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Abstract 

Purpose: This review focuses on how Multimodal Large Language Models (MLLMs) and multimodal AI models 

are advancing healthcare by integrating medical imaging and omics data. By integrating imaging techniques such 

as MRI, CT, and PET with genomics, transcriptomics, and proteomics, these models offer a comprehensive 

understanding of diseases, particularly in areas like cancer diagnosis and treatment. The study also highlights the 

challenges of managing complex datasets and ensuring effective feature selection.  

Materials and Methods: Analysed studies leveraging advanced AI models, such as Convolutional Neural 

Networks (CNNs) and Multimodal Neural Networks (MM-Nets), to integrate diverse data sources. These models 

enhance medical imaging with omics data to improve disease prediction and management. Applications reviewed 

include cancer subtype classification, survival outcome prediction, and precision medicine, with a particular focus 

on non-invasive diagnostic tools. 

Results: The findings underscore the transformative potential of multimodal healthcare. They significantly 

improve the identification of biomarkers and enable personalized treatment approaches. For instance, models like 

VGG19-CNN and PAGE-Net demonstrated higher accuracy in predicting cancer-specific outcomes and 

integrating genomic and imaging data. Moreover, the applications to single-cell analysis and radiomics 

showcased their ability to uncover molecular-level insights, advancing precision medicine. 

Conclusion: represents a breakthrough in healthcare, combining diverse data types to deliver actionable insights 

for disease management. While challenges such as handling complex datasets and ensuring model transparency 

remain, ongoing advancements in AI technologies are paving the way for their wider adoption. These models 

hold immense promise for improving diagnostics, guiding treatment strategies, and enhancing patient outcomes, 

marking a significant step toward the era of personalized medicine. 

Keywords: Multimodal Large Language Models; Medical Imaging; Omics Data; Generative Artificial 

Intelligence. 
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1. Introduction  

The integration of Multimodal Large Language 

Models (MLLMs) and multimodal AI models in the 

medical domain enhances disease diagnosis and 

treatment, as seen in applications like cancer 

subtyping and survival prediction [1-3]. One of the 

transformations that is happening right now is through 

confluence with imaging and omics data, which will 

have a major impact on cancer at the molecular 

granularity. There is a proliferation of omics data that 

makes it more feasible to build computational models 

that integrate different types of data [4]. Despite these 

advances, biological and medical research is shifting 

towards integrating electronic health records (EHR) 

with imaging data using advanced AI models [5]. One 

of the main strategies to connect medical imaging with 

multi-omics data is phenotypic information extracted 

from images that can then be used as annotations for 

omics data. Multimodal approaches have been shown 

to be advanced in disease diagnosis, where integrating 

clinical outcome data, bioimaging, and omics 

improves diagnostic reliability [6]. Cancer research is 

one key area of healthcare where multimodal 

approaches may have a significant impact. Studies 

have found that there are few integrated multi-omics 

models available to forecast survival outcomes for 

liver cancer in a variety of patient populations [7]. 

Medical imaging can be used in conjunction with 

multi-omics analysis, as evidenced by the successful 

applications of AI-driven multi-omics integration in 

ovarian cancer research [8]. The potential of 

multimodal in cancer research has been highlighted by 

methods such as Cancer Integration via Multikernel 

Learning (CIMLR), which has successfully integrated 

multi-omic data to identify molecular subtypes within 

cancer [1].  

The convergence of imaging and omics data 

enhances precision medicine and radiation therapy by 

enabling non-invasive biomarker identification and 

optimizing treatment strategies, as demonstrated by 

radiomics-based AI models improving radiation 

therapy outcomes [9] and CIMLR identifying 

molecular subtypes in cancer with high accuracy [1]. 

Radiomics combined using multimodal imaging has 

been shown to be useful in identifying non-invasive, 

cheap, and effective biomarkers especially for 

radiotherapy [9]. Specifically, recent computational 

frameworks for the analysis of single-cell omics 

across multiple modalities further underscore a 

broader relevance of AI in scRNA-seq studies [10]. 

Adopting multimodal models that couple imaging 

with omics is an exciting leap in precision diagnosis, 

subtypes, and personalized treatment. This is 

facilitated by sophisticated algorithms that converge 

to redefine the way overhauling molecular 

complexities of diseases are managed (Figure 1). 

Here, we present a review of multimodal models in 

healthcare, outlining recent breakthroughs, 

challenges, and future directions in this dynamic field. 

This review synthesizes the integration of 

Multimodal Large Language Models (MLLMs) and 

multimodal AI in healthcare, focusing on their 

transformative role in medical imaging and omics 

data, particularly in cancer diagnosis, precision 

medicine, and single-cell analysis. Unlike prior works 

such as Antonelli et al. [13], which primarily focus on 

the technical aspects of imaging-omics integration, 

and Boehm et al. [14], which emphasize precision 

oncology, this review bridges established multimodal 

AI models like VGG19-CNN [11], PAGE-Net [13], 

and MM-Net [11] with emerging MLLMs such as 

Med-ViLLM [14], ChatGPT-4 [11], and LLaMA 3.1 

[13]. It evaluates their potential and limitations within 

clinical contexts. The review introduces a structured 

glossary to standardize the term "multimodal," 

addressing the inconsistencies in its usage across the 

literature. Furthermore, it offers a comparative 

analysis of model architectures and their performance, 

while discussing key challenges such as data 

management complexity and model transparency, and 

providing actionable recommendations for clinical 

adoption. This work fills a gap by integrating technical 

advancements with practical applications, providing a 

comprehensive resource for researchers and clinicians 

working towards the adoption of multimodal AI in 

personalized medicine. 

2. Background Overview 

The integration of artificial intelligence is 

revolutionizing healthcare and biomedical research. It 

enhances medical imaging for accurate diagnoses and 

streamlines pathology to identify unseen patterns. It 

unlocks genomics and proteomics secrets, aiding  
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disease understanding. This fusion enables data-

driven decisions, driving breakthroughs in diagnosis, 

treatment, and prevention. Combining human 

expertise with AI's analytical power. AI's core role in 

medical imaging, pathology, genomics, and 

proteomics paves the way for precision medicine, 

improving patient care and outcomes in 

unprecedented ways. This glossary addresses the 

inconsistent use of ‘multimodal’ in prior reviews [11, 

13], providing clarity for researchers and clinicians. 

The integration of medical imaging and omics data, 

enabled by MLLMs and multimodal AI, requires a 

foundational understanding of these data types and 

their analytical frameworks. This section provides an 

overview of medical imaging and omics data, 

highlighting their roles in disease characterization and 

how advanced AI methods, discussed in later sections, 

leverage these data for clinical applications. 

2.1. Defining Multimodal Large Language 

Models 

Multimodal Large Language Models represent a 

new generation of AI models that integrate large-scale  

 

language processing with the ability to handle diverse 

data modalities, such as medical imaging and omics 

data. Unlike standard Large Language Models, which 

are limited to textual inputs and tasks like medical 

Q&A or literature summarization, MLLMs employ 

transformer-based architectures or hybrid frameworks 

to align and process heterogeneous data, enabling 

tasks such as cancer subtype classification, survival 

prediction, and precision medicine. Compared to 

traditional multimodal AI models, such as 

Convolutional Neural Networks (CNNs) or 

Multimodal Neural Networks (MM-Nets), MLLMs 

benefit from large-scale pretraining on diverse 

datasets, offering greater generalizability and 

generative capabilities (producing diagnostic reports). 

For instance, models like Med-ViLLM and 

OMNIGPT combine vision and language processing 

to integrate histopathological images with genomic 

data, outperforming task-specific models in complex 

biomedical applications. 

 

Figure 1. Architecture of a Multimodal Large Language Model, such as Med-ViLLM, illustrating the integration of 

medical imaging, omics data, and textual data. The model employs modality-specific encoders, Vision Transformer for 

imaging, feature extractors for omics, and a transformer-based core to align and process multimodal inputs for tasks like 

cancer diagnosis and precision medicine [11]. Arrows indicate data flow through preprocessing, feature extraction, and 

fusion layers, enabling cross-modal reasoning and generative outputs [12] 
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2.2. Medical Imaging  

Medical imaging techniques are fundamental in 

delivering detailed anatomical and physiological 

insights. Unlike recent reviews that focus on domain-

specific models [11], this work explores the potential 

of general-purpose MLLMs like ChatGPT-4 and 

LLaMA 3.1, evaluating their emerging role in 

multimodal medical applications. Key modalities in 

this domain include: 

• Computed Tomography (CT): A CT scan is a 

non-invasive imaging technique using X-rays to 

produce detailed cross-sectional images of internal 

structures. Mathematical algorithms reconstruct 

these images, providing a clear visualization of 

tissues and organs. It offers a precise, 3D view of 

the body's interior, enabling diagnosis and treatment 

of various medical conditions without surgical 

intervention, and enhancing patient care and 

outcomes [10, 15]. 

• Magnetic Resonance Imaging (MRI): MRI 

operates through the use of strong magnetic fields 

and radiofrequency pulses, generating high-

resolution images of soft tissues. By utilizing 

differences in water content and molecular 

properties, MRI is adept at capturing fine 

anatomical details, especially in soft tissue 

visualization [15]. 

• Positron Emission Tomography (PET): PET 

imaging involves injecting radiolabeled tracers to 

visualize metabolic activity within tissues. As 

tracers decay, PET detects positron emissions, 

providing functional insights into molecular-level 

physiological processes. This non-invasive 

technique offers a detailed view of tissue 

metabolism, enabling diagnosis and monitoring of 

various diseases, including cancer and neurological 

disorders. 

The fusion of PET with CT in PET/CT imaging 

combines detailed structural imaging with metabolic 

activity (Figure 2), offering a comprehensive view for 

assessing pathology and disease progression [15]. 

Hematoxylin and Eosin (H&E) staining is a common 

technique in histology; eosin gives the cytoplasm and 

extracellular structures a pink hue, while hematoxylin 

gives the cell nuclei a blue hue. This staining 

technique improves microscopic analysis and makes 

characterizing tissue morphology easier [16]. 

Histology is digitized through Whole Slide Imaging 

(WSI), which creates high-resolution digital images 

from entire slides. This invention facilitates remote 

computing. A foundational understanding of medical 

imaging, pathology, genomics, proteomics, computer 

vision, and machine learning/deep learning 

applications. It also makes it possible to use machine 

learning for automated pathology analysis [12]. 

In medical image analysis, computer vision 

techniques are game-changers, helping doctors 

diagnose and interpret images with precision. These 

innovative tools expertly segment anatomical 

structures, detect hidden abnormalities, and analyze 

vital imaging features. Especially in histopathology, 

machine learning algorithms revolutionize disease 

diagnosis by identifying subtle patterns in digitized 

pathology slides. This supports pathologists in making 

accurate diagnoses, quantifying biomarkers, and 

predicting patient outcomes. By automating complex 

tasks, computer vision empowers healthcare 

professionals to focus on what matters most delivering 

personalized, life-changing care. Ultimately, this 

 

Figure 2. Comparison of different imaging technologies: 

a: CT [16]. b: PET [16]. d: PET/CT [16]. e: H&E [16]. f: 

WSI [17] 
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fusion of technology and medicine saves lives and 

improves patient outcomes [16]. 

2.3. Omics Data 

The study of molecular biology has advanced 

through various disciplines that contribute to our 

understanding of genetic and molecular functions, 

collectively known as omics: 

• Genomics: It involves analyzing an organism's 

entire genetic makeup, including genes, non-coding 

regions, and structural variations. High-throughput 

DNA sequencing enables the identification of 

genetic variations and functional genomic elements, 

shedding light on the blueprint of life. This 

knowledge has far-reaching implications for 

personalized medicine and genetic disease 

diagnosis [16]. 

• Epigenomics: To explore modifications to DNA 

and histone proteins that regulate gene expression. 

Techniques like chromatin immunoprecipitation 

sequencing (ChIP-seq) reveal DNA-protein 

interactions, uncovering the intricate epigenetic 

landscape that influences gene behavior. 

Understanding epigenomics holds promise for 

developing novel therapies targeting gene 

regulation [16]. 

• Transcriptomics: It analyzes RNA transcripts to 

understand gene expression patterns. RNA 

sequencing (RNA-Seq) provides a comprehensive 

view of gene expression, revealing alternative 

splicing events and outperforming traditional RNA 

microarrays. This insight enables researchers to 

understand cellular responses to environmental 

changes [16]. 

• Proteomics: Systematically examines an 

organism's complete protein complement. Liquid 

chromatography-tandem mass spectrometry (LC-

MS/MS) enables protein identification and 

quantification, unraveling cellular processes and 

shedding light on life's molecular machinery. 

Proteomics informs our understanding of protein 

interactions, disease mechanisms, and potential 

therapeutic targets [16]. 

These advanced omics techniques, coupled with 

computer vision, machine learning, and deep learning, 

are creating a robust framework for exploring 

molecular and structural aspects of biology. This 

integration is instrumental in improving diagnostic 

accuracy, enabling precision medicine, and advancing 

our understanding of complex diseases (Figure 3). By 

exploring the intricate relationships between genes, 

epigenetic modifications, transcripts, and proteins, 

researchers can develop novel diagnostic tools, 

therapies, and treatments, ultimately improving 

human health and well-being.  

3. Data 

The data sources and methodologies are central to 

integrating multimodal data in biomedical research. 

By analyzing both molecular and imaging datasets, a 

comprehensive view of how different data types are 

combined to advance disease characterization and 

predictive modeling is provided (Table 1). 

3.1. Multimodal Data 

Modern Biomedical confronts a daunting task 

integrating large datasets, merging medical imaging 

and high-throughput omics data, to unlock insights 

into complex biological systems. The data 

encompasses information derived from diverse 

features and sample sets, offering complementary  

 

Figure 3. Combining genomics, epigenomics, 

transcriptomics, and proteomics data enables a 

comprehensive, systems-level understanding, 

revealing intricate relationships and insights into 

biological processes, diseases, and therapeutic targets 

[18] 
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insights essential for analyzing biological samples, 

events, and systems. For the purposes of this review, 

the integration of at least two data categories, which 

may include anatomical pathology, genomics, 

epigenomics, transcriptomics, proteomics, and 

medical imaging [19]. While these categories serve as 

a primary focus, multimodal AI applications extend 

across broader data modalities [20]. The integration of 

multimodal data is vital for enabling data-driven 

analyses to address feature selection, classification, 

regression, unsupervised learning, and association 

studies, as well as to facilitate predictive model 

construction for disease detection and classification. 

3.2. Molecular Data 

This review focuses on omics data generated 

through high-throughput techniques, specifically  

 

genomics, epigenomics, transcriptomics, and 

proteomics. These omics categories are pivotal in 

studies aiming to integrate molecular data for disease 

characterization and predictive modeling. 

• Genomics and Epigenomics: For genomic data, 

researchers commonly use datasets from the 

National Cancer Institute’s Genomic Data 

Commons (GDC) [21]. Cancer Genome Atlas 

Program (TCGA) [13, 22, 23] MOSCATO dataset 

[19] employed for training machine learning 

models, providing extensive data on tumor types, 

grades, therapy classes, and genomic composition 

[23]. To incorporate epigenomic data, the studies 

utilize epigenome-wide association studies 

(EWAS), which analyze quantifiable epigenetic 

markers, like DNA methylation, to establish 

associations between epigenetic variation and 

phenotypes [24, 25].  

Table 1. Multimodal Data Sources and Processing Techniques 

Data Type Source Processing Techniques Applications 

Genomics 

National Cancer Institute’s 

Genomic Data Commons 

(GDC), The Cancer 

Genome Atlas (TCGA), 

MOSCATO dataset 

High-throughput sequencing, 

variant analysis 

Disease mutation analysis, therapy 

classification 

Epigenomics 

Epigenome-Wide 

Association Studies 

(EWAS) 

DNA methylation profiling, 

association studies 

Epigenetic variation analysis, 

phenotype association studies 

Proteomics 

Clinical Proteomic Tumor 

Analysis Consortium 

(CPTAC) 

Mass spectrometry, protein 

quantification 

Cancer type profiling, protein marker 

analysis 

Transcriptomics 

RNA sequencing (RNA-

Seq), RNA-microarrays, 

ENCODE database 

RNA-Seq and microarray 

analysis, cDNA probes for 

gene expression 

Gene expression profiling, 

transcriptomic characterization 

Medical 

Imaging 

TCGA imaging data, 

Cancer Imaging Archive 

(TCIA), UK BioBank, 

Alzheimer’s Disease 

Neuroimaging Initiative 

(ADNI) 

CT, MRI, PET/CT, 

histopathology staining 

Anatomical assessment, disease 

classification, biomarker tracking 

Specialized 

Methods 

NCI Patient-Derived 

Models Repository 

(PDMR), Library of 

Integrated Network-Based 

Cellular Signatures 

(LINCS) 

Histopathology image tiling, 

gene expression analysis, 

digital staining and 

normalization 

Integrative disease modeling, drug 

response prediction 

Histopathology 

H&E stained slides, Aperio 

AT2 scanning, QuPath, 

Slideflow software 

Staining, ROI annotation, 

tiling and resizing, Reinhard 

stain normalization 

Tumor assessment, image 

standardization 

Transcriptomic 

Data from PDX 

Patient-Derived Xenografts 

(PDX) 

RNA-Seq, log2 

transformation, TPM 

normalization 

Transcriptomic changes analysis 
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• Proteomics: The Clinical Proteomic Tumor 

Analysis Consortium (CPTAC) [26], offers a public 

catalog of proteomic and genomic data across 

various cancer types, with significant overlap with 

the TCGA. The combination of CPTAC and TCGA 

data provides a detailed molecular profile of patient 

disease states [14]. 

• Transcriptomics: The data used in these studies is 

often derived through RNA sequencing (RNA-Seq) 

[27] or RNA-microarrays [28], focusing on mRNA 

levels for predictive modeling. RNA-Seq provides 

an unbiased, high-throughput view of the 

transcriptome, while RNA-microarrays utilize 

complementary DNA (cDNA) probes to measure 

gene expression. Transcriptomics data is frequently 

sourced from the ENCODE database for studies in 

both epigenomics and transcriptomics [29]. 

3.3. Medical Imaging Data 

The integration of imaging and molecular data is 

crucial in biomedical research for a comprehensive 

understanding of health and disease. Approaches vary, 

with some studies exclusively leveraging the TCGA 

database for both molecular and imaging data, while 

others utilize additional imaging databases. 

• TCGA-Based Imaging Data: The TCGA database 

houses diverse imaging data, including CT, MRI, 

PET, and PET/CT scans, covering healthy controls 

and various cancer types [13]. This dual repository 

allows researchers to study imaging and molecular 

data within a single, integrated framework. 

• Extended Imaging Databases: Some studies 

expand beyond TCGA, integrating data from 

sources such as private clinical cancer institutions 

and the Cancer Imaging Archive (TCIA) [13, 22, 

30]. TCIA provides images from various 

techniques, capturing a range of scenarios from 

healthy controls to different cancer types, UK 

BioBank [31, 32]. Offers a wealth of body and 

cardiac imaging, genetic data, lifestyle measures, 

biological phenotyping, and health records. 

Neuroimaging studies often utilize datasets such as 

Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) [31], and the Enhancing NeuroImaging 

Genetics through Meta-Analysis (ENIGMA) [32]. 

While ADNI limits open access to its data, 

ENIGMA facilitates free, standardized data 

analysis, enabling collaborators to independently 

process their data [16]. 

• Specialized Methodologies: In a unique approach, 

Partin et al. [33] trained models on data type. Data 

collection comprised multiple stages, integrating 

drug descriptors, gene expression profiles, and 

histology image tiles into a unified dataset. 

• Histopathology and Omics Characterization: 

Initial data were sourced from the NCI Patient-

Derived Models Repository (PDMR) [34], which 

provides histopathology assessments, whole-exome 

sequencing, and RNA-Seq for tumor subsets. This 

preliminary step established a baseline for 

histological and omic data characterization. 

• Transcriptomic Data from Patient-Derived 

Xenografts (PDX): Transcriptomic data were 

gathered from PDX models through RNA-Seq, then 

transformed into Transcripts Per Kilobase million 

(TPM). Further log2 transformation and 

standardization were performed, zero mean and unit 

standard deviation. The Library of Integrated 

Network-Based Cellular Signatures (LINCS) 

project provided landmark genes to capture 

significant transcriptomic changes [35]. 

• Histopathology and Imaging Processing: 

Histopathology slides were digitized at 20x 

magnification using an Aperio AT2 scanner [36]. A 

board-certified pathologist verified consistency 

with original diagnoses and annotated regions of 

interest (ROIs) using QuPath [36]. Whole slide 

images were processed into 299x299 pixel tiles 

(302 µm x 302 µm) via Slide flow software [37]. 

Background filtering (60% threshold) and digital 

stain normalization using the Reinhard method 

ensured uniformity, standardizing tiles to mean 0 

and unit variance for analysis [38]. 

This extensive collection and processing of 

multimodal data underscore the transformative 

potential of combining molecular and imaging data for 

disease prediction and characterization. 

4. Methods 

Specifically addressing statistical and machine 

learning techniques, these methods are categorized 

based on their application to supervised classification, 
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regression, clustering, and network analysis (Figure 

4), highlighting significant contributions within the 

field, such as Antonelli et al.'s foundational survey on 

multimodal data integration [13]. 

4.1. Classification and Regression Techniques 

In supervised classification, numerous algorithms 

have been developed to handle the inherent 

complexity of biomedical data, which is often 

characterized by variability and noise. Supervised 

classification tasks in biomedical contexts involve 

functions that assign real-valued labels to data. 

Techniques like regression analysis are especially 

useful in these scenarios, where a regularization term 

controls the number of independent variables 

involved. For instance, the Lasso method introduces 

an L1-penalty term to the objective function, 

effectively handling cases with highly correlated 

features [39]. These classification and regression 

techniques, such as Canonical Correlation Analysis, 

enable precise disease prediction, which is critical for 

applications like cancer subtype classification 

discussed in Section 5. 

• Canonical Correlation Analysis (CCA): 

Identifies co-expressed features across modalities, 

and has also been adapted for multimodal data 

integration. Yan et al. extended traditional 

incorporating a penalty term that considers disease 

status, utilizing Laplacian matrices to account for 

patient diagnoses, thereby enhancing predictive 

performance in disease-specific contexts. 

4.2. Clustering and Unsupervised Methods 

In the analysis of unlabeled data, clustering plays an 

essential role. Unlike classification or regression 

models, clustering groups similar samples and 

segregates dissimilar ones without prior labels, 

offering critical insights into sample relationships and 

biological themes. 

• lmQCM Clustering: The lmQCM algorithm 

allows for overlapping groups, enabling genes to 

belong to multiple clusters, providing flexibility in 

representing complex biological relationships. 

Hierarchical Clustering: Employed by Diehn et 

al. [41]. hierarchical clustering identifies functional 

themes among genes and uncovers modular 

structures with topological overlaps in networks, 

which is particularly useful for understanding gene 

interaction networks in biomedical data. 

4.3. Network Analysis and Deep Learning in 

Imaging and Omics 

Network analysis leverages gene expression data to 

construct networks representing interactions among 

cell components, facilitating the interpretation of 

complex biological processes.  Recent applications of 

deep learning include efforts to map tumor gene 

expression profiles to MRI-based tumor morphology, 

illustrating how imaging data can enhance omics-

based insights. Although deep learning for integrated 

omics and imaging analyses is still emerging, these 

approaches hold promise for advancing multimodal 

data integration [16]. 

4.4. Model Description 

Bioinformatics studies are increasingly focusing on 

synergistic models that integrate imaging and omics 

data, moving beyond traditional single-modality 

approaches. Review several pivotal studies (Figure 5), 

emphasizing innovations in multimodal AI 

applications [42]. 

 

 

 

Figure 4. Multimodal Network (MM-Net) illustration, 

adapted from Partin et al., showcasing integrated 

analysis of diverse data types [33] 
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• Chen et al.'s VGG19-CNN Model: In their study, 

they utilized a VGG19-based Convolutional Neural 

Network (CNN) to extract features from regions of 

interest in Whole Slide Imaging (WSI) data [2]. 

Simultaneously, self-normalizing networks 

processed omics data, enhancing feature extraction 

and minimizing overfitting risks. This strategic 

integration of image and omics data produced a 

multidimensional array that enriched the model’s 

predictive capacity, marking a significant 

advancement over traditional single-modality 

approaches. 

Hao et al.'s PAGE-NET Model: Developed the 

PAGE-NET model, an innovative approach that 

combines genomic data, patient age, and H&E-

stained images. The model uses a texture-based 

CNN that incorporates a patch aggregation strategy 

to capture the nuances across data modalities. 

Notably, PAGE-NET has been effective in 

predicting Cancer-Specific Survival (CSS) within a 

Cox proportional hazards model framework, 

showcasing its versatility and efficacy in clinical 

outcome prediction [3].  

4.5. Multimodal Neural Networks (MM-Net) 

The multimodal neural network (MM-Net), 

designed to predict drug response in patient-derived  

 

xenografts (PDXs) [33]. MM-Net was evaluated 

across six distinct models that varied in feature sets 

and sample types, including: 

• Unimodal Models: The UME-Net and UMH-Net 

models focused on specific data types, with UME-

Net for gene expression and UMH-Net employing a 

CNN to analyze histological features. The LGBM 

model, optimized for gene expression data, used 

gradient boosting techniques. 

• Integrated Multimodal Model (MM-Net): MM-

Net combined data from drug descriptors, gene 

expression, and histology, demonstrating the 

enhanced predictive power of multimodal data 

integration. The integration of diverse modalities 

improved performance metrics, particularly the 

Matthews Correlation Coefficient (MCC), 

underscoring the potential of multimodal 

approaches in achieving robust predictive 

outcomes. 

These methodologies underscore the progress in 

multimodal data integration, enabling sophisticated, 

data-driven predictions in biomedical contexts. 

Multimodal neural networks, including MLLMs 

and multimodal AI models, are essential for 

integrating medical imaging and omics data. Key 

models include VGG19-CNN, PAGE-Net, and MM-

 

Figure 5. Comparison of different performances in studies, adapted from Shneider et al. [42]  
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Net, each with unique architectures, training datasets, 

and evaluation metrics. 

VGG19-CNN: This model uses a 19-layer CNN to 

extract features from Whole Slide Imaging (WSI) data 

and integrates omics data via late fusion. Trained on 

The Cancer Genome Atlas (TCGA), which includes 

~10,000 WSI samples and genomic profiles, it 

achieved an AUC of 0.85 for cancer survival 

prediction, though its high computational cost limits 

scalability [2]. 

PAGE-Net: Employing a patch-based CNN 

architecture, PAGE-Net integrates H&E-stained 

images, genomic data, and patient age for cancer-

specific survival (CSS) prediction. Trained on ~2,000 

breast cancer samples from TCGA, it achieved an 

MCC of 0.78 for CSS prediction, but its 

generalizability is limited to breast cancer [3]. 

MM-Net: Designed for drug response prediction, 

MM-Net combines drug descriptors, gene expression, 

and histological images using a hybrid fusion 

approach. Trained on ~1,500 PDX samples, it 

achieved an MCC of 0.82 for drug response prediction 

but requires complex preprocessing and significant 

computational resources [33]. 

4.6. Comparative Analysis of Multimodal 

Models 

To elucidate the strengths and limitations of 

multimodal models, we compare key models such as 

VGG19-CNN, PAGE-Net, and MM-Net across 

several dimensions: architecture, data fusion strategy, 

performance metrics, and clinical applicability. 

VGG19-CNN, a deep convolutional neural network, 

excels in extracting features from Whole Slide 

Imaging (WSI) data but requires significant 

computational resources and is primarily suited for 

imaging-heavy tasks [2]. PAGE-Net integrates 

genomic data, patient age, and H&E-stained images 

using a patch-based convolutional approach, 

achieving high interpretability for cancer-specific 

survival (CSS) prediction (MCC: 0.78), but is limited 

to specific cancer types [3]. MM-Net, designed for 

prediction of drug response in patient-derived 

xenografts, combines drug descriptors, gene 

expression, and histology through hybrid fusion, 

offering robust performance (MCC: 0.82) but 

requiring complex training pipelines [33]. Table 2 

summarizes these comparisons, highlighting trade-

offs in scalability, generalizability, and clinical utility. 

The methodologies discussed in this section, 

including supervised classification, clustering, and 

multimodal neural networks like VGG19-CNN and 

MM-Net, provide the technical foundation for 

integrating medical imaging and omics data. These 

approaches enable the extraction, alignment, and 

analysis of heterogeneous data types, facilitating 

applications in disease diagnosis, prognosis, and 

treatment personalisation. The following section 

examines how these methods are applied in practical 

healthcare settings, including the classification of 

Table 2. Comparison of Multimodal Models 

Model Architecture 
Data 

Modalities 

Fusion 

Strategy 

Performance 

Metrics 

Clinical 

Applicability 
Strengths Limitations 

VGG19-

CNN 

19-layer 

CNN 
WSI, omics 

Late 

fusion 

AUC: 0.85 

(cancer 

survival) 

Cancer 

diagnosis, 

prognosis 

Robust image 

feature 

extraction 

High 

computational 

cost, imaging-

focused 

PAGE-

Net 

Patch-based 

CNN 

H&E 

images, 

genomics, 

age 

Patch-

based 

fusion 

MCC: 0.78 

(CSS 

prediction) 

Cancer-

specific 

survival 

prediction 

Interpretable 

texture analysis 

Limited to 

specific 

cancer types 

MM-

Net 

Multimodal 

neural 

network 

Drug 

descriptors, 

gene 

expression, 

histology 

Hybrid 

fusion 

MCC: 0.82 

(drug 

response) 

Drug 

response 

prediction in 

PDX models 

Comprehensive 

multimodal 

integration 

Complex 

training, data 

preprocessing 
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cancer subtypes, precision medicine, and single-cell 

analysis. It discusses their impact on clinical outcomes 

and the challenges associated with their 

implementation. 

Table 3 compares key multimodal models, 

highlighting their data types, outcomes, and clinical 

relevance. Multimodal AI models like VGG19-CNN 

and PAGE-Net, which process imaging and omics 

data, excel in specific tasks like cancer survival 

prediction (AUC: 0.85 [2]) and cancer-specific 

survival prediction (MCC: 0.78 [3]), but their designs 

limit generalizability. In contrast, MLLMs like Med-

ViLLM and BioMedLM, which integrate text, 

imaging, and omics, offer more flexibility for tasks 

like multi-cancer diagnostics (AUC: 0.87 [11]) and 

disease pattern analysis (AUC: 0.84 [14]). Emerging 

models like ChatGPT-4 show potential for diagnostic 

support but lack clinical validation [11]. This table 

highlights the balance between task-specific accuracy 

and broader applicability for clinical use. 

5. Overview of Multimodal in Medical 

Imaging 

Recent advancements in multimodal large language 

models have unlocked new potential in healthcare 

(Table 4). Integration has proven especially valuable 

in biological and medical research, allowing for a 

more comprehensive understanding of the human 

body and disease mechanisms. By merging data from 

medical images with genetic and molecular insights 

(Figure 6), multimodal can provide a holistic view of 

health and disease, with applications ranging from 

cancer prognosis to precision medicine [4, 5].  

The evaluation of Multimodal Large Language 

Models (MLLMs) in medical imaging and omics data 

integration is based on several key criteria: (1) 

Performance Metrics, including accuracy, area under 

the curve (AUC), Matthews correlation coefficient 

(MCC), sensitivity, and specificity, as reported in 

empirical studies for tasks like cancer diagnosis and 

survival prediction; (2) Generalizability, assessing the 

model’s ability to perform across diverse datasets,  

Table 3. Comparative Summary of Key Multimodal Models Comparative summary of key Multimodal Large Language 

Models (MLLMs) and multimodal AI models, detailing data types, outcomes, accuracy metrics, and clinical relevance. This 

table highlights the strengths and limitations of each model, guiding their application in healthcare 

Model Type Data Type Outcome 
Accuracy 

Metrics 
Clinical Relevance Source 

VGG19-

CNN 

Multimodal 

AI 

WSI, gene 

expression 

Cancer survival 

prediction 
AUC: 0.85 

Prognostic 

assessment in cancer 

(e.g., breast, lung) 

[2] 

PAGE-Net 
Multimodal 

AI 

H&E images, 

genomics, patient 

age 

Cancer-specific 

survival (CSS) 

prediction 

MCC: 0.78 

Breast cancer 

prognosis, risk 

stratification 

[3] 

MM-Net 
Multimodal 

AI 

Drug descriptors, 

gene expression, 

histology 

Drug response 

prediction in 

PDXs 

MCC: 0.82 

Personalized 

treatment in cancer 

therapy 

[33] 

Med-

ViLLM 
MLLM 

Text, imaging 

(MRI, CT, WSI), 

omics 

Disease 

diagnosis, 

prognostic 

prediction 

AUC: 0.87 

Precision medicine, 

multi-cancer 

diagnostics 

[11]  

BioMedLM MLLM 

Text, genomics, 

imaging (CT, 

PET) 

Disease pattern 

analysis 
AUC: 0.84 

Early detection of 

cancer and rare 

diseases 

[11, 14] 

ChatGPT-4 
MLLM 

(emerging) 

Text, imaging 

(emerging), 

clinical data 

Medical Q&A, 

diagnostic 

support 

Not fully 

validated 

Potential for patient 

triage, diagnostics 
[11]  
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including rare or complex cases; (3) Computational 

Efficiency, evaluating the resources required for 

training and inference, critical for clinical scalability; 

(4) Interpretability, measuring the transparency of 

model predictions, particularly for genomic and 

imaging-based outputs; and (5) Clinical Applicability, 

determining the model’s readiness for real-world 

medical settings based on validation studies and 

regulatory considerations. Limitations presented in 

Tables 3 and 4 are derived from empirical studies [2, 

3, 13, 14, 33, 43], expert reviews of multimodal AI 

challenges [11], and the authors’ synthesis of recurring 

issues in the literature, such as data diversity and 

explainability constraints. 

5.1. Applications in Cancer Research 

Cancer research is a major focus as scientists work 

to enhance survival predictions and improve treatment 

precision. Models like Cancer Integration via 

Multikernel Learning (CIMLR) enable the integration 

of diverse data types to identify molecular subtypes of 

cancer, enhancing our understanding and approach to 

cancer treatment [44]. Multimodal has shown notable  

 

success in predicting survival outcomes for liver 

cancer patients and classifying ovarian cancer 

subtypes, underscoring its transformative potential in 

oncology [6, 7]. Figure 5 illustrates the workflow for 

integrating medical imaging and omics data in cancer 

diagnosis using MLLMs and multimodal AI models. 

It shows the pipeline from data preprocessing (e.g., 

genomic data normalization, histopathological image 

segmentation) to feature extraction (e.g., Vision 

Transformers for Med-ViLLM [11] or CNNs for 

PAGE-Net [3]) and multimodal fusion for predicting 

cancer subtypes or survival. PAGE-Net combines 

H&E-stained images, genomic data, and patient age, 

achieving an MCC of 0.78 for cancer survival 

prediction [3], while Med-ViLLM integrates imaging, 

omics, and clinical reports to enhance diagnostic 

accuracy [11]. This workflow highlights the benefits 

of combining imaging and omics data for precision 

oncology but also addresses challenges like data 

heterogeneity and computational complexity. 

 

 

Figure 6. MLLMs consist of core modules and pipelines with modality alignment modules, including expert-model-based 

prompt augmentation methods [11] 



 Integration of Multimodal Large Language Models in Medical Imaging and Omics Data: A Comprehensive Review   

278   FBT, Vol. 13, No. 1 (Winter 2026) 266-284 

 

5.2. Precision Medicine and Radiation 

Therapy 

Advancing medicine and radiation therapy AI 

models analyze medical images to identify biomarkers 

biological indicators that guide personalized treatment 

plans. This process is not only fast and cost-effective 

but also non-invasive, making it a valuable tool in 

tailored patient care [8]. Radiomics, a technique that 

extracts features from medical images, combined with 

AI, is being used to optimize radiation therapy, 

allowing for accurate biomarker identification and 

improving treatment efficacy [1, 45]. 

5.3. Innovations in Single-Cell Analysis 

Single-cell analysis is another promising area for 

multimodal, where the combination of imaging and 

omics data reveals insights into cellular behavior and 

disease mechanisms. AI-driven models are adept at 

integrating diverse datasets from single cells, 

including genetic, protein, and molecular data, 

providing a clearer view of cell function and disease 

progression [9].  

5.4. Technological Foundations of Multimodal 

AI 

The success of multimodal in medicine is rooted in 

recent advancements in both imaging and omics 

technologies. It allows to visualize anatomical 

Table 4. Summarizing the Multimodal Large Language Models in medical imaging and omics data highlighting their names, 

tasks and limitations 

Model Task Description 

BioMedLM 
Integrates genomics, clinical, 

and imaging data 

BioMedLM focuses on synthesizing text with genomics and 

imaging, analyze multi-source biomedical data for insights into 

disease patterns and treatment outcomes. 

MedPaLM 
Medical Q&A and diagnostics 

from imaging & textual data 

Designed for medical Q&A and diagnosis support by interpreting 

text and imaging, particularly useful for identifying symptoms 

and aiding in diagnostic workflows. 

BioGPT 

Summarizes biomedical 

literature, connects text & gene 

data 

Its generates summaries of biomedical literature and links it with 

genetic data, offering insights into gene-disease relationships and 

relevant research. 

GatorTron 
Summarizes radiology and 

clinical reports 

Provides detail clinical report summaries, emphasizing radiology, 

to support quick comprehension of patient imaging records. 

OMNIGPT 
Diagnostics with genomics and 

imaging integration 

Enables diagnostics by combining genomics and imaging, 

supporting precision medicine through its ability to connect 

complex multimodal data for deeper insights. 

UNITER-med 
Aligns histopathology images 

with textual data 

This model aligns image and text data for histopathology 

analysis, helping pathologists link tissue-level details with 

clinical findings for better disease characterization. 

MedCLIP 
Contrastive learning for X-ray 

and image analysis 

Based on CLIP technology, it focuses on enhancing X-ray 

analysis using contrastive learning to find clinically relevant 

features across various imaging types. 

ImageBERT-

med 

Disease detection across diverse 

medical images 

This model extends the capabilities to medical images, 

identifying diseases across imaging modalities, including X-rays, 

MRIs, and CT scans, improving diagnostic accuracy. 

OmicsGPT 
Integrates text with multi-omics 

data (genomics, proteomics) 

Combines text with multi-omics data, helping researchers 

understand complex interactions among genomics, proteomics, 

and clinical data for disease research. 

Med-ViLLM 
Disease prediction with text, 

imaging, and omics data 

Vision-language model, enables disease prediction by 

synthesizing information from multiple modalities, supporting 

more holistic patient assessments. 

ChatGPT-4 
Medical analysis, patient Q&A, 

general diagnostic support 

Versatile model that offers patient-centered Q&A, diagnostic 

support, and medical data interpretation, with expanding potential 

for multimodal inputs. 

LLaMA 3.1 
Multimodal integration, large-

scale medical knowledge tasks 

Its provides scalable support for multimodal data integration, 

interpreting extensive imaging and genomic datasets, with 

particular applications in predictive analytics. 
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structures and processes with high precision. On the 

other hand, omics technologies provide 

comprehensive insights into an organism's genetic and 

molecular profile. Combining these datasets requires 

sophisticated methods, such as supervised 

classification algorithms and unsupervised clustering, 

which can handle the complexity of multi-source data 

[10, 36]. The power of MLLMs lies in their ability to 

leverage large-scale pretraining and transformer 

architectures, distinguishing them from traditional 

multimodal AI models like CNNs, which are often 

task-specific and lack generative capabilities. For 

instance, while VGG19-CNN excels in feature 

extraction from imaging data, MLLMs like Med-

ViLLM integrate imaging, omics, and text to generate 

comprehensive diagnostic insights, offering a more 

holistic approach to precision medicine. 

5.5. Key Models and Computational 

Approaches 

Advanced AI models are instrumental in integrating 

and analyzing multimodal data. Particularly, 

Convolutional Neural Networks (CNNs) play a 

pivotal role in interpreting complex biomedical data 

[46]. The VGG19-CNN and self-normalization have 

been applied to predict cancer survival rates and 

classify cancer subtypes [15]. Other innovative 

models, such as PAGE-NET, leverage patch-wise 

CNN techniques to integrate genomic data, patient 

age, and histological images, while MM-Net 

combines drug descriptors, gene expression, and 

histological features to predict patient responses to 

treatments [16]. 

General-purpose Multimodal Large Language 

Models (MLLMs) like ChatGPT-4 and LLaMA 3.1 

are included in this review due to their emerging 

multimodal capabilities, which hold promise for 

biomedical applications despite limited validated 

clinical use to date. ChatGPT-4, developed by 

OpenAI, has demonstrated potential in medical Q&A 

and diagnostic support by processing textual and, 

increasingly, imaging inputs, with preliminary studies 

exploring its ability to interpret radiology reports [12]. 

LLaMA 3.1, developed by Meta AI, offers scalable 

multimodal integration, with research indicating its 

adaptability for processing large-scale imaging and 

genomic datasets [43, 46]. While these models lack 

extensive validation in clinical settings, their 

transformer-based architectures and pretraining on 

diverse datasets suggest potential for tasks like disease 

prediction and personalized medicine. Ongoing 

research is exploring fine-tuning these models for 

specific medical tasks, such as integrating 

histopathology images with omics data, to enhance 

their clinical relevance [11]. However, challenges 

such as limited explainability and the need for domain-

specific fine-tuning must be addressed to ensure their 

safe and effective use in healthcare. Table 5 compares 

key models used in multimodal integration of medical 

imaging and omics data. Models like BioMedLM and 

Med-ViLLM utilize transformer-based architectures 

to analyze disease patterns and precision medicine, 

though they struggle with diverse imaging datasets. 

Convolutional models such as VGG19-CNN and 

PAGE-Net excel in tasks like cancer survival 

prediction but face issues with computational 

efficiency and generalizability. Emerging models like 

ChatGPT-4 and LLaMA 3.1 show potential for 

medical Q&A and analytics, but need more validation 

for clinical use. This overview highlights the strengths 

and limitations of these models, emphasizing the need 

for improvements in interpretability and scalability. 

Table 5 highlights various scenarios where MLLMs 

are enhancing diagnostic accuracy, supporting clinical 

decision-making, and personalizing patient care 

through the integration of imaging, genomics, and 

clinical data. The applications range from radiology 

report generation to omics-based cancer diagnosis, 

demonstrating the transformative potential of MLLMs 

in diverse clinical settings. 

6. Ethical, Interpretability, and 

Regulatory Considerations 

The integration of Multimodal Large Language 

Models (MLLMs) and multimodal AI models into 

healthcare presents significant opportunities but also 

several ethical, interpretability, and regulatory 

challenges. One of the primary concerns is bias in 

training data, as datasets such as The Cancer Genome 

Atlas (TCGA) and PDXNet often lack sufficient 

diversity in terms of race, ethnicity, and 

socioeconomic status [22, 33]. This limited 

representation can lead to biased predictions, 

particularly in cancer subtype classification, where 

models may perform poorly for underrepresented 
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patient groups [51]. Addressing this bias involves 

diversifying training datasets, applying fairness-aware 

algorithms like adversarial debiasing, and validating 

models across a broader range of populations to ensure 

equitable outcomes [52]. 

Another critical issue is patient privacy, especially 

when handling sensitive data from medical imaging, 

omics, and clinical reports. Regulations like HIPAA in 

the U.S. and GDPR in the EU must be adhered to in 

order to safeguard patient confidentiality. Techniques 

such as differential privacy and federated learning can 

help protect patient data while enabling model 

training, though they introduce additional 

computational complexities [51-53]. Ensuring that 

privacy is maintained while still allowing models to 

learn from large datasets is a delicate balance. Model 

interpretability remains a major hurdle for clinical 

adoption. Many MLLMs, like Med-ViLLM and 

BioMedLM, operate as black-box models, making it 

difficult for healthcare professionals to understand 

how predictions are made. This lack of transparency 

undermines trust and hampers clinical integration. 

Solutions like SHAP and attention visualization are 

promising, but these techniques require further 

development to make multimodal models more 

interpretable [52]. Regulatory hurdles present 

challenges in deploying AI models in healthcare. 

Regulatory bodies such as the FDA and EMA require 

models to undergo rigorous validation to ensure they 

are safe, effective, and fair. Models like VGG19-

CNN, which have high computational costs, also face 

challenges in real-time deployment [51]. Moving 

forward, collaboration with regulatory agencies and 

developing standardized validation protocols will be 

essential to streamline AI adoption in healthcare [54]. 

7. Discussion 

Combining imaging and omics data enhances 

disease classification and treatment prediction by 

leveraging multimodal data, with studies showing 

improved prognostic accuracy for cancers like liver 

and lung using integrated omics and imaging data [55, 

56]. By leveraging machine learning and advanced 

analytics, it addresses complex relationships among 

biological processes, health indicators, and risk 

factors, proving versatile in modern healthcare [57]. In 

oncology, multimodal approaches enhance prognostic 

accuracy and personalize treatment. AI models, 

combining omics and histopathological imaging data, 

outperform unimodal models in predicting outcomes 

for liver, lung, renal, and breast cancers [55, 56]. For 

complex diseases like head and neck squamous cell 

carcinoma and neuroendocrine tumors, it captures 

intricacies and improves predictive precision [56, 58]. 

It also predicts therapeutic responses, as seen in 

rivastigmine treatment for Alzheimer’s disease, 

showcasing potential in personalized treatment 

Table 5. Clinical examples of multimodal large language model applications in healthcare 

Clinical Scenario Application Impact Source 

Radiology Report 

Generation and Error 

Detection 

ChatRadio-Valuer analyzes chest 

X-rays to suggest potential errors 

(e.g., pleural effusion). 

Assists in error detection, improving 

radiology report accuracy, and leading to 

better patient outcomes. 

[47] 

Dermatological 

Diagnosis via Skin 

Image Analysis 

SkinGPT-4 analyzes skin lesions 

for actinic keratosis diagnosis and 

treatment recommendations. 

Provides rapid and accurate dermatological 

diagnoses, assisting clinicians in decision-

making. 

[48] 

Multimodal Analysis 

for Disease Diagnosis 

MLLM integrates imaging, 

genomics, and clinical assessments 

to diagnose rare cancers. 

Facilitates early detection of complex 

diseases that may be overlooked using 

traditional methods. 

[49] 

Clinical Decision 

Support in 

Emergency Settings 

MLLM analyzes symptoms, 

medical history, and vital signs for 

triaging patients in emergencies. 

Supports rapid clinical decision-making in 

high-pressure environments, improving 

patient outcomes. 

[50] 

Omics-Based 

Diagnosis in Oncology 

MLLM analyzes genomic and 

clinical data to recommend targeted 

therapies for cancer patients. 

Personalizes treatment based on genomic 

information, advancing precision medicine. 
[48, 49] 
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planning [59]. Rapid diagnostic capabilities, observed 

in necrotizing enterocolitis, demonstrate multimodal 

strength in handling multifaceted datasets [60]. 

Advancements in models like ELMO and 

MORONET integrate large-scale models into 

biomedical research, enhancing multimodal 

applications [62, 63]. Attribute reduction algorithms 

for Alzheimer’s disease demonstrate new clinical 

pathways [63]. It improves prognostic accuracy, with 

UMAP embedding and CNNs showing promise in 

multi-omics data integration for cancer prediction and 

survival analysis [64]. This advancement enables 

personalized treatment strategies and improved 

outcomes. Extends to neurological diseases, 

predicting disease progression and treatment 

recommendations for conditions like Alzheimer’s 

[65]. In inflammatory bowel disease management, 

models predicting treatment responses and prognosis, 

and personalizing treatment strategies [12, 43]. 

Transformative potential in disease management and 

patient care is evident, offering substantial promise for 

advancing disease classification and treatment 

prediction through comprehensive data analysis and 

predictive modeling [20]. 

8. Conclusion 

The integration of multimodal LLM in medicine 

holds remarkable promise for transforming healthcare 

by advancing disease diagnosis. Combining imaging 

and omics data allows for a more holistic view of 

diseases, where it enhances prognostic capabilities and 

facilitates the identification of molecular subtypes. 

This integrative approach supports precision medicine 

and radiation therapy by enabling non-invasive 

identification and optimizing treatment strategies 

tailored to individual patient profiles. Despite the 

progress made, significant challenges persist, 

including data management complexities and the need 

for robust feature selection. As multimodal continues 

to evolve, addressing these challenges will be critical 

in ensuring its successful implementation in clinical 

settings (Table 6). The development of ethical 

guidelines and standards for AI transparency will be 

essential in gaining clinician and patient trust. Overall, 

the ongoing advancements in a new era in healthcare 

with the potential to fundamentally reshape disease 

management and improve clinical decision-making 

through personalized medicine. 

9. Future Perspectives 

The integration of Multimodal Large Language 

Models (MLLMs) in healthcare holds significant 

promise, but several challenges must be addressed for 

their successful deployment and scalability. 

Scalability remains a primary concern as these models 

must efficiently handle vast datasets from diverse 

sources, including medical imaging, genomics, and 

patient records. As healthcare data grows, leveraging 

cloud computing and distributed systems will be 

essential to support these AI models, ensuring they are 

computationally efficient and scalable across various 

healthcare settings. Fine-tuning models for clinical 

settings will also be crucial. While MLLMs offer 

impressive generalization, there is a need for 

continuous model adaptation to reflect real-time 

changes in disease patterns and demographics. 

Techniques like incremental learning and transfer 

learning could help these models stay updated with 

evolving patient data, particularly in underrepresented 

groups or rare diseases. 

As the use of AI in healthcare expands, regulatory 

frameworks will play a pivotal role. Compliance with 

data privacy standards like HIPAA and GDPR, 

alongside the integration of bias mitigation methods, 

will be crucial in ensuring fairness and equity in AI-

driven healthcare. Moreover, model interpretability 

will become a priority to foster clinician trust, 

requiring the development of transparency tools and 

explainability frameworks. Looking ahead, real-time 

data integration, especially from wearable devices and 

IoT sensors, will enable more personalized and 

predictive healthcare. Furthermore, as the regulatory 

environment matures, there is a need for global 

harmonization to ensure that these technologies can be 

deployed seamlessly across borders. By addressing 

these challenges, multimodal AI can significantly 

enhance patient outcomes, streamline healthcare 

operations, and enable the next frontier in personalized 

medicine. 

 

 



 Integration of Multimodal Large Language Models in Medical Imaging and Omics Data: A Comprehensive Review   

282   FBT, Vol. 13, No. 1 (Winter 2026) 266-284 

 

References  

1- D. Ramazzotti, A. Lal, B. Wang, S. Batzoglou, and A. 

Sidow, "Multi-omic tumor data reveal diversity of 

molecular mechanisms that correlate with survival." Nat 

Commun, Vol. 9 (No. 1), p. 4453, Oct 26 (2018). 

2- R. J. Chen et al., "Pathomic Fusion: An Integrated 

Framework for Fusing Histopathology and Genomic 

Features for Cancer Diagnosis and Prognosis." IEEE 

Trans Med Imaging, Vol. 41 (No. 4), pp. 757-70, Apr 

(2022). 

3- Jie Hao, Sai Chandra Kosaraju, Nelson Zange Tsaku, Dae 

Hyun Song, and Mingon Kang, "PAGE-Net: Interpretable 

and Integrative Deep Learning for Survival Analysis 

Using Histopathological Images and Genomic Data." 

Presented at the Biocomputing 2020, (2019). 

4- T. Bhattacharya et al., "AI Meets Exascale Computing: 

Advancing Cancer Research With Large-Scale High 

Performance Computing." Front Oncol, Vol. 9p. 984, 

(2019). 

5- F. Mohsen, H. Ali, N. El Hajj, and Z. Shah, "Artificial 

intelligence-based methods for fusion of electronic health 

records and imaging data." Sci Rep, Vol. 12 (No. 1), p. 

17981, Oct 26 (2022). 

6- Md Rezaul Karim, Tanhim Islam, Christoph Lange, 

Dietrich Rebholz-Schuhmann, and Stefan Decker, 

"Adversary-Aware Multimodal Neural Networks for  

 

 

Cancer Susceptibility Prediction From Multiomics Data." 

IEEE Access, Vol. 10pp. 54386-409, (2022). 

7- K. Chaudhary, O. B. Poirion, L. Lu, and L. X. Garmire, 

"Deep Learning-Based Multi-Omics Integration Robustly 

Predicts Survival in Liver Cancer." Clin Cancer Res, Vol. 

24 (No. 6), pp. 1248-59, Mar 15 (2018). 

8- K. Sone et al., "Application of artificial intelligence in 

gynecologic malignancies: A review." J Obstet Gynaecol 

Res, Vol. 47 (No. 8), pp. 2577-85, Aug (2021). 

9- H. Arimura, M. Soufi, H. Kamezawa, K. Ninomiya, and 

M. Yamada, "Radiomics with artificial intelligence for 

precision medicine in radiation therapy." J Radiat Res, 

Vol. 60 (No. 1), pp. 150-57, Jan 1 (2019). 

10- M. Efremova and S. A. Teichmann, "Computational 

methods for single-cell omics across modalities." Nat 

Methods, Vol. 17 (No. 1), pp. 14-17, Jan (2020). 

11- H. Xiao, Zhou, F., Liu, X., Liu, T., Li, Z., Liu, X., & 

Huang, X, "A Comprehensive Survey of Large Language 

Models and Multimodal Large Language Models in 

Medicine." DOI: 10.48550/arxiv.2405.08603  

12- D. A. Elhag et al., "Inflammatory Bowel Disease 

Treatments and Predictive Biomarkers of Therapeutic 

Response." Int J Mol Sci, Vol. 23 (No. 13), Jun 23 (2022). 

13- Laura Antonelli, Mario Rosario Guarracino, Lucia 

Maddalena, and Mara Sangiovanni, "Integrating imaging 

and omics data: A review." Biomedical Signal Processing 

and Control, Vol. 52pp. 264-80, (2019). 

14- K. M. Boehm, P. Khosravi, R. Vanguri, J. Gao, and S. 

P. Shah, "Harnessing multimodal data integration to 

Table 6. Applications and Limitations of Multimodal in Medical Imaging and Omics Data 

Applications Limitations 

Disease pattern analysis, treatment outcome 

prediction 

Limited diverse imaging data, underperformance in rare or complex 

cases 

Symptom identification, diagnostic workflows, 

virtual health consultations 
Inaccurate answers in complex or rare cases, limited real-time data 

Gene-disease relationship insights, research 

trend identification 

Misses recent research, lacks multi-faceted genomic and text 

analysis 

Quick comprehension of patient imaging 

records, radiology interpretation support 

Limited to NLP-based patterns, missing subtle details in imaging 

data 

Precision medicine, personalized treatment 

plans, advanced diagnostic insights 

High computational resources required, potential genomic 

misinterpretation 

Pathology report generation, linking tissue-level 

data with clinical findings 
Poor generalization in diverse tissue types, biased histology data 

X-ray and imaging feature analysis, enhanced 

disease detection capabilities 

Overgeneralizes uncommon conditions, difficulty with radiography 

variations 

Multi-imaging disease identification (X-ray, 

MRI, CT), improved diagnostic accuracy 

Limited high-detail scan support, error-prone in detecting subtle 

features 

Complex biomolecular pathway analysis, cross-

omics insights for disease research 

Scalability issues with real-world omics complexity, 

oversimplification of complex data 

Holistic patient assessments, personalized health 

predictions 

Overconfidence in predictions, limited explainability in genomic-

based conclusions 

 



 R. Vavekanand.  

FBT, Vol. 13, No. 1 (Winter 2026) 266-284 283 

advance precision oncology." Nat Rev Cancer, Vol. 22 

(No. 2), pp. 114-26, Feb (2022). 

15- University Radiology Associates. PET/CT Scan.  

[Online]. Available: https://www.upstate.edu/ura/pet-ct-

scan.php. 

16- Wikipedia contributors. (2023). H&E stain.  [Online]. 

Available: 

https://en.wikipedia.org/w/index.php?title=H%26E_stain

&oldid=1191484566. 

17- Using FAST on Whole-Slide Images (WSI).   [Online]. 

Available: https://fast.eriksmistad.no/python-tutorial-

wsi.html. 

18- Supporting Multi-omics Approaches. (August 27).   

[Online]. Available: 

https://www.thermofisher.com/uk/en/home/brands/therm

o-scientific/molecular-biology/molecular-

biologylearning-center/molecular-biology-resource-

library/spotlight-articles/supporting-multi-omics-

approaches.html. 

19- C. Massard et al., "High-Throughput Genomics and 

Clinical Outcome in Hard-to-Treat Advanced Cancers: 

Results of the MOSCATO 01 Trial." Cancer Discov, Vol. 

7 (No. 6), pp. 586-95, Jun (2017). 

20- W. Silva, & Dos, S. S. W, "Review on multi-modal AI 

models to integrate imaging and omics data." Utrecht 

University, (2024). 

21- National Cancer Institute. (24 Aug). NCI Genomic Data 

Commons.  [Online]. Available: https://gdc.cancer.gov/. 

22- The Cancer Imaging Archive (TCIA). National Cancer 

Institute.  [Online]. Available: 

https://imaging.cancer.gov/informatics/cancer_imaging_

archive.htm. 

23- R. Sun et al., "A radiomics approach to assess tumour-

infiltrating CD8 cells and response to anti-PD-1 or anti-

PD-L1 immunotherapy: an imaging biomarker, 

retrospective multicohort study." Lancet Oncol, Vol. 19 

(No. 9), pp. 1180-91, Sep (2018). 

24- Sina Tabakhi, Mohammod Naimul Islam Suvon, Pegah 

Ahadian, and Haiping Lu, "Multimodal Learning for 

Multi-omics: A Survey." World Scientific Annual Review 

of Artificial Intelligence, Vol. 01(2023). 

25- National Genomics Data Center. EWAS Datahub.  

[Online]. Available: 

https://ngdc.cncb.ac.cn/ewas/datahub. 

26- CPTAC | Office of Cancer Clinical Proteomics 

Research. National Cancer Institute.  [Online]. Available: 

https://proteomics.cancer.gov/programs/cptac. 

27- Z. Wang, M. Gerstein, and M. Snyder, "RNA-Seq: a 

revolutionary tool for transcriptomics." Nat Rev Genet, 

Vol. 10 (No. 1), pp. 57-63, Jan (2009). 

28- S. C. Sealfon and T. T. Chu, "RNA and DNA 

microarrays." Methods Mol Biol, Vol. 671pp. 3-34, 

(2011). 

29- ENCODE Project Consortium. (August 23).   [Online]. 

Available: https://www.encodeproject.org/. 

30- A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, 

and Hjwl Aerts, "Artificial intelligence in radiology." Nat 

Rev Cancer, Vol. 18 (No. 8), pp. 500-10, Aug (2018). 

31- UK Biobank. (August 23).   [Online]. Available: 

https://www.ukbiobank.ac.uk/. 

32- L. M. Gibson et al., "Factors associated with potentially 

serious incidental findings and with serious final 

diagnoses on multi-modal imaging in the UK Biobank 

Imaging Study: A prospective cohort study." PLoS One, 

Vol. 14 (No. 6), p. e0218267, (2019). 

33- A. Partin, Brettin, T., Zhu, Y., Dolezal, J. M., 

Kochanny, S., Pearson, A. T., Shukla, M., Evrard, Y. A., 

Doroshow, J. H., & Stevens, R. L., "Data augmentation 

and multimodal learning for predicting drug response in 

patient-derived xenografts from gene expressions and 

histology images." DOI: 10.48550/arXiv.2204.11678  

34- Patient-Derived Models Repository (PDMR).   

[Online]. Available: https://pdmr.cancer.gov/. 

35- National Institutes of Health. (August 23). NIH LINCS 

Program.  [Online]. Available: https://lincsproject.org/. 

36- P. Bankhead, & others. (August 20). QuPath.  [Online]. 

Available: https://qupath.readthedocs.io/en/stable/  

37- J. M. Dolezal, Kochanny, S., Dyer, E., 

Srisuwananukorn, A., Sacco, M., Howard, F. M., Li, A., 

Mohan, P., & Pearson, A.  and T, "Slideflow: Deep 

Learning for Digital Histopathology with Real-Time 

Whole-Slide Visualization." DOI: 

https://doi.org/10.48550/arXiv.2304.04142  

38- E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, 

"Color transfer between images." IEEE Computer 

Graphics and Applications, Vol. 21 (No. 4), pp. 34-41, 

(2001). 

39- Robert Tibshirani, "Regression Shrinkage and Selection 

Via the Lasso." Journal of the Royal Statistical Society 

Series B: Statistical Methodology, Vol. 58 (No. 1), pp. 

267-88, (1996). 

40- J. Yan, S. L. Risacher, K. Nho, A. J. Saykin, and L. I. 

Shen, "Identification of Discriminative Imaging 

Proteomics Associations in Alzheimer's Disease Via a 

Novel Sparse Correlation Model." Pac Symp Biocomput, 

Vol. 22pp. 94-104, (2017). 

41- E. M. Airoldi, E. A. Erosheva, S. E. Fienberg, C. 

Joutard, T. Love, and S. Shringarpure, 

"Reconceptualizing the classification of PNAS articles." 

Proc Natl Acad Sci U S A, Vol. 107 (No. 49), pp. 20899-

904, Dec 7 (2010). 

https://www.upstate.edu/ura/pet-ct-scan.php
https://www.upstate.edu/ura/pet-ct-scan.php
https://en.wikipedia.org/w/index.php?title=H%26E_stain&oldid=1191484566
https://en.wikipedia.org/w/index.php?title=H%26E_stain&oldid=1191484566
https://fast.eriksmistad.no/python-tutorial-wsi.html
https://fast.eriksmistad.no/python-tutorial-wsi.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biologylearning-center/molecular-biology-resource-library/spotlight-articles/supporting-multi-omics-approaches.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biologylearning-center/molecular-biology-resource-library/spotlight-articles/supporting-multi-omics-approaches.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biologylearning-center/molecular-biology-resource-library/spotlight-articles/supporting-multi-omics-approaches.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biologylearning-center/molecular-biology-resource-library/spotlight-articles/supporting-multi-omics-approaches.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biologylearning-center/molecular-biology-resource-library/spotlight-articles/supporting-multi-omics-approaches.html
https://gdc.cancer.gov/
https://imaging.cancer.gov/informatics/cancer_imaging_archive.htm
https://imaging.cancer.gov/informatics/cancer_imaging_archive.htm
https://ngdc.cncb.ac.cn/ewas/datahub
https://proteomics.cancer.gov/programs/cptac
https://www.encodeproject.org/
https://www.ukbiobank.ac.uk/
https://pdmr.cancer.gov/
https://lincsproject.org/
https://qupath.readthedocs.io/en/stable/
https://doi.org/10.48550/arXiv.2304.04142


 Integration of Multimodal Large Language Models in Medical Imaging and Omics Data: A Comprehensive Review   

284   FBT, Vol. 13, No. 1 (Winter 2026) 266-284 

42- L. Schneider et al., "Integration of deep learning-based 

image analysis and genomic data in cancer pathology: A 

systematic review." Eur J Cancer, Vol. 160pp. 80-91, Jan 

(2022). 

43- Zabir Al Nazi and Wei Peng, "Large Language Models 

in Healthcare and Medical Domain: A Review." 

Informatics, Vol. 11 (No. 3), (2024). 

44- E. R. Watson, A. Taherian Fard, and J. C. Mar, 

"Computational Methods for Single-Cell Imaging and 

Omics Data Integration." Front Mol Biosci, Vol. 8p. 

768106, (2021). 

45- Raja Vavekanand, Kira Sam, Suresh Kumar, and 

Teerath Kumar, "CardiacNet: A Neural Networks Based 

Heartbeat Classifications using ECG Signals." Studies in 

Medical and Health Sciences, Vol. 1 (No. 2), pp. 1-17, 

(2024). 

46- X. Jiang, Yan, L., Vavekanand, R., & Hu, M, "Large 

Language Models in Healthcare Current Development 

and Future Directions." DOI: 

10.20944/preprints202407.0923.v1  

47- T. Zhong, Zhao, W., Zhang, Y., Pan, Y., Dong, P., 

Jiang, Z., Kui, X., Shang, Y., Yang, L., Wei, Y., Yang, L., 

Chen, H., Zhao, H., Liu, Y., Zhu, N., Li, Y., Wang, Y., 

Yao, J., Wang, J., . . . Zhang, T. , "ChatRadioValuer: a 

Chat large language model for generalizable radiology 

report generation based on multi-institution and multi-

system data." DOI: 10.48550/arxiv.2310.05242  

48- J. Zhou et al., "Pre-trained multimodal large language 

model enhances dermatological diagnosis using 

SkinGPT-4." Nat Commun, Vol. 15 (No. 1), p. 5649, Jul 

5 (2024). 

49- S. Zhou et al., "Large language models for disease 

diagnosis: a scoping review." NPJ Artif Intell, Vol. 1 (No. 

1), p. 9, (2025). 

50- F. Gaber et al., "Evaluating large language model 

workflows in clinical decision support for triage and 

referral and diagnosis." NPJ Digit Med, Vol. 8 (No. 1), p. 

263, May 9 (2025). 

51- M. Mittermaier, M. M. Raza, and J. C. Kvedar, "Bias in 

AI-based models for medical applications: challenges and 

mitigation strategies." NPJ Digit Med, Vol. 6 (No. 1), p. 

113, Jun 14 (2023). 

52- S. Carey, A. Pang, and M. Kamps, "Fairness in AI for 

healthcare." Future Healthc J, Vol. 11 (No. 3), p. 100177, 

Sep (2024). 

53- M. A. Ricci Lara, R. Echeveste, and E. Ferrante, 

"Addressing fairness in artificial intelligence for medical 

imaging." Nat Commun, Vol. 13 (No. 1), p. 4581, Aug 6 

(2022). 

54- Emilio Ferrara, "Fairness and Bias in Artificial 

Intelligence: A Brief Survey of Sources, Impacts, and 

Mitigation Strategies." Sci, Vol. 6 (No. 1), (2023). 

55- H. Zeng, L. Chen, Y. Huang, Y. Luo, and X. Ma, 

"Integrative Models of Histopathological Image Features 

and Omics Data Predict Survival in Head and Neck 

Squamous Cell Carcinoma." Front Cell Dev Biol, Vol. 8p. 

553099, (2020). 

56- G. Puliani et al., "NETest: A Systematic Review 

Focusing on the Prognostic and Predictive Role." 

Neuroendocrinology, Vol. 112 (No. 6), pp. 523-36, 

(2022). 

57- Mutlu Cukurova, Carmel Kent, and Rosemary Luckin, 

"Artificial intelligence and multimodal data in the service 

of human decision‐making: A case study in debate 

tutoring." British Journal of Educational Technology, 

Vol. 50 (No. 6), pp. 3032-46, (2019). 

58- Raja Vavekanand, Ganesh Kumar, and Shakhlokhon 

Kurbanova, "A lightweight physics-conditioned diffusion 

multi-model for medical image reconstruction." 

Biomedical Engineering Communications, Vol. 5 (No. 2), 

(2026). 

59- M. R. Farlow, A. Hake, J. Messina, R. Hartman, J. 

Veach, and R. Anand, "Response of patients with 

Alzheimer disease to rivastigmine treatment is predicted 

by the rate of disease progression." Arch Neurol, Vol. 58 

(No. 3), pp. 417-22, Mar (2001). 

60- Wenjing Gao, Yuanyuan Pei, Huiying Liang, Junjian 

Lv, Jiale Chen, and Wei Zhong, "Multimodal AI System 

for the Rapid Diagnosis and Surgical Prediction of 

Necrotizing Enterocolitis." IEEE Access, Vol. 9pp. 

51050-64, (2021). 

61- Yexian Zhang et al., "ELMO: An Efficient Logistic 

Regression-Based Multi-Omic Integrated Analysis 

Method for Breast Cancer Intrinsic Subtypes." IEEE 

Access, Vol. 8pp. 5121-30, (2020). 

62- Shao W Wang T, Huang Z, Tang H, Zhang J, Ding Z, 

Huang K, "MORONET: Multi-omics Integration via 

Graph Convolutional Networks for Biomedical Data 

Classification." DOI: 

https://doi.org/10.1101/2020.07.02.184705  

63- Weiwei Li, Aniruddha Bhattacharjya, and Xin Feng, 

"Prediction and analysis of attribute reduction algorithm 

in rough set in Alzheimer's disease." Presented at the 

International Conference on Computer, Artificial 

Intelligence, and Control Engineering (CAICE 2023), 

(2023). 

64- B. ElKarami, A. Alkhateeb, H. Qattous, L. Alshomali, 

and B. Shahrrava, "Multi-omics Data Integration Model 

Based on UMAP Embedding and Convolutional Neural 

Network." Cancer Inform, Vol. 21p. 

11769351221124205, (2022). 

65- Ayush Garg and Deepika Bansal, "Application of 

Machine Learning in Disease Prediction." International 

Journal for Research in Applied Science and Engineering 

Technology, Vol. 11 (No. 2), pp. 47-51, (2023). 

 

https://doi.org/10.1101/2020.07.02.184705

