

2 TP+ TN )
CCUraCY TP X TN + FP + FN
TP
Precision : 75— 2

FBT, Vol. 13, No. 4 (Autumn 2026) XX-XX

ce . TP
Sensitivity: e (3)
. ... TN 4
Specificity: prev 4
F1 score: ———— (5)
2TP+FP+FN
Misclassification: 1-accuracy 6)
3. Results

The confusion matrix for all three models is shown
in Table 4.

According to Jable 5, in terms of accuracy, the
LGBM models have the best
es equal to 93% and 92%,
nosing mild kidney damage and
ey damage. In terms of precision
t model, with values equal to

07%, respectively, for detecting mild

GBM model has the same performance as the
daBoost model, with a precision of 92.45% in
dctecting mild kidney damage. The AUC value for the
AdaBoost model in diagnosing mild kidney injuries
was 92.91% and for severe injuries was 97.04%,
which indicates a stronger performance of this model
in comparison with other models.

The ROC curves for all three models are shown in
Figures 2 and 3.

Regarding the sensitivity criterion, the AdaBoost
model has surpassed the other two models with values
of 94% and 96%, respectively, in detecting mild and
severe injuries. This model achieved 91% specificity
in detecting mild kidney injuries and 98% for severe
injuries. The Fl-score, which is a combination of
precision and recall criteria, was calculated as 93%
and 97% for the AdaBoost model in detecting mild
kidney = damage, respectively.
Misclassification indicates the number of samples that

and severe

have been incorrectly classified, and in this sense, the
LGBM and AdaBoost models
performance.

have a better
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Table 4. Confusion matrix for mild and severe renal injuries

Mild renal injury

Predicted Negative Predicted Positive
LGBM Actual Negative 43 (TN) 4 (FP)
Actual Positive 4 (FN) 49 (TP)

Predicted Negative Predicted Positive
AdaBoost Actual Negative 43 (TN) 4 (FP)
Actual Positive 3 (FN) 50 (TP)

Predicted Negative Predicted Positive
Ridge Classifier Actual Negative 42 (TN) 5 (FP)
Actual Positive 12 (FN) 41 (TP)

Severe renal injury

Predicted Negative Predicted Positive
LGBM Actual Negative 45 (TN) 2 (FP)
Actual Positive 1 (FN) 52 (TP)

Predicted Negative Predicted Positive
AdaBoost Actual Negative 4 (FP)
Actual Positive 41 (TP)

Predicted Positive
Ridge Classifier Actual Negative 1 (FP)
Actual Positive 51 (TP)

Table 5. The results of implementing the ma

Mis- 1

Injury Models Accuracy Classification Sensitivity  Specificity Slzare
LGBM 9 91.97% 8% 92% 91% 92%
Mild  AdaBoost 92.59%  92.91% 7% 94% 91% 93%
Cllzis‘:fger 83% 89.13%  83.36% 17% 77% 89% 83%
LGBM 97% 96.29%  96.92% 3% 98% 96% 97%
Severe  AdaBoost 97% 98.07%  97.04% 3% 96% 98% 97%
ClRaiS‘i?ger 84% 91.11%  84.42% 16% 77% 91% 84%

4, Discussion

In this study, we used machine learning models and
radiomics features to facilitate and accelerate the
diagnosis of renal injuries caused by blunt trauma in
CT scan images. Using artificial intelligence to
analyze medical images in emergency departments
helps doctors quickly diagnose and treat patients who

XX

need urgent care." The proposed framework allows for
an objective and quantitative evaluation of kidney
trauma, contrasting with the often subjective
assessments currently used in clinical practice. This
advancement has the potential to improve real-time
diagnostics for kidney trauma and serve as an effective

triage tool.

Renal injuries, while uncommon, are not rare
occurrences. The diagnosis and treatment of such

FBT, Vol. 13, No. 4 (Autumn 2026) XX-XX
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AUC = 91.97%

Figure 2. ROC curves f
and C: Ridge Classifi

injuries demand a comprehensive understanding of the
retroperitoneal region. These injuries can manifest
with diverse patterns, often necessitating intricate
diagnostic and therapeutic evaluations [36]. The
workload burden on radiologists in emergency
departments may contribute to delays in diagnosing
these complications. Studies have indicated that, in
certain instances, general radiologists must interpret
an image every three to four seconds throughout an
eight-hour workday to meet the demands of their
workload [37]. The proliferation of Al in medical
imaging is primarily motivated by the need to enhance
the efficiency and efficacy of clinical care. The
volume of radiological imaging data is expanding at
an unprecedented rate in comparison to the available
number of skilled readers. Concurrently, diminishing
reimbursement for imaging procedures is compelling

FBT, Vol. 13, No. 4 (Autumn 2026) XX-XX

1

AUC = 92.91%

AUC = 83.36%

in the detection of mild kidney injuries: A: LGBM, B: AdaBoost,

healthcare providers to address the challenge through
heightened productivity [38].

Kate et al. conducted a study utilizing logistic
regression (LR), support vector machines (SVM),
decision trees, and naive Bayes to detect undiagnosed
Acute Kidney Injury (AKI) in a large population of
hospitalized elderly patients aged over 60 years. The
study reported area under the ROC curves (AUC)
ranging from 0.66 to 0.74, indicating moderate
performance in identifying undiagnosed AKI within
this demographic [39]. Yap et al. conducted a study on
the classification of renal masses using machine
learning techniques applied to CT scans. The dataset
included CT scans from 735 patients, comprising 196
scans of benign masses and 539 scans of malignant
cases. The researchers manually segmented the scans
using the 3D Synapse 3D tool, collaborating with two

XX
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AUC = 96.92% \

Figure 3. ROC curves for all
Ridge Classifier

es based on shape
d two machine

expert radiologists to extract
and texture matrices. The study u
learning algorithms: AdaBoost and random forest. The
experimental results indicated that the random forest
model achieved high performance, with Area Under
the Curve (AUC) values ranging from 68% to 75% for
classifying renal masses [40]. Uhlig ef al. conducted a
study focused on classifying renal tumor subtypes
using machine learning techniques applied to CT
scans. In their approach, features were extracted
through manual segmentation with the aid of 3D Slicer
and PyRadiomics, which generated Region Of Interest
(ROI) features from the axial slices of the renal scans.
The proposed model utilized a random forest
algorithm for the multi-class classification of renal
tumors, achieving a notable performance with an area
under the curve (AUC) of 78% after excluding the
oncocytoma subtype [41]. There is an increasing

XX

‘ AUC = 97.04%

AUC = 84.42%

e detection of severe kidney injuries: A: LGBM, B: AdaBoost, and C:

interest in the role of Artificial Intelligence (Al) in
emergency abdominal imaging. However, abdominal
imaging poses more intricate and specific challenges
compared to other areas, such as skeletal fracture
detection. This complexity arises from the diverse
anatomy of the abdomen and the intricate imaging
characteristics involved [42].

At the beginning of the study, 30 machine learning
models were implemented on the data, and after
examining these models, it was found that three
models, LGBM, AdaBoost, and Ridge Classifier,
perform better than other models. Another advantage
of these models is that they do not need a separate
feature selection algorithm.

In recent years, deep learning-a specialized area
within machine learning-has gained substantial
attention in the field of medical imaging because of its

FBT, Vol. 13, No. 4 (Autumn 2026) XX-XX
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capacity to transform how diseases are diagnosed and
risks are predicted. By automatically identifying and
categorizing radiographic features, deep learning
models help minimize observer bias, enhance the
reliability of diagnoses, and overcome many
challenges associated with traditional manual
assessments [43, 44]. But this technology has
limitations. Deep learning is a resource-intensive
technology. To train the models, more powerful
graphics processors, high-performance graphics
processing units (Graphics Processing Units), a lot of
storage space, etc., are needed; in this sense, the
machine learning techniques used in our research are
simpler and less expensive. Unlike traditional machine
learning methods, deep learning models are often
considered 'black boxes' because it is difficult to
understand how they make decisions. While we can
see the input and the resulting output, it is usually
unclear which features the model used or how it
arrived at its final classification of an image as healthy
or diseased [45, 46]. The use of other clinical
information of patients along with radiomics features
in the training of machine learning models can leag
amore accurate evaluation of the performance of the
models. Lack of access to this information is o
the limitations of this study.

5. Conclusion

The artificial intelligen esented in this

research have significant pote to diagnose and
grade renal injuries caused by tfamuna and can help
radiologists and other doctors to speed up and
facilitate the diagnosis of these complications in
emergency departments. The use of artificial
intelligence models in this way can help to prioritize
positive studies for faster diagnosis and identify more
severe complications that necessitate prompt

intervention.
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