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Abstract

Purpose: This review focuses on how Multimodal Large Language Models (MLLMs) and multimodal Al models
are advancing healthcare by integrating medical imaging and omics data. By integrating imaging techniques such
as MRI, CT, and PET with genomics, transcriptomics, and proteomics, these models offer a comprehensive
understanding of diseases, particularly in areas like cancer diagnosis and treatment. The study also highlights the
challenges of managing complex datasets and ensuring effective feature selection.

Materials and Methods: Analysed studies leveraging advanced Al models, such as Convolutional Neural
Networks (CNNs) and Multimodal Neural Networks (MM-Nets), to integrate diverse data sources. These models
enhance medical imaging with omics data to improve disease prediction and management. Applications reviewed
include cancer subtype classification, survival outcome prediction, and precision medicine, with a particular focus
on non-invasive diagnostic tools.

Results: The findings underscore the transformative potential of multimodal healthcare. They significantly
improve the identification of biomarkers and enable personalized treatment approaches. For instance, models like
VGG19-CNN and PAGE-Net demonstrated higher accuracy in predicting cancer-specific outcomes and
integrating genomic and imaging data. Moreover, the applications to single-cell analysis and radiomics
showcased their ability to uncover molecular-level insights, advancing precision medicine.

Conclusion: represents a breakthrough in healthcare, combining diverse data types to deliver actionable insights
for disease management. While challenges such as handling complex datasets and ensuring model transparency
remain, ongoing advancements in Al technologies are paving the way for their wider adoption. These models
hold immense promise for improving diagnostics, guiding treatment strategies, and enhancing patient outcomes,
marking a significant step toward the era of personalized medicine.

Keywords: Multimodal Large Language Models; Medical Imaging; Omics Data; Generative Artificial
Intelligence.
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1. Introduction

The integration of Multimodal Large Language
Models (MLLMs) and multimodal Al models in the
medical domain enhances disease diagnosis and
treatment, as seen in applications like cancer
subtyping and survival prediction [1-3]. One of the
transformations that is happening right now is through
confluence with imaging and omics data, which will
have a major impact on cancer at the molecular
granularity. There is a proliferation of omics data that
makes it more feasible to build computational models
that integrate different types of data [4]. Despite these
advances, biological and medical research is shifting
towards integrating electronic health records (EHR)
with imaging data using advanced Al models [5]. One
of the main strategies to connect medical imaging with
multi-omics data is phenotypic information extracted
from images that can then be used as annotations for
omics data. Multimodal approaches have been shown
to be advanced in disease diagnosis, where integrating
clinical outcome data, bioimaging, and omics
improves diagnostic reliability [6]. Cancer research is
one key area of healthcare where multimodal
approaches may have a significant impact. Studies
have found that there are few integrated multi-omics
models available to forecast survival outcomes for
liver cancer in a variety of patient populations [7].
Medical imaging can be used in conjunction with
multi-omics analysis, as evidenced by the successful
applications of Al-driven multi-omics integration in
ovarian cancer research [8]. The potential of
multimodal in cancer research has been highlighted by
methods such as Cancer Integration via Multikernel
Learning (CIMLR), which has successfully integrated
multi-omic data to identify molecular subtypes within
cancer [1].

The convergence of imaging and omics data
enhances precision medicine and radiation therapy by
enabling non-invasive biomarker identification and
optimizing treatment strategies, as demonstrated by
radiomics-based Al models improving radiation
therapy outcomes [9] and CIMLR identifying
molecular subtypes in cancer with high accuracy [1].
Radiomics combined using multimodal imaging has
been shown to be useful in identifying non-invasive,
cheap, and effective biomarkers especially for
radiotherapy [9]. Specifically, recent computational
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frameworks for the analysis of single-cell omics
across multiple modalities further underscore a
broader relevance of Al in scRNA-seq studies [10].
Adopting multimodal models that couple imaging
with omics is an exciting leap in precision diagnosis,
subtypes, and personalized treatment. This is
facilitated by sophisticated algorithms that converge
to redefine the way overhauling molecular
complexities of diseases are managed (Figure 1).
Here, we present a review of multimodal models in
healthcare, outlining recent breakthroughs,
challenges, and future directions in this dynamic field.

This review synthesizes the integration of
Multimodal Large Language Models (MLLMs) and
multimodal Al in healthcare, focusing on their
transformative role in medical imaging and omics
data, particularly in cancer diagnosis, precision
medicine, and single-cell analysis. Unlike prior works
such as Antonelli et al. [13], which primarily focus on
the technical aspects of imaging-omics integration,
and Boehm et al. [14], which emphasize precision
oncology, this review bridges established multimodal
Al models like VGG19-CNN [11], PAGE-Net [13],
and MM-Net [11] with emerging MLLMs such as
Med-ViLLM [14], ChatGPT-4 [11], and LLaMA 3.1
[13]. It evaluates their potential and limitations within
clinical contexts. The review introduces a structured
glossary to standardize the term "multimodal,"
addressing the inconsistencies in its usage across the
literature. Furthermore, it offers a comparative
analysis of model architectures and their performance,
while discussing key challenges such as data
management complexity and model transparency, and
providing actionable recommendations for clinical
adoption. This work fills a gap by integrating technical
advancements with practical applications, providing a
comprehensive resource for researchers and clinicians
working towards the adoption of multimodal Al in
personalized medicine.

2. Background Overview

The integration of artificial intelligence is
revolutionizing healthcare and biomedical research. It
enhances medical imaging for accurate diagnoses and
streamlines pathology to identify unseen patterns. It

unlocks genomics and proteomics secrets, aiding
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Figure 1. Architecture of a Multimodal Large Language Model, such as Med-ViLLM, illustrating the integration of
medical imaging, omics data, and textual data. The model employs modality-specific encoders, Vision Transformer for
imaging, feature extractors for omics, and a transformer-based core to align and process multimodal inputs for tasks like
cancer diagnosis and precision medicine [11]. Arrows indicate data flow through preprocessing, feature extraction, and
fusion layers, enabling cross-modal reasoning and generative outputs [12]

disease understanding. This fusion enables data-
driven decisions, driving breakthroughs in diagnosis,
treatment, and prevention. Combining human
expertise with Al's analytical power. Al's core role in
medical pathology, genomics, and

proteomics paves the way for precision medicine,

imaging,
improving patient care and outcomes in
unprecedented ways. This glossary addresses the
inconsistent use of ‘multimodal’ in prior reviews [11,
13], providing clarity for researchers and clinicians.
The integration of medical imaging and omics data,
enabled by MLLMs and multimodal Al, requires a
foundational understanding of these data types and
their analytical frameworks. This section provides an
overview of medical imaging and omics data,
highlighting their roles in disease characterization and
how advanced AI methods, discussed in later sections,
leverage these data for clinical applications.

2.1. Defining Multimodal Large Language
Models

Multimodal Large Language Models represent a
new generation of Al models that integrate large-scale
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language processing with the ability to handle diverse
data modalities, such as medical imaging and omics
data. Unlike standard Large Language Models, which
are limited to textual inputs and tasks like medical
Q&A or literature summarization, MLLMs employ
transformer-based architectures or hybrid frameworks
to align and process heterogeneous data, enabling
tasks such as cancer subtype classification, survival
prediction, and precision medicine. Compared to
traditional multimodal AI models, such as
Convolutional Neural Networks (CNNs) or
Multimodal Neural Networks (MM-Nets), MLLMs
benefit from large-scale pretraining on diverse
datasets, offering greater generalizability and
generative capabilities (producing diagnostic reports).
For instance, models like Med-ViLLM and
OMNIGPT combine vision and language processing
to integrate histopathological images with genomic
data, outperforming task-specific models in complex
biomedical applications.
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2.2. Maedical Imaging

Medical imaging techniques are fundamental in
delivering detailed anatomical and physiological
insights. Unlike recent reviews that focus on domain-
specific models [11], this work explores the potential
of general-purpose MLLMs like ChatGPT-4 and
LLaMA 3.1, evaluating their emerging role in
multimodal medical applications. Key modalities in
this domain include:

Computed Tomography (CT): A CT scan is a
non-invasive imaging technique using X-rays to
produce detailed cross-sectional images of internal
structures. Mathematical algorithms reconstruct
these images, providing a clear visualization of
tissues and organs. It offers a precise, 3D view of
the body's interior, enabling diagnosis and treatment
of various medical conditions without surgical
intervention, and enhancing patient care and

outcomes [10, 15].

Magnetic Resonance Imaging (MRI): MRI
operates through the use of strong magnetic fields
and radiofrequency pulses, generating high-

resolution images of soft tissues. By utilizing

differences in water content and molecular
properties, MRI is adept at capturing fine
anatomical details, especially in soft tissue

visualization [15].

Positron Emission Tomography (PET): PET
imaging involves injecting radiolabeled tracers to
visualize metabolic activity within tissues. As
tracers decay, PET detects positron emissions,
providing functional insights into molecular-level
processes. This non-invasive

a detailed view of tissue

physiological
technique offers
metabolism, enabling diagnosis and monitoring of
various diseases, including cancer and neurological
disorders.

The fusion of PET with CT in PET/CT imaging
combines detailed structural imaging with metabolic
activity (Figure 2), offering a comprehensive view for
assessing pathology and disease progression [15].
Hematoxylin and Eosin (H&E) staining is a common
technique in histology; eosin gives the cytoplasm and
extracellular structures a pink hue, while hematoxylin
gives the cell nuclei a blue hue. This staining
technique improves microscopic analysis and makes
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characterizing tissue morphology easier [16].
Histology is digitized through Whole Slide Imaging
(WSI), which creates high-resolution digital images
from entire slides. This invention facilitates remote
computing. A foundational understanding of medical
imaging, pathology, genomics, proteomics, computer
vision, and machine learning/deep learning
applications. It also makes it possible to use machine
learning for automated pathology analysis [12].

Figure 2. Comparison of different imaging technologies:
a: CT [16]. b: PET [16]. d: PET/CT [16]. e: H&E [16]. f:
WSI [17]

In medical
techniques
diagnose and interpret images with precision. These

image analysis,
are game-changers,

computer vision
helping doctors
innovative tools expertly segment anatomical
structures, detect hidden abnormalities, and analyze
vital imaging features. Especially in histopathology,
machine learning algorithms revolutionize disease
diagnosis by identifying subtle patterns in digitized
pathology slides. This supports pathologists in making
accurate diagnoses, quantifying biomarkers, and
predicting patient outcomes. By automating complex
tasks, computer vision empowers healthcare
professionals to focus on what matters most delivering
personalized, life-changing care. Ultimately, this
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fusion of technology and medicine saves lives and
improves patient outcomes [16].

2.3. Omics Data

The study of molecular biology has advanced
through various disciplines that contribute to our
understanding of genetic and molecular functions,
collectively known as omics:

Genomics: It involves analyzing an organism's
entire genetic makeup, including genes, non-coding
regions, and structural variations. High-throughput
DNA sequencing enables the identification of
genetic variations and functional genomic elements,
shedding light on the blueprint of life. This
knowledge has far-reaching implications for
personalized medicine and genetic disease
diagnosis [16].

Epigenomics: To explore modifications to DNA
and histone proteins that regulate gene expression.
Techniques like chromatin immunoprecipitation
sequencing  (ChIP-seq) DNA-protein
interactions, uncovering the intricate epigenetic
landscape that influences gene behavior.
Understanding epigenomics holds promise for
developing therapies targeting gene
regulation [16].

reveal

novel

Transcriptomics: It analyzes RNA transcripts to
understand gene expression patterns. RNA
sequencing (RNA-Seq) provides a comprehensive
view of gene expression, revealing alternative
splicing events and outperforming traditional RNA
microarrays. This insight enables researchers to
understand cellular responses to environmental
changes [16].

Proteomics:  Systematically  examines  an
organism's complete protein complement. Liquid
chromatography-tandem mass spectrometry (LC-
MS/MS) enables protein identification and
quantification, unraveling cellular processes and
shedding light on life's molecular machinery.
Proteomics informs our understanding of protein
interactions, disease mechanisms, and potential

therapeutic targets [16].

These advanced omics techniques, coupled with
computer vision, machine learning, and deep learning,
are creating a robust framework for exploring
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molecular and structural aspects of biology. This
integration is instrumental in improving diagnostic
accuracy, enabling precision medicine, and advancing
our understanding of complex diseases (Figure 3). By
exploring the intricate relationships between genes,
epigenetic modifications, transcripts, and proteins,
researchers can develop novel diagnostic tools,
therapies, and treatments, ultimately
human health and well-being.

improving

Transcriptomics

@ Metabolomics

Figure 3.
transcriptomics, and proteomics data enables a

Combining genomics, epigenomics,

comprehensive, systems-level understanding,
revealing intricate relationships and insights into
biological processes, diseases, and therapeutic targets
[18]

3. Data

The data sources and methodologies are central to
integrating multimodal data in biomedical research.
By analyzing both molecular and imaging datasets, a
comprehensive view of how different data types are
combined to advance disease characterization and
predictive modeling is provided (Table 1).

3.1. Multimodal Data

Modern Biomedical confronts a daunting task
integrating large datasets, merging medical imaging
and high-throughput omics data, to unlock insights
into complex biological systems. The data
encompasses information derived from diverse
features and sample sets, offering complementary
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Table 1. Multimodal Data Sources and Processing Techniques

Data Type Source Processing Techniques Applications
National Cancer Institute’s
Genomics Ge?GorSg)f)%t; (é(:;lé?fns High-throgghput sleql.lencing, Disease mutlatio.tzv anglysis, therapy
Genome Atlas (TCGA), variant analysis classification
MOSCATO dataset
. . Ep1g§ngme-que DNA methylation profiling, Epigenetic variation analysis,
Epigenomics Association Studies association studies phenotype association studies
(EWAS)
. Clinical P.r oteomic Tumor Mass spectrometry, protein Cancer type profiling, protein marker
Proteomics Analysis Consortium Lantification analvsis
(CPTAC) d y
RNA sequencing (RNA- RNA-Seq and microarray . .
. . . . Gene expression profiling,
Transcriptomics Seq), RNA-microarrays, analysis, cDNA probes for transcriptomic characterization
ENCODE database gene expression
TCGA imaging data,
Cancer Imaging Archive
Medical (TCIA), UK BioBank, CT, MRI, PET/CT, Anatomical assessment, disease
Imaging Alzheimer’s Disease histopathology staining classification, biomarker tracking
Neuroimaging Initiative
(ADNI)
NCI Patient-Derived
Models Repository Histopathology image tiling,
Specialized (PDMR), Library of gene expression analysis, Integrative disease modeling, drug
Methods Integrated Network-Based digital staining and response prediction
Cellular Signatures normalization
(LINCS)
H&E stained slides, Aperio Staining, ROI annotation, Tumor assessment, image
Histopathology AT2 scanning, QuPath, tiling and resizing, Reinhard L
. . > standardization
Slideflow software stain normalization
Transcriptomic  Patient-Derived Xenografts ¢ RI}]A S?’ logszM T - tomic ch Ivsi
Data from PDX (PDX) ransformation, ranscriptomic changes analysis
normalization
insights essential for analyzing biological samples, genomics, epigenomics, transcriptomics, and

events, and systems. For the purposes of this review,
the integration of at least two data categories, which
include anatomical pathology,
epigenomics, transcriptomics, proteomics, and
medical imaging [19]. While these categories serve as

may genomics,

a primary focus, multimodal Al applications extend
across broader data modalities [20]. The integration of
multimodal data is vital for enabling data-driven
analyses to address feature selection, classification,
regression, unsupervised learning, and association
studies, as well as to facilitate predictive model
construction for disease detection and classification.

3.2. Molecular Data

This review focuses on omics data generated
through high-throughput techniques, specifically
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proteomics. These omics categories are pivotal in
studies aiming to integrate molecular data for disease
characterization and predictive modeling.

Genomics and Epigenomics: For genomic data,
researchers commonly use datasets from the
National Cancer Institute’s Genomic Data
Commons (GDC) [21]. Cancer Genome Atlas
Program (TCGA) [13, 22, 23] MOSCATO dataset
[19] employed for training machine learning
models, providing extensive data on tumor types,
grades, therapy classes, and genomic composition
[23]. To incorporate epigenomic data, the studies
utilize  epigenome-wide  association  studies
(EWAS), which analyze quantifiable epigenetic
markers, like DNA methylation, to establish
associations between epigenetic variation and
phenotypes [24, 25].
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Proteomics: The Clinical Proteomic Tumor
Analysis Consortium (CPTAC) [26], offers a public
catalog of proteomic and genomic data across
various cancer types, with significant overlap with
the TCGA. The combination of CPTAC and TCGA
data provides a detailed molecular profile of patient
disease states [14].

Transcriptomics: The data used in these studies is
often derived through RNA sequencing (RNA-Seq)
[27] or RNA-microarrays [28], focusing on mRNA
levels for predictive modeling. RNA-Seq provides
an unbiased, high-throughput view of the
transcriptome, while RNA-microarrays utilize
complementary DNA (cDNA) probes to measure
gene expression. Transcriptomics data is frequently
sourced from the ENCODE database for studies in
both epigenomics and transcriptomics [29].

3.3. Medical Imaging Data

The integration of imaging and molecular data is
crucial in biomedical research for a comprehensive
understanding of health and disease. Approaches vary,
with some studies exclusively leveraging the TCGA
database for both molecular and imaging data, while
others utilize additional imaging databases.

TCGA-Based Imaging Data: The TCGA database
houses diverse imaging data, including CT, MRI,
PET, and PET/CT scans, covering healthy controls
and various cancer types [13]. This dual repository
allows researchers to study imaging and molecular
data within a single, integrated framework.

Extended Imaging Databases: Some studies
expand beyond TCGA, integrating data from
sources such as private clinical cancer institutions
and the Cancer Imaging Archive (TCIA) [13, 22,
30]. TCIA provides images from various
techniques, capturing a range of scenarios from
healthy controls to different cancer types, UK
BioBank [31, 32]. Offers a wealth of body and
cardiac imaging, genetic data, lifestyle measures,
biological phenotyping, and health records.
Neuroimaging studies often utilize datasets such as
Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [31], and the Enhancing Neurolmaging
Genetics through Meta-Analysis (ENIGMA) [32].
While ADNI limits open access to its data,
ENIGMA facilitates free, standardized data
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analysis, enabling collaborators to independently
process their data [16].

Specialized Methodologies: In a unique approach,
Partin et al. [33] trained models on data type. Data
collection comprised multiple stages, integrating
drug descriptors, gene expression profiles, and
histology image tiles into a unified dataset.

Histopathology and Omics Characterization:
Initial data were sourced from the NCI Patient-
Derived Models Repository (PDMR) [34], which
provides histopathology assessments, whole-exome
sequencing, and RNA-Seq for tumor subsets. This
preliminary step established a baseline for
histological and omic data characterization.

Transcriptomic Data from Patient-Derived
Xenografts (PDX): Transcriptomic data were
gathered from PDX models through RNA-Seq, then
transformed into Transcripts Per Kilobase million
(TPM). Further log2 transformation and
standardization were performed, zero mean and unit
standard deviation. The Library of Integrated
Network-Based Cellular Signatures (LINCS)
project provided landmark genes to capture
significant transcriptomic changes [35].

Histopathology and Imaging Processing:
Histopathology slides were digitized at 20x
magnification using an Aperio AT2 scanner [36]. A
board-certified pathologist verified consistency
with original diagnoses and annotated regions of
interest (ROIs) using QuPath [36]. Whole slide
images were processed into 299x299 pixel tiles
(302 pm x 302 pum) via Slide flow software [37].
Background filtering (60% threshold) and digital
stain normalization using the Reinhard method
ensured uniformity, standardizing tiles to mean 0
and unit variance for analysis [38].

This extensive collection and processing of

multimodal data underscore the transformative
potential of combining molecular and imaging data for
disease prediction and characterization.

4. Methods

Specifically addressing statistical and machine
learning techniques, these methods are categorized
based on their application to supervised classification,

FBT, Vol. 13, No. 1 (Winter 2026) 266-284
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regression, clustering, and network analysis (Figure
4), highlighting significant contributions within the
field, such as Antonelli et al.'s foundational survey on
multimodal data integration [13].

7 Concatenatior
layer

Xception

]

R LY

Proteomics Transcriptomics Genomics i
Dita Imaging

Data Data Data

Figure 4. Multimodal Network (MM-Net) illustration,
adapted from Partin et al, showcasing integrated
analysis of diverse data types [33]

4.1. Classification and Regression Techniques

In supervised classification, numerous algorithms
have been developed to handle the inherent
complexity of biomedical data, which is often
characterized by variability and noise. Supervised
classification tasks in biomedical contexts involve
functions that assign real-valued labels to data.
Techniques like regression analysis are especially
useful in these scenarios, where a regularization term
controls the number of independent variables
involved. For instance, the Lasso method introduces
an Ll-penalty term to the objective function,
effectively handling cases with highly correlated
features [39]. These classification and regression
techniques, such as Canonical Correlation Analysis,
enable precise disease prediction, which is critical for

applications like cancer subtype classification
discussed in Section 5.
Canonical Correlation  Analysis (CCA):

Identifies co-expressed features across modalities,
and has also been adapted for multimodal data
Yan et al
incorporating a penalty term that considers disease
status, utilizing Laplacian matrices to account for

integration. extended traditional
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patient diagnoses, thereby enhancing predictive
performance in disease-specific contexts.

4.2. Clustering and Unsupervised Methods

In the analysis of unlabeled data, clustering plays an
essential role. Unlike classification or regression
models, clustering groups similar samples and
segregates dissimilar ones without prior labels,
offering critical insights into sample relationships and
biological themes.

ImQCM Clustering: The ImQCM algorithm
allows for overlapping groups, enabling genes to
belong to multiple clusters, providing flexibility in
representing complex biological relationships.

Hierarchical Clustering: Employed by Diehn et
al. [41]. hierarchical clustering identifies functional
themes among genes and uncovers modular
structures with topological overlaps in networks,
which is particularly useful for understanding gene
interaction networks in biomedical data.

4.3. Network Analysis and Deep Learning in
Imaging and Omics

Network analysis leverages gene expression data to
construct networks representing interactions among
cell components, facilitating the interpretation of
complex biological processes. Recent applications of
deep learning include efforts to map tumor gene
expression profiles to MRI-based tumor morphology,
illustrating how imaging data can enhance omics-
based insights. Although deep learning for integrated
omics and imaging analyses is still emerging, these
approaches hold promise for advancing multimodal
data integration [16].

4.4, Model Description

Bioinformatics studies are increasingly focusing on
synergistic models that integrate imaging and omics
data, moving beyond traditional single-modality
approaches. Review several pivotal studies (Figure 5),
emphasizing innovations in multimodal Al
applications [42].

273



Integration of Multimodal Large Language Models in Medical Imaging and Omics Data: A Comprehensive Review
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Figure 5. Comparison of different performances in studies, adapted from Shneider et al. [42]

Chen et al.'s VGG19-CNN Model: In their study,
they utilized a VGG19-based Convolutional Neural
Network (CNN) to extract features from regions of
interest in Whole Slide Imaging (WSI) data [2].
Simultaneously, self-normalizing networks
processed omics data, enhancing feature extraction
and minimizing overfitting risks. This strategic
integration of image and omics data produced a
multidimensional array that enriched the model’s
predictive  capacity, marking a significant
advancement over traditional single-modality
approaches.

Hao ef al.'s PAGE-NET Model: Developed the
PAGE-NET model, an innovative approach that
combines genomic data, patient age, and H&E-
stained images. The model uses a texture-based
CNN that incorporates a patch aggregation strategy
to capture the nuances across data modalities.
Notably, PAGE-NET has been effective in
predicting Cancer-Specific Survival (CSS) within a
Cox proportional hazards model framework,
showcasing its versatility and efficacy in clinical
outcome prediction [3].

4.5. Multimodal Neural Networks (MM-Net)

The multimodal neural network (MM-Net),
designed to predict drug response in patient-derived
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xenografts (PDXs) [33]. MM-Net was evaluated
across six distinct models that varied in feature sets
and sample types, including:

Unimodal Models: The UME-Net and UMH-Net
models focused on specific data types, with UME-
Net for gene expression and UMH-Net employing a
CNN to analyze histological features. The LGBM
model, optimized for gene expression data, used
gradient boosting techniques.

Integrated Multimodal Model (MM-Net): MM-
Net combined data from drug descriptors, gene
expression, and histology, demonstrating the
enhanced predictive power of multimodal data
integration. The integration of diverse modalities
improved performance metrics, particularly the
Matthews  Correlation  Coefficient (MCC),
underscoring the potential of multimodal
approaches in achieving robust predictive
outcomes.

These methodologies underscore the progress in
multimodal data integration, enabling sophisticated,
data-driven predictions in biomedical contexts.

Multimodal neural networks, including MLLMs
and multimodal Al models, are essential for
integrating medical imaging and omics data. Key
models include VGG19-CNN, PAGE-Net, and MM-
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Net, each with unique architectures, training datasets,
and evaluation metrics.

VGG19-CNN: This model uses a 19-layer CNN to
extract features from Whole Slide Imaging (WSI) data
and integrates omics data via late fusion. Trained on
The Cancer Genome Atlas (TCGA), which includes
~10,000 WSI samples and genomic profiles, it
achieved an AUC of 0.85 for cancer survival
prediction, though its high computational cost limits
scalability [2].

PAGE-Net: Employing a patch-based CNN
architecture, PAGE-Net integrates H&E-stained
images, genomic data, and patient age for cancer-
specific survival (CSS) prediction. Trained on ~2,000
breast cancer samples from TCGA, it achieved an
MCC of 0.78 for CSS prediction, but its
generalizability is limited to breast cancer [3].

MM-Net: Designed for drug response prediction,
MM-Net combines drug descriptors, gene expression,
and histological images using a hybrid fusion
approach. Trained on ~1,500 PDX samples, it
achieved an MCC of 0.82 for drug response prediction
but requires complex preprocessing and significant
computational resources [33].

4.6. Comparative Analysis of Multimodal
Models

To elucidate the strengths and limitations of
multimodal models, we compare key models such as

Table 2. Comparison of Multimodal Models

VGG19-CNN, PAGE-Net, and MM-Net across
several dimensions: architecture, data fusion strategy,
performance metrics, and clinical applicability.
VGGI19-CNN, a deep convolutional neural network,
excels in extracting features from Whole Slide
Imaging (WSI) data but requires significant
computational resources and is primarily suited for
imaging-heavy tasks [2]. PAGE-Net integrates
genomic data, patient age, and H&E-stained images
using a patch-based convolutional approach,
achieving high interpretability for cancer-specific
survival (CSS) prediction (MCC: 0.78), but is limited
to specific cancer types [3]. MM-Net, designed for
prediction of drug response in patient-derived
xenografts, combines drug descriptors, gene
expression, and histology through hybrid fusion,
offering robust performance (MCC: 0.82) but
requiring complex training pipelines [33]. Table 2
summarizes these comparisons, highlighting trade-
offs in scalability, generalizability, and clinical utility.

The methodologies discussed in this section,
including supervised classification, clustering, and
multimodal neural networks like VGG19-CNN and
MM-Net, provide the technical foundation for
integrating medical imaging and omics data. These
approaches enable the extraction, alignment, and
analysis of heterogeneous data types, facilitating
applications in disease diagnosis, prognosis, and
treatment personalisation. The following section
examines how these methods are applied in practical
healthcare settings, including the classification of

Data Fusion

Performance

Clinical

Model  Architecture Modalities  Strategy Metrics Applicability Strengths Limitations
. . High
VGG19- 19-layer . Late AUC: 0.85 C ancer Robust image computational
WSI, omics . (cancer diagnosis, feature . .
CNN CNN fusion . . . cost, imaging-
survival) prognosis extraction
focused
H&E . Cancer- .
PAGE-  Patch-based images, Paich- MCC: 0.78 specific Interpretable lelt?d to
. based (CSS . . specific
Net CNN genomics, . - survival texture analysis
fusion prediction) -y cancer types
age prediction
Drug Dru
Multimodal  descriptors, . MCC: 0.82 & Comprehensive Complex
MM- Hybrid response . -
neural gene . (drug C . multimodal training, data
Net network expression fusion response) prediction in integration reprocessin,
P : P PDX models g prep &
histology
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cancer subtypes, precision medicine, and single-cell
analysis. It discusses their impact on clinical outcomes

and the challenges associated with their
implementation.
Table 3 compares key multimodal models,

highlighting their data types, outcomes, and clinical
relevance. Multimodal Al models like VGG19-CNN
and PAGE-Net, which process imaging and omics
data, excel in specific tasks like cancer survival
prediction (AUC: 0.85 [2]) and cancer-specific
survival prediction (MCC: 0.78 [3]), but their designs
limit generalizability. In contrast, MLLMs like Med-
ViLLM and BioMedLM, which integrate text,
imaging, and omics, offer more flexibility for tasks
like multi-cancer diagnostics (AUC: 0.87 [11]) and
disease pattern analysis (AUC: 0.84 [14]). Emerging
models like ChatGPT-4 show potential for diagnostic
support but lack clinical validation [11]. This table
highlights the balance between task-specific accuracy
and broader applicability for clinical use.

5. Overview of Multimodal in Medical
Imaging

Recent advancements in multimodal large language
models have unlocked new potential in healthcare
(Table 4). Integration has proven especially valuable
in biological and medical research, allowing for a
more comprehensive understanding of the human
body and disease mechanisms. By merging data from
medical images with genetic and molecular insights
(Figure 6), multimodal can provide a holistic view of
health and disease, with applications ranging from
cancer prognosis to precision medicine [4, 5].

The evaluation of Multimodal Large Language
Models (MLLMs) in medical imaging and omics data
integration is based on several key criteria: (1)
Performance Metrics, including accuracy, area under
the curve (AUC), Matthews correlation coefficient
(MCCQ), sensitivity, and specificity, as reported in
empirical studies for tasks like cancer diagnosis and
survival prediction; (2) Generalizability, assessing the
model’s ability to perform across diverse datasets,

Table 3. Comparative Summary of Key Multimodal Models Comparative summary of key Multimodal Large Language
Models (MLLMs) and multimodal Al models, detailing data types, outcomes, accuracy metrics, and clinical relevance. This
table highlights the strengths and limitations of each model, guiding their application in healthcare

Accuracy -
Model Type Data Type QOutcome Metrics Clinical Relevance  Source
. . Prognostic
VGG19- Multimodal WSI, gene Cancer 'suFV1val AUC: 0.85  assessment in cancer 2]
CNN Al expression prediction
(e.g., breast, lung)
Multimodal H&E images, Cancer-specific Breast cancer
PAGE-Net Al genomics, patient survival (CSS) MCC: 0.78 prognosis, risk [3]
age prediction stratification
Multimodal Drug descriptors, Drug response Personalized
MM-Net gene expression, prediction in MCC: 0.82  treatment in cancer [33]
Al .
histology PDXs therapy
Med- Text, imaging d]i::sr?gzies Precision medicine,
. MLLM (MRI, CT, WSI), ENOSIS, AUC: 0.87 multi-cancer [11]
VIiLLM . prognostic . .
omics o diagnostics
prediction
Text, genomics, Discase pattern Early detection of
BioMedLM MLLM imaging (CT, pa AUC: 0.84 cancer and rare [11, 14]
analysis :
PET) diseases
MLLM Text, {maging Mec.hcal Q&A’ Not fully Potential for patient
ChatGPT-4 (emerging) (emerging), diagnostic validated triage, diagnostics L]
ging clinical data support g¢e, diag
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The heart size and pulmonary vascularity appear within normal limits. A large
hiatal hernia is noted. The lungs are free of focal airspace disease ...

Additional Cross-Attention Layers

Large Language Model Backbone

LLM Block

Cross-Attention

Structured
Prompt Template

CLEL

Modality Alignment

Results

/ I ____________ o I ____________ \

oooo 1

X Query-Based

Learned Queries

Figure 6. MLLMs consist of core modules and pipelines with modality alignment modules, including expert-model-based

prompt augmentation methods [11]

including rare or complex cases; (3) Computational
Efficiency, evaluating the resources required for
training and inference, critical for clinical scalability;
(4) Interpretability, measuring the transparency of
model predictions, particularly for genomic and
imaging-based outputs; and (5) Clinical Applicability,
determining the model’s readiness for real-world
medical settings based on validation studies and
regulatory considerations. Limitations presented in
Tables 3 and 4 are derived from empirical studies [2,
3, 13, 14, 33, 43], expert reviews of multimodal Al
challenges [11], and the authors’ synthesis of recurring
issues in the literature, such as data diversity and
explainability constraints.

5.1. Applications in Cancer Research

Cancer research is a major focus as scientists work
to enhance survival predictions and improve treatment
precision. Models like Cancer Integration via
Multikernel Learning (CIMLR) enable the integration
of diverse data types to identify molecular subtypes of
cancer, enhancing our understanding and approach to
cancer treatment [44]. Multimodal has shown notable
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success in predicting survival outcomes for liver
cancer patients and classifying ovarian cancer
subtypes, underscoring its transformative potential in
oncology [6, 7]. Figure 5 illustrates the workflow for
integrating medical imaging and omics data in cancer
diagnosis using MLLMs and multimodal Al models.
It shows the pipeline from data preprocessing (e.g.,
genomic data normalization, histopathological image
segmentation) to feature extraction (e.g., Vision
Transformers for Med-ViLLM [11] or CNNs for
PAGE-Net [3]) and multimodal fusion for predicting
cancer subtypes or survival. PAGE-Net combines
H&E-stained images, genomic data, and patient age,
achieving an MCC of 0.78 for cancer survival
prediction [3], while Med-ViLLM integrates imaging,
omics, and clinical reports to enhance diagnostic
accuracy [11]. This workflow highlights the benefits
of combining imaging and omics data for precision
oncology but also addresses challenges like data
heterogeneity and computational complexity.
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Table 4. Summarizing the Multimodal Large Language Models in medical imaging and omics data highlighting their names,
tasks and limitations

Model Task Description
. . BioMedLM focuses on synthesizing text with genomics and
. Integrates genomics, clinical, . . ) . . . .
BioMed LM ; . imaging, analyze multi-source biomedical data for insights into
and imaging data .
disease patterns and treatment outcomes.
Medical Q&A and diagnostics Designed for m.edlcal Q&A and d1agnos1s.supp.ort. by interpreting
MedPalLM . . text and imaging, particularly useful for identifying symptoms
from imaging & textual data e .
and aiding in diagnostic workflows.
Summarizes biomedical Its generates summaries of biomedical literature and links it with
BioGPT literature, connects text & gene  genetic data, offering insights into gene-disease relationships and
data relevant research.
Summarizes radiology and Provides detail clinical report summaries, emphasizing radiology,
GatorTron L . . Soh .
clinical reports to support quick comprehension of patient imaging records.
. . . . Enables diagnostics by combining genomics and imaging,
OMNIGPT Dlagnicl)lleCiSHWIitrllltege;(:?;;cs and supporting precision medicine through its ability to connect
ging mies complex multimodal data for deeper insights.
. . . This model aligns image and text data for histopathology
UNITER-med Aligns h}stopathology 1mages analysis, helping pathologists link tissue-level details with
with textual data . - . L
clinical findings for better disease characterization.
. . Based on CLIP technology, it focuses on enhancing X-ray
Contrastive learning for X-ray L . . .
MedCLIP . . analysis using contrastive learning to find clinically relevant
and image analysis N .
features across various imaging types.
ImageBERT- Disease detection across diverse . T h.l S quel extends th.e cap .ablhtles t(? med.l cal 1mages,
S identifying diseases across imaging modalities, including X-rays,
med medical images . . . .
MRIs, and CT scans, improving diagnostic accuracy.
. . Combines text with multi-omics data, helping researchers
. Integrates text with multi-omics . . ; .
OmicsGPT . . understand complex interactions among genomics, proteomics,
data (genomics, proteomics) .. .
and clinical data for disease research.
) Disease prediction with text, Vls}op-lgnguage model, enables' disease pr'e'dlctlon by '
Med-ViLLM . . . synthesizing information from multiple modalities, supporting
imaging, and omics data . .
more holistic patient assessments.
Medical analysis, patient Q&A., Versatile modell that offjcrs patlent.—center.ed Q&A, fhagnostlc.
ChatGPT-4 . . support, and medical data interpretation, with expanding potential
general diagnostic support . .
for multimodal inputs.
. . . Its provides scalable support for multimodal data integration,
LLaMA 3.1 Multimodal integration, large- interpreting extensive imaging and genomic datasets, with

scale medical knowledge tasks

particular applications in predictive analytics.

5.2. Precision Medicine and Radiation

Therapy

Advancing medicine and radiation therapy Al
models analyze medical images to identify biomarkers

5.3. Innovations in Single-Cell Analysis
Single-cell analysis is another promising area for
multimodal, where the combination of imaging and
omics data reveals insights into cellular behavior and
disease mechanisms. Al-driven models are adept at
from

integrating diverse datasets single cells,

biological indicators that guide personalized treatment
plans. This process is not only fast and cost-effective
but also non-invasive, making it a valuable tool in
tailored patient care [8]. Radiomics, a technique that
extracts features from medical images, combined with
Al, is being used to optimize radiation therapy,
allowing for accurate biomarker identification and
improving treatment efficacy [1, 45].
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including genetic, protein, and molecular data,
providing a clearer view of cell function and disease
progression [9].

5.4. Technological Foundations of Multimodal
Al

The success of multimodal in medicine is rooted in
recent advancements in both imaging and omics

technologies. It allows to visualize anatomical
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structures and processes with high precision. On the
other  hand, omics technologies  provide
comprehensive insights into an organism's genetic and
molecular profile. Combining these datasets requires
sophisticated methods, such as supervised
classification algorithms and unsupervised clustering,
which can handle the complexity of multi-source data
[10, 36]. The power of MLLMs lies in their ability to
leverage large-scale pretraining and transformer
architectures, distinguishing them from traditional
multimodal AI models like CNNs, which are often
task-specific and lack generative capabilities. For
instance, while VGG19-CNN excels in feature
extraction from imaging data, MLLMs like Med-
ViLLM integrate imaging, omics, and text to generate
comprehensive diagnostic insights, offering a more
holistic approach to precision medicine.

5.5. Key Models and Computational
Approaches

Advanced Al models are instrumental in integrating
and analyzing multimodal data. Particularly,
Convolutional Neural Networks (CNNs) play a
pivotal role in interpreting complex biomedical data
[46]. The VGG19-CNN and self-normalization have
been applied to predict cancer survival rates and
classify cancer subtypes [15]. Other innovative
models, such as PAGE-NET, leverage patch-wise
CNN techniques to integrate genomic data, patient
age, and histological while MM-Net
combines drug descriptors, gene expression, and

images,

histological features to predict patient responses to
treatments [16].

General-purpose Multimodal Large Language
Models (MLLMs) like ChatGPT-4 and LLaMA 3.1
are included in this review due to their emerging
multimodal capabilities, which hold promise for
biomedical applications despite limited validated
clinical use to date. ChatGPT-4, developed by
OpenAl, has demonstrated potential in medical Q&A
and diagnostic support by processing textual and,
increasingly, imaging inputs, with preliminary studies
exploring its ability to interpret radiology reports [12].
LLaMA 3.1, developed by Meta Al, offers scalable
multimodal integration, with research indicating its
adaptability for processing large-scale imaging and
genomic datasets [43, 46]. While these models lack
extensive validation in clinical settings, their
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transformer-based architectures and pretraining on
diverse datasets suggest potential for tasks like disease
prediction and personalized medicine. Ongoing
research is exploring fine-tuning these models for
specific medical tasks, such as integrating
histopathology images with omics data, to enhance
their clinical relevance [11]. However, challenges
such as limited explainability and the need for domain-
specific fine-tuning must be addressed to ensure their
safe and effective use in healthcare. Table 5 compares
key models used in multimodal integration of medical
imaging and omics data. Models like BioMedLM and
Med-ViLLM utilize transformer-based architectures
to analyze disease patterns and precision medicine,
though they struggle with diverse imaging datasets.
Convolutional models such as VGG19-CNN and
PAGE-Net excel in tasks like cancer survival
prediction but face with computational
efficiency and generalizability. Emerging models like
ChatGPT-4 and LLaMA 3.1 show potential for
medical Q&A and analytics, but need more validation

issues

for clinical use. This overview highlights the strengths
and limitations of these models, emphasizing the need
for improvements in interpretability and scalability.

Table 5 highlights various scenarios where MLLMs
are enhancing diagnostic accuracy, supporting clinical
decision-making, and personalizing patient care
through the integration of imaging, genomics, and
clinical data. The applications range from radiology
report generation to omics-based cancer diagnosis,
demonstrating the transformative potential of MLLMs
in diverse clinical settings.

6. Ethical, Interpretability, and
Regulatory Considerations

The integration of Multimodal Large Language
Models (MLLMs) and multimodal Al models into
healthcare presents significant opportunities but also
several ethical, interpretability, and regulatory
challenges. One of the primary concerns is bias in
training data, as datasets such as The Cancer Genome
Atlas (TCGA) and PDXNet often lack sufficient
terms of race, ethnicity, and

status  [22, 33]. This
representation can lead to biased predictions,
particularly in cancer subtype classification, where
models may perform poorly for underrepresented

diversity in

socioeconomic limited
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Table 5. Clinical examples of multimodal large language model applications in healthcare

Clinical Scenario Application

Impact Source

Radiology Report ChatRadio-Valuer analyzes chest
Generation and Error X-rays to suggest potential errors
Detection (e.g., pleural effusion).
Dermatological SkinGPT-4 analyzes skin lesions

Diagnosis via Skin

Image Analysis treatment recommendations.

Multimodal Analysis MLLM integrates imaging,

for Disease Diagnosis .
to diagnose rare cancers.

Clinical Decision
Support in
Emergency Settings

MLLM analyzes symptoms,

Omics-Based MLLM analyzes genomic and

Diagnosis in Oncolo . .
1agnosis 1 gy therapies for cancer patients.

for actinic keratosis diagnosis and

genomics, and clinical assessments

medical history, and vital signs for

triaging patients in emergencies.

clinical data to recommend targeted

Assists in error detection, improving
radiology report accuracy, and leading to [47]
better patient outcomes.

Provides rapid and accurate dermatological
diagnoses, assisting clinicians in decision- [48]
making.

Facilitates early detection of complex
diseases that may be overlooked using [49]
traditional methods.

Supports rapid clinical decision-making in
high-pressure environments, improving [50]
patient outcomes.

Personalizes treatment based on genomic

information, advancing precision medicine. [48, 49]

patient groups [51]. Addressing this bias involves
diversifying training datasets, applying fairness-aware
algorithms like adversarial debiasing, and validating
models across a broader range of populations to ensure
equitable outcomes [52].

Another critical issue is patient privacy, especially
when handling sensitive data from medical imaging,
omics, and clinical reports. Regulations like HIPAA in
the U.S. and GDPR in the EU must be adhered to in
order to safeguard patient confidentiality. Techniques
such as differential privacy and federated learning can
help protect patient data while enabling model
though
computational complexities [51-53]. Ensuring that
privacy is maintained while still allowing models to

training, they introduce  additional

learn from large datasets is a delicate balance. Model
interpretability remains a major hurdle for clinical
adoption. Many MLLMs, like Med-ViLLM and
BioMedLM, operate as black-box models, making it
difficult for healthcare professionals to understand
how predictions are made. This lack of transparency
undermines trust and hampers clinical integration.
Solutions like SHAP and attention visualization are
promising, but these techniques require further
development to make multimodal models more
[52].
challenges in deploying Al models in healthcare.
Regulatory bodies such as the FDA and EMA require
models to undergo rigorous validation to ensure they

interpretable Regulatory hurdles present
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are safe, effective, and fair. Models like VGGI19-
CNN, which have high computational costs, also face
challenges in real-time deployment [51]. Moving
forward, collaboration with regulatory agencies and
developing standardized validation protocols will be
essential to streamline Al adoption in healthcare [54].

7. Discussion

Combining imaging and omics data enhances
disease classification and treatment prediction by
leveraging multimodal data, with studies showing
improved prognostic accuracy for cancers like liver
and lung using integrated omics and imaging data [55,
56]. By leveraging machine learning and advanced
analytics, it addresses complex relationships among
biological processes, health indicators, and risk
factors, proving versatile in modern healthcare [57]. In
oncology, multimodal approaches enhance prognostic
accuracy and personalize treatment. Al models,
combining omics and histopathological imaging data,
outperform unimodal models in predicting outcomes
for liver, lung, renal, and breast cancers [55, 56]. For
complex diseases like head and neck squamous cell
carcinoma and neuroendocrine tumors, it captures
intricacies and improves predictive precision [56, 58].
It also predicts therapeutic responses, as seen in
rivastigmine treatment for Alzheimer’s disease,
showcasing potential in personalized treatment
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planning [59]. Rapid diagnostic capabilities, observed
in necrotizing enterocolitis, demonstrate multimodal
strength in handling multifaceted datasets [60].

Advancements in models like ELMO and
MORONET integrate large-scale models into
biomedical  research, enhancing  multimodal

applications [62, 63]. Attribute reduction algorithms
for Alzheimer’s disease demonstrate new clinical
pathways [63]. It improves prognostic accuracy, with
UMAP embedding and CNNs showing promise in
multi-omics data integration for cancer prediction and
survival analysis [64]. This advancement enables

personalized treatment strategies and improved
outcomes. Extends to neurological diseases,
predicting disease progression and treatment

recommendations for conditions like Alzheimer’s
[65]. In inflammatory bowel disease management,
models predicting treatment responses and prognosis,
and personalizing treatment strategies [12, 43].
Transformative potential in disease management and
patient care is evident, offering substantial promise for
advancing disease classification and treatment
prediction through comprehensive data analysis and
predictive modeling [20].

8. Conclusion

The integration of multimodal LLM in medicine
holds remarkable promise for transforming healthcare
by advancing disease diagnosis. Combining imaging
and omics data allows for a more holistic view of
diseases, where it enhances prognostic capabilities and
facilitates the identification of molecular subtypes.
This integrative approach supports precision medicine
and radiation therapy by enabling non-invasive
identification and optimizing treatment strategies
tailored to individual patient profiles. Despite the
progress made, significant challenges persist,
including data management complexities and the need
for robust feature selection. As multimodal continues
to evolve, addressing these challenges will be critical
in ensuring its successful implementation in clinical
settings (Table 6). The development of ethical
guidelines and standards for Al transparency will be
essential in gaining clinician and patient trust. Overall,
the ongoing advancements in a new era in healthcare
with the potential to fundamentally reshape disease
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management and improve clinical decision-making
through personalized medicine.

9. Future Perspectives

The integration of Multimodal Large Language
Models (MLLMs) in healthcare holds significant
promise, but several challenges must be addressed for
their successful deployment and scalability.
Scalability remains a primary concern as these models
must efficiently handle vast datasets from diverse
sources, including medical imaging, genomics, and
patient records. As healthcare data grows, leveraging
cloud computing and distributed systems will be
essential to support these Al models, ensuring they are
computationally efficient and scalable across various
healthcare settings. Fine-tuning models for clinical
settings will also be crucial. While MLLMs offer
impressive generalization, there is a need for
continuous model adaptation to reflect real-time
changes in disease patterns and demographics.
Techniques like incremental learning and transfer
learning could help these models stay updated with
evolving patient data, particularly in underrepresented
groups or rare diseases.

As the use of Al in healthcare expands, regulatory
frameworks will play a pivotal role. Compliance with
data privacy standards like HIPAA and GDPR,
alongside the integration of bias mitigation methods,
will be crucial in ensuring fairness and equity in Al-
driven healthcare. Moreover, model interpretability
will become a priority to foster clinician trust,
requiring the development of transparency tools and
explainability frameworks. Looking ahead, real-time
data integration, especially from wearable devices and
IoT sensors, will enable more personalized and
predictive healthcare. Furthermore, as the regulatory
environment matures, there is a need for global
harmonization to ensure that these technologies can be
deployed seamlessly across borders. By addressing
these challenges, multimodal Al can significantly
enhance patient outcomes, streamline healthcare
operations, and enable the next frontier in personalized
medicine.
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Table 6. Applications and Limitations of Multimodal in Medical Imaging and Omics Data

Applications Limitations
Disease pattern analysis, treatment outcome Limited diverse imaging data, underperformance in rare or complex
prediction cases

Symptom identification, diagnostic workflows,
virtual health consultations
Gene-disease relationship insights, research
trend identification
Quick comprehension of patient imaging
records, radiology interpretation support
Precision medicine, personalized treatment
plans, advanced diagnostic insights
Pathology report generation, linking tissue-level
data with clinical findings
X-ray and imaging feature analysis, enhanced
disease detection capabilities
Multi-imaging disease identification (X-ray,
MRI, CT), improved diagnostic accuracy
Complex biomolecular pathway analysis, cross-
omics insights for disease research
Holistic patient assessments, personalized health
predictions

Inaccurate answers in complex or rare cases, limited real-time data

Misses recent research, lacks multi-faceted genomic and text

analysis

Limited to NLP-based patterns, missing subtle details in imaging

data

High computational resources required, potential genomic

misinterpretation

Poor generalization in diverse tissue types, biased histology data

Overgeneralizes uncommon conditions, difficulty with radiography

variations

Limited high-detail scan support, error-prone in detecting subtle

features

Scalability issues with real-world omics complexity,

oversimplification of complex data

Overconfidence in predictions, limited explainability in genomic-

based conclusions
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