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Abstract 

Purpose: Understanding the functional relationships between different parts of the human body can enhance the 

control of Brain-Computer Interface (BCI) systems. The brain, as the decision-making organ, controls all body 

parts to perform activities. In this study, the main objective is to estimate the activation of hand muscles and the 

effect of each muscle on another using Electroencephalogram (EEG) signals.  

Materials and Methods: To discover the connection of hand muscles through brain signals, brain connections 

are extracted as influential components, and a convolutional network is utilized to assess the impact of EEG 

signals on the relationships among hand muscles. Five different connectivity methods were used to analyze the 

connections between EEG signal channels, such as correlation, coherence, the directed transfer function, Granger 

causality, and the phase delay index. The relationships between electromyogram (EMG) signal channels are also 

calculated using Granger causality. Signals are recorded in two phases: rest and activity, and ultimately, the EMG 

signal activity is estimated solely using EEG signals. 

Results: Simulation results estimate the correlation between the estimated and actual patterns for test data to be 

around 0.949, indicating a high correlation between the estimated outputs and actual values. 

Conclusion: Research indicates that exploring techniques for calculating relationships can be useful in evaluating 

the synergy and causal connections between EMG and EEG signals. In comparison to alternative graph-based 

techniques, this approach, utilizing regression analysis, demonstrated notably superior performance. This study 

could contribute to advancements in rehabilitation techniques and brain-computer interfaces. 

Keywords: Vital Signal Connections; Brain Computer Interface; Regression; Convolutional Networks. 
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1. Introduction  

The interpretation of biological signals is a 

fundamental outcome of signal-processing techniques 

and has been extensively explored in the literature. 

These signals range from hand tremor recordings to 

more complex neurophysiological signals such as 

Electroencephalography (EEG), which has been 

developed for over a century, and functional Magnetic 

Resonance Imaging (fMRI), [1] introduced a few 

decades ago—both of which are used to investigate 

brain function. Biomedical signal processing is widely 

employed in research and clinical practice to detect 

abnormalities, diagnose diseases, and classify subjects 

into normal and abnormal groups. One of the most 

promising biomedical signal processing applications 

is Brain-Computer Interface (BCI) technology. It 

leverages brain activity to facilitate direct interaction 

between the brain and external devices, presenting 

new opportunities for individuals with motor 

impairments [2-5]. BCI technology allows individuals 

who cannot speak or move their limbs to communicate 

or operate assistive devices for walking and handling 

objects [6]. A BCI is a computer-driven system that 

records brain signals, processes them, and converts 

them into commands to operate a device for a specific 

task. As a result, BCIs circumvent the usual pathways 

of peripheral nerves and muscles. The EEG equipment 

captures brain signals but does not generate an output 

that interacts with the user's surroundings [6]. One of 

the challenging issues in BCI discussions is the 

limitations of EEG signals in converting rules 

corresponding to other signals. For instance, hand 

muscle signals are much more efficient for guiding 

and controlling an electric arm than EEG signals. 

However, EMG signals are less frequently used for 

reasons such as amputation and the need for needle 

electrodes. BCI systems that use EEG signals to 

estimate EMG signals are known as Hybrid BCIs. 

These systems utilize the electrical activities of the 

brain (EEG) and muscles (EMG) to control devices or 

send commands to external systems. The advantages 

of developing Hybrid BCIs include increased 

accuracy and speed of control, enhanced user 

capabilities, and reduced user fatigue. These systems 

can be applied in medical fields (such as motion 

rehabilitation for individuals with motor disabilities) 

and non-medical fields (such as controlling video 

games). Therefore, having an interface that can read 

the information transmitted to the muscles from EEG 

signals can be fruitful. Limited studies have been 

conducted in this area to extract this hidden 

information from EEG signals. In 2014, Panzicha and 

his group [7] analyzed the connection between brain 

and muscle signals using coherence connections in 

patients with Unverricht-Lundborg disease, which 

causes uncontrollable muscle spasms. Thirteen 

patients and twelve healthy individuals participated in 

this experiment. The normal and daily muscle 

behaviors of these individuals were studied. In 2017, 

Perez and his group [8] worked on the connection 

between brain and muscle signals in patients with 

spinocerebellar ataxia, a condition where individuals 

lose coordination among their muscles. This research 

involved 19 patients and 25 healthy individuals, 

during which participants lifted objects. The patients 

were in the initial phases of the illness. The findings 

indicated that the correlation between EEG and EMG 

signals in the patients was considerably less than that 

observed in healthy individuals, and this information 

could be utilized for the early detection of the disease. 

In 2018, Larraz and his group [9] used EEG and EMG 

signals to diagnose movement decisions in stroke 

patients. This study involved 20 patients. The group 

concluded that these two signals contained 

complementary information, and by combining them, 

more accurate movement decision diagnoses could be 

achieved. Recently, graph theory-based methods have 

been used to analyze and investigate diseases of 

nervous origin, such as Alzheimer’s. In a study by 

Jalili and his group in 2020 [10], Alzheimer’s was 

diagnosed using graph features. Initially, functional 

connections were obtained, and then graph features 

were derived using the connectivity matrix. Genetic 

algorithms and ant colony algorithms were used to 

reduce the graph features. In 2020, Kim and 

colleagues [11] estimated two-dimensional wrist 

movements based on seven-channel 

electromyography signals in both moving and 

stationary hand states. Synergy-based linear 

regression model combined with a musculoskeletal 

model was used to process EMG signals. When 

trained on each wrist movement test, the synergy-

based linear regression model demonstrated 

statistically significant effectiveness, as indicated by 

the Pearson correlation coefficient for both dynamic 

and static wrist states. The electromyography signals 

were analyzed using a linear regression model based 
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on synergy and a musculoskeletal model. Using each 

of the wrist movement tests as a training set, the 

synergy-based linear regression model demonstrated 

statistically significant performance with a Pearson 

correlation coefficient for both moving and stationary 

wrist states. In 2023, Borzelli and his colleagues [12] 

conducted a regression-based estimation for mapping 

EMG to force. Two datasets, both collected during 

submaximal isometric force applications in various 

directions with the upper limb, were utilized. One 

dataset included data collected over five sessions, 

while the other was gathered during force applications 

and the creation of different contraction levels. The 

accuracy and consistency of the EMG-to-force 

mappings were evaluated to determine the strengths 

and weaknesses of each algorithm [12]. In 2023, 

Donahoe and his colleagues [13] utilized synergy 

functions to recognize muscles that engage in 

synergistic interactions within a muscle group, thereby 

simplifying the complexity of wearable sensor arrays. 

Electromyography (EMG) and kinematic data from 

nine healthy individuals' leg muscles were collected 

while they walked. Synergy models for four distinct 

pairs of muscle input model sets were confirmed using 

EMG data. The impact of incorporating kinematic data 

(angular velocity) from the thigh and shank regions 

was also investigated [13]. In 2023, Das et al.  used a 

neuromuscular approach to create a hierarchical 

synergy between EEG and EMG for predicting finger 

movement and estimating its kinematics. EEG, EMG, 

and kinematics of the Metacarpophalangeal (MCP) 

joint were obtained during five finger flexion 

movements in humans. EMG was estimated for five 

finger movements and kinematics from EEG using 

linear regression [14]. A Long Short-Term Memory 

(LSTM) network and a random forest regression were 

hierarchically connected to predict finger movements 

and estimate finger kinematics from the estimated 

EMG [14]. In 2025, Zhang proposed a multimodal 

fusion method based on functional connectivity 

between EEG and EMG signals to detect pre-

movement intentions. By constructing EEG-EMG 

connectivity networks from signals recorded before 

movement onset, the method extracted discriminative 

spatial features. Zhang reported a classification 

accuracy of 94.33 % using mutual information–based 

EEG EMG connectivity, significantly outperforming 

EEG-only (73.89 %) and EMG-only (89.16 %) 

approaches, which demonstrated that leveraging EEG-

EMG functional connectivity can enhance the 

performance of brain-machine interface systems [15]. 

Wang and colleagues in 2025 introduced a hybrid 

Brain-Machine Interface (BMI) that combines Steady-

State Visually Evoked Potential (SSVEP)-based EEG 

and facial EMG signals to enhance multimodal control 

while mitigating user fatigue in assistive applications. 

By dynamically alternating between EEG and EMG 

inputs, the system adapted to task demands, 

optimizing control and reducing physical strain. In a 

virtual navigation task, the hybrid system achieved 

task completion times comparable to EMG-only 

approaches, with 90% of users reporting reduced or 

equal physical demand. These findings underscored 

the potential of multimodal BMI systems to improve 

usability and long-term adherence in assistive 

technologies [16]. A recent pilot study in 2025 

investigated inter-muscular connectivity among lower 

limb muscles using Magnitude-Squared Coherence 

(MSC) across alpha (8–13 Hz), beta (13–30 Hz), and 

gamma (30–100 Hz) frequency bands during postural 

control tasks. The study found a significant increase (p 

< 0.05) in beta and gamma band coherence between 

the medial gastrocnemius and soleus muscles under 

challenging balance conditions, indicating enhanced 

neural coordination for maintaining stability. These 

findings highlight the functional relevance of EMG 

connectivity metrics in assessing neuromuscular 

control strategies during dynamic postural 

adjustments [17]. Another study in 2020 investigated 

intermuscular beta-band coherence during gait in 

young and older adults, reporting significant age-

related decreases of 43–62% in coherence between 

key lower limb muscle pairs such as gastrocnemius 

medialis–soleus (GL–SL) and Rectus Femoris–Vastus 

Lateralis (RF–VL). Additionally, experimentally 

induced fatigue modulated connectivity patterns, with 

reductions in coherence between rectus femoris–

biceps femoris (RF–BF) and increases between 

Tibialis Anterior–Peroneus Longus (TA–PL). These 

findings emphasize the utility of EMG-based 

coherence metrics for assessing neuromuscular 

coordination and its alterations due to aging and 

fatigue [18]. In the domain of hand gesture 

recognition, functional muscle networks derived from 

coherence analyses of multi-channel EMG signals 

have demonstrated high discriminative power. A 2024 

study employing 12 EMG channels recorded during 

17 hand gestures achieved an 85.1% classification 
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accuracy using solely coherence-based network 

features, without resorting to deep learning models. 

This underscores the critical role of inter-muscular 

connectivity patterns in encoding complex motor 

intentions, providing a robust basis for prosthetic 

control and human-machine interfaces [19]. Another 

Research in 2024 on diabetic peripheral neuropathy 

patients highlighted alterations in muscle network 

connectivity, where transfer entropy measures 

between pairs of muscles (e.g., tibialis anterior–

extensor digitorum) exhibited significant reductions (p 

< 0.01) compared to healthy controls. These 

connectivity disruptions correlated with clinical 

neuropathy severity, suggesting that EMG-based 

connectivity metrics can serve as sensitive biomarkers 

for early neuromuscular impairments and guide 

therapeutic interventions [20]. Albarracin et al. (2025) 

investigated intermuscular connectivity using EMG 

coherence analysis across six lower-limb muscles 

during postural control tasks with and without visual 

feedback. Their findings revealed task-dependent 

changes in beta-band coherence, with decreased 

global connectivity and increased bilateral 

coordination under challenging conditions. The results 

demonstrate that muscle networks dynamically 

reorganize in response to sensory constraints, 

reflecting adaptable neuromuscular strategies for 

balance maintenance [21]. In this study, regression 

between the connectivity matrices of EEG and EMG 

signals was used to establish this relationship. Deep 

convolutional networks were also employed for 

creating the regression. The article is organized in a 

way that the proposed method will be detailed in the 

second part. The third section will focus on discussing 

and presenting the results, while the final section will 

summarize the conclusions. 

2. Materials and Methods  

In this paper, the goal is to estimate the relationship 

between EEG signal connectivity and EMG signal 

connectivity. For this purpose, methods for calculating 

signal relationships were applied, and then the data 

was input into convolutional networks aimed at 

regression between this information. The proposed 

approach's detailed block diagram is shown in Figure 

1. 

2.1. Data Recording 

The steps of the study are shown in Figure 1. A one-

kilogram weight was hanging from the hand of the 

participant sitting behind the table. While concurrently 

recording EEG and EMG signals, [22] the elbow angle 

was kept at 90 degrees. The design of the chair 

armrests is such that, when individuals are seated and 

move their arms parallel to the armrests, the elbow 

angle naturally assumes a 90-degree position. Any 

potential displacement is minimal, on the order of a 

few millimeters, and is considered negligible for this 

study. With the usage of an advanced Biopac device, 

it is possible to simultaneously record two signals 

 

Figure 1. Detailed block diagram of the method used in this study 
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during this process; EEG and EMG signals were 

captured simultaneously. A data acquisition device 

with 19 channels was used for EEG recording using 

the International 10–20 system. In this study,1 KHz 

was chosen as a sampling frequency. 

To maintain consistent joint positioning during the 

experiment, participants were seated on an 

ergonomically designed chair with armrests, which 

guided the arms to approximately a 90-degree elbow 

angle. The effects of joint angle and contraction force 

were thoroughly considered and, according to relevant 

studies and literature in this field, minor variations 

such as joint angle deviations less than 5 degrees are 

considered negligible [23]. Our experimental design 

was carefully structured to prevent participants from 

exceeding such angular deviations. Moreover, 

Participants were selected from non-athletes with 

approximately similar body size and weight to ensure 

comparable muscle mass and reduce inter-subject 

variability. We meticulously monitored the procedure 

and provided detailed instructions to ensure consistent 

force application. Movement speed was also 

synchronized with a trigger display. All these 

measures were implemented to guarantee uniformity 

and homogeneity in data acquisition. Therefore, in 

designing our data collection protocol, we deliberately 

minimized such variability to ensure it did not 

compromise the integrity of our results [24].  

EMG was recorded from six muscles:[25] short 

head of the biceps brachii (BSH), long head of the 

triceps brachii (TRIO), Pectoralis Major (PMJ), 

deltoid (DEL), long head of the triceps brachii (TRIO), 

and lateral head of the triceps brachii (TRIA) [25]. 

Typically, 12 participants between the age range of 

30-35 years participated in this study; we had two 

exclusion criteria that were removed due to high noise. 

Considering the difference in muscle mass between 

females and males, as the initial study in this field, we 

aimed for homogeneous results. 

So, we exclusively chose participants from the male 

population, all of whom were right-handed. To be able 

to have sufficient data from each participant, 100 

records (one record per minute) were obtained. About 

1000 records were collected. EMG and EEG records 

were collected through 6 channels - 12 leads and 19 

channels, respectively (Figure 2).  

It is essential to highlight that all participants were 

made aware of the project and gave their consent by 

signing a formal agreement. Furthermore, the ethics 

committee approval ID is 

IR.IAU.SRB.REC.1400.111. 

2.2. Preprocessing 

For main processing, it is essential to preprocess the 

signals first. EEG and EMG signals are affected by 

unwanted effects from adjacent sources, which need to 

be eliminated using source separation analysis 

methods. For this purpose, Independent Component 

Analysis (ICA) is employed in this study. ICA is a 

widely used technique for blind source separation. It 

has been employed in various applications and is often 

used as a black box, with users not fully grasping its 

internal workings. ICA is viewed as an improvement 

over Principal Component Analysis (PCA) [26]. 

However, PCA focuses on optimizing the data's 

covariance matrix, which denotes second-order 

statistics, while ICA enhances higher-order statistics, 

such as kurtosis. Consequently, PCA detects 

uncorrelated components, whereas ICA finds 

components that are independent components. As a 

result, PCA can identify independent sources when the 

correlations of higher order in the mixed data are 

limited or negligible. Each signal is represented as a 

time-varying sequence [27] . 

2.3. Brain Connectivity 

The main goal of brain connectivity is to fully map 

the connections between neural elements with their 

anatomical distribution [28]. These elements can be 

 

Figure 2. Data recording process 
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individual neurons, specific neural populations, or 

large-scale brain regions. The number of possible 

connections between these elements is vast [28]. For 

any network of N nodes, the number of possible 

connections is 2N [29]. There are three types of brain 

connectivity models: anatomical, functional, and 

effective [30]. The anatomical connection model 

represents the actual physical connections based on 

the structure and cellular organization of the brain 

[30]. Functional models represent a non-directional 

statistical relationship between brain regions [30], 

while effective models indicate a direct causal 

relationship between brain regions [30]. Different 

techniques are available for calculating brain 

connectivity, and this research utilizes four 

approaches: Granger causality, correlation, directed 

transfer function, and coherence, which will be 

discussed below. 

2.3.1. Granger Causality 

The Granger causality index [31], which signifies 

how channel x is affected by channel y, is defined as 

the ratio of the residual variance logarithm for a single 

channel to the residual variance of a dual-channel 

model [32] (Equation 1): 

𝐺𝐶𝐼𝑦→𝑥 = 𝑙𝑛 (
𝑒

𝑒1
) (1) 

This definition can be broadened to encompass a 

multi-channel system by analyzing the impact of a 

particular channel on the residual variance ratios. To 

measure the direct effect from channel (x_j) to (x_j) 

for the autoregressive process of channel (n) in the 

time domain, we take into account the following 

MVAR models (n) and (n-1). Initially, the model is 

applied to the complete n-channel system, yielding the 

residual variance (V_[7](t) = \text[8](E_[8](t))) for the 

signal (x_i).[33] Next, an MVAR model with (n-1) 

dimensions is applied to (n-1) channels, excluding 

channel (j), which produces the residual (V_{i,n-

1}[3](t) = \text[8](E_{i,n-1}(t))). Granger causality is 

subsequently defined by Equation 2: 

𝐺𝐶𝐼𝑗→𝑖(𝑡) = 𝑙𝑛 (
𝑉𝑖,𝑛(𝑡)

𝑉𝑖,𝑛−1(𝑡)
) (2) 

The Granger causality index cannot exceed 1, as the 

variance in the n-dimensional system is less than that 

of the residual variance in the n-1-dimensional system. 

GCI(t) evaluates causal relationships within the time 

domain. The spectral features of the brain signals are 

considerable, since during a unique task, a growth in 

propagation in a specific frequency band may coincide 

with a reduction in another frequency band [34]. 

2.3.2. Correlation 

In a simple sense, the correlation of signals from 

two anatomically separated brain regions indicates 

that these areas are functionally related in the brain 

[35]. Statistical dependencies between two signals can 

arise in various ways [36], but in statistics, it typically 

refers to the degree of linear relationship between a 

pair of variables. Correlation is expressed as Equation 

3 [37]: 

𝜌𝑋,𝑌 = 𝑐𝑜𝑟𝑟(𝑥, 𝑦)

=
𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌]

√𝐸[𝑋2] − 𝐸[𝑋]2. √𝐸[𝑌2] − 𝐸[𝑌]2
 

(3) 

where E[.] denotes the expected value. Using the 

above relation, the connectivity of each signal channel 

with another will be calculated in the form of a matrix. 

2.3.3. Direct Transfer Function 

Kaminski and Blinowska [38] presented the direct 

transfer function as Equation 4 follows: 

𝐷𝑇𝐹𝑗→𝑖
2 (𝑓) =

|𝐻𝑖𝑗(𝑓)|
2

∑ |𝐻𝑖𝑚(𝑓)|
2𝑘

𝑚=1

 (4) 

Hij(f) denotes a component of the transfer matrix in 

the MVAR model. The DTF signifies the causal 

influence of channel j on channel i at frequency f. 

Equation 7 outlines a normalized form of DTF that 

ranges from 0 to 1; this is achieved by calculating the 

ratio of the flow from channel (j) to channel (i) against 

the total inputs received by channel (i). The 

unnormalized DTF, which is directly associated  with 

pairwise power [39], is defined as Equation 5: 

𝑁𝐷𝑇𝐹𝑗→𝑖
2 (𝑓) = |𝐻𝑖𝑗(𝑓)|

2
 (5) 

In addition to reflecting direct flows, DTF shows 

cascading flows too; it means that if there is 

propagation from channel 3 to channel 2 and then to 

channel 1, it also indicates propagation from channel 
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3 directly to channel 1. The directed direct transfer 

function (dDTF) was introduced to differentiate direct 

flow from indirect flow [40]. dDTF is characterized as 

the result of a modified DTF adjusted by partial 

coherence. The alteration of the DTF entails 

normalizing the function to guarantee that the 

denominator is unaffected by frequency. The 

dDTFj→i  from channel j to i is defined as Equation 6: 

𝑑𝐷𝑇𝐹𝑗→𝑖
2 (𝑓) = 𝐹𝑖𝑗

2(𝑓)𝐶𝑖𝑗
2(𝑓) 

𝐹𝑖𝑗
2(𝑓) =

|𝐻𝑖𝑗(𝑓)|
2

∑ ∑ |𝐻𝑖𝑚(𝑓)|
2𝑘

𝑚=1𝑓

 
(6) 

Cij(f)  presents the partial coherence. When both 

functions Fij(f) and Cij(f) are non-zero, dDTFj→i will 

also have a non-zero value, signifying a direct causal 

relationship between channels (j) and (i). DTF can be 

utilized to assess propagation in point processes [41], 

such as spike trains, or to evaluate causal relationships 

between spike trains and local field potentials [42]. 

2.3.4. Coherence 

 Coherence is a factor in signal processing that can 

be utilized to analyze the connection between two 

signals or datasets, and it is frequently employed to 

assess the power transfer between the input and output 

of a linear system [43]. The coherence between two 

signals x(t) and y(t) is a real-valued function described 

as Equation 7: 

𝐶𝑥𝑦(𝑓) =
|𝐺𝑥𝑦(𝑓)|

2

𝐺𝑥𝑥(𝑓)𝐺𝑦𝑦(𝑓)
 (7) 

In this function, (G_{xy}(f)) denotes the cross-

spectral density of signals (x) and (y), whereas 

(G_{xx}(f)) and (G_[43](f)) indicate the auto-spectral 

densities of (x) and (y), respectively. The magnitude 

of the spectral density is denoted by |G|.[44] 

Considering the previously mentioned constraints. 

(ergodicity, linearity), the coherence measures the 

extent to which y(t) can be predicted from x(t) using 

the optimal linear least squares function [44]. 

Coherence values always range between 0 and 1. For 

an ideal linear system with a fixed parameter and a 

single input x(t) and a single output y(t), coherence 

will equal one [44]. 

2.4. Convolutional Neural Networks 

Deep Convolutional Neural Networks (CNNs) have 

shown considerable success as versatile models for a 

wide range of issues, particularly in tackling 

regression problems in recent times. CNNs are 

primarily used for two-dimensional arrays such as 

image data. However, CNNs can also be applied to 

analyze regression data [45]. In this study, a neural 

network is designed with a structure similar to the 

well-known SegNet, which was created to solve image 

segmentation problems. The difference between this 

network and the SegNet architecture lies in the number 

of layers and the input-output size [46]. In SegNet, the 

input and output are equal. However, in this network, 

the input size corresponds to the number of EEG 

channels [46], while the output size corresponds to the 

number of EMG channels [46].  

The input layer is chosen to be 5*19*19, where 5 i

ndicates the count of connectivity computational tech

niques,19 denotes the quantity of EEG channels, resu

lting in 19*19 because of the interconnections among

 each channel and itself . The layers were created using 

built-in MATLAB functions, and the architecture was 

developed through an iterative trial-and-error process. 

This procedure was systematic rather than arbitrary: 

we started with a minimal network and incrementally 

increased the number of layers following standard 

neural network design practices. At each stage, the 

model was trained with fixed hyperparameters such as 

optimizer, activation functions, and learning rate to 

isolate the impact of architectural changes. To ensure 

robust evaluation and prevent overfitting, 80% of the 

dataset was used for training, within which a subset of 

10% was allocated for validation during 

hyperparameter tuning and architecture selection via 

cross-validation. The remaining 20% of the data was 

held out as an independent test set, used only for the 

final performance evaluation after model selection, 

thus preventing data leakage and providing an 

unbiased assessment of the model’s generalization .  

The intended output is the connectivity matrix of the 

EMG signal, represented as a 6 by 6 matrix 

corresponding to the number of EMG signal channels 

[22]. To calculate this matrix, the Granger causality 

method is used. The structure proposed to address this 

problem is illustrated in Table 1: 
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After designing the networks, they are subjected to 

the training process. For this purpose, the 

characteristics of the network must also be designed. 

Therefore, the features of the constructed networks are 

shown in Table 2. 

Choosing a suitable optimization algorithm for the 

deep learning model is very important and has a 

significant impact on the time taken to reach the 

desired outcome. The Adam optimization algorithm 

[47] is considered a generalized version of the 

Stochastic Gradient Descent (SGD) algorithm, which 

has been more widely used for deep learning 

applications in the fields of computer vision and 

natural language processing [47, 48]. The Adam 

algorithm can be considered as a combination of 

RMSprop and stochastic gradient descent with 

momentum [49]. These various trial-and-error tests 

have been conducted to tune these parameters, and the 

results will be reported below. 

 

3. Results  

The connectivity matrix between the EMG signal 

channels was calculated using the Granger causality 

method. Therefore, there is only one configuration for 

training the network. Four methods are used to 

validate the results generated against the expected 

actual values. The four methods consist of Mean 

Squared Error (MSE), Mean Absolute Error (MAE), 

the R-squared metric, and the correlation coefficient. 

Each of these metrics has its distinct evaluations. For 

instance, R-squared reflects the degree to which the 

regression model aligns with the data, whereas the 

correlation coefficient assesses the degree of 

similarity (correlation) between the output estimated 

by the regression model and the actual output [50]. 

While R-squared is a relative metric for assessing the 

appropriateness of model fitting to dependent 

variables, MSE is an absolute metric for this purpose 

[50]. The MAE metric is similar to MSE in terms of 

characteristics, with the difference that in MAE, the 

absolute error is calculated instead of the mean 

squared error [50] (the difference between the 

estimated output and the actual output). 

In deep learning, the data is categorized into three 

groups for model training: training, validation, and 

testing. This is done because, with limited data, the 

model is trained so that other data can be used for 

evaluation. In this study, the ratios of 70%, 10%, and 

20% are determined for training, validation, and 

testing data, respectively. Figure 2 shows the training 

trend chart for the connectivity matrix between the 

Table 1. The arrangement of the network created to tackle the regression problem that involves transforming the EEG 

signal connectivity matrix into the EMG signal connectivity matrix. 

Layer properties Layer type Layer 

number 
Input layer with size 5*19*19 with zero center 

normalization Image Input 1 

25 kernels with size 7x7 with step 1 and without layering Convolution 2 
Activity function ReLU 3 

50 kernels with size 5x5 with step 1 and without layering Convolution 4 
Activity function ReLU 5 

100 kernels with size 3x3 with step 1 and without layering Convolution 6 
Activity function ReLU 7 

Fully connected layer with 36 neurons Fully Connected 8 
Output layer with mean squared error cost function Regression Output 9 

 

Table 2. Tuned features for training the network 

Value Feature 
Adam Optimizer function 

10 Maximum repetitions 

0.01 Primary education 

rate 

95% Reduction coefficient 

of the education rate 

Each 2 Repetition 
The period of 

reduction in the 

education rate 

4 Validation error 

calculation step 

20 Maximum chance of 

validation error 
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EMG signal channels with the parameters set in Table 

2. 

By changing the optimizer from Adam to SGD and 

RMS-Prop, the RMSE and error functions will be as 

shown in Figures 3 and 4. 

Adam's lower, but their initial error was better than 

Adam's. However, it can ultimately be claimed that the 

Adam function performed better than the other two 

functions due to its evaluation parameters. Table 3 

presents the results of the simulated evaluation 

parameters for the regression between the EEG signal 

connectivity matrix and the EMG signal connectivity 

matrix. 

4. Discussion 

The current study sought to reveal the functional 

connections between hand muscles utilizing EEG 

signals, with the ultimate goal of enhancing the control 

mechanisms of BCI systems. Our findings suggest a 

significant correlation (r ≈ 0.949) between the 

estimated EMG signal activity derived from EEG and 

the actual muscle activation patterns. This high 

correlation underscores the potential of EEG-based 

estimations in accurately reflecting muscle activity, 

paving the way for more intuitive BCI applications. 

Our approach leveraged convolutional networks and 

advanced signal processing techniques, including  

 

Figure 3. Training trend chart for regression among the EEG signal connectivity matrix and the EMG signal 

connectivity matrix using the Adam function 

 

 

Figure 4. Training trend chart for regression among the EEG signal connectivity matrix and the EMG signal 

connectivity matrix using the SGD function 
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Granger causality and coherence analyses, to elucidate 

the interactions between EEG signals and muscle 

outputs. As this study focused on temporal and causal 

interactions using Granger causality, conventional 

EMG-derived features such as RMS and spectral 

moments were not included in the analysis. This 

choice aligns with the study’s objective to emphasize 

intermuscular information flow rather than signal 

amplitude or spectral content. Nevertheless, 

integrating such features in future research may 

complement causality-based measures and enhance 

the robustness and interpretability of synergy models. 

The use of these sophisticated methods allowed us to 

effectively model the complex interrelationships 

among hand muscles, revealing how activation in one 

muscle group can influence the activity of others. This 

finding aligns with existing literature that recognizes 

the interconnected nature of muscle activation in 

motor tasks. In comparison to conventional 

approaches, our regression-based methodology 

exhibited superior performance in estimating EMG 

signals from EEG data. This superiority is particularly 

noteworthy considering the challenges associated with 

extracting meaningful signals from the EEG due to 

noise and interference, which often complicate 

traditional methods. The implementation of directed 

transfer functions and phase delay indices contributed 

to a deeper understanding of the causal dynamics 

involved, highlighting the potential for these 

techniques in future research on neural control of 

movement. While our results are promising, the study 

is not without limitations. The reliance on simulation 

data necessitates further validation with real-time BCI 

applications. Future studies should investigate  

 

incorporating additional modalities, such as real-time 

feedback mechanisms, to strengthen the robustness of 

our model. Additionally, expanding the participant 

demographic in follow-up studies may yield insight 

into interindividual variability in muscle activation 

patterns, which is crucial for the generalization of our 

findings across diverse populations.  Estimating inter-

muscle connectivity from EEG offers a more realistic 

representation of neuromuscular control, as natural 

movements are driven by coordinated patterns of 

interaction among multiple muscles rather than 

isolated activations. This perspective enhances BCI-

based rehabilitation, particularly in Functional 

Electrical Stimulation (FES) systems, by enabling 

stimulation strategies that reflect the brain’s inherent 

muscle coordination patterns. As a result, it can 

improve the effectiveness of artificially induced 

movements, reduce compensatory activations, and 

support adaptive, patient-specific neurorehabilitation, 

especially in individuals with motor impairments such 

as spinal cord injury. 

Ultimately, this study adds to the expanding body 

of knowledge on the interaction between neural 

signals and muscular activity, with implications for the 

development of advanced rehabilitation techniques 

and more efficient BCI systems. As we continue to 

refine our understanding of these connections, we can 

create more sophisticated tools for individuals with 

motor impairments, ultimately enhancing their quality 

of life. 

Table 3. Regression among the EEG signal connectivity matrix and the EMG signal connectivity matrix 

 Data Correlation MAE MSE R-Square 

Adam function 
 

Education 0.9738 0.0003 0.0153 0.9432 
Validation 0.9379 0.0004 0.0196 0.9149 

Test 0.9489 0.0004 0.0185 0.9270 

Total data 0.9682 0.0004 0.0173 0.9352 

SGD function 
 

Education 0.9392 0.0006 0.0254 0.8985 
Validation 0.9287 0.0007 0.0255 0.9125 

Test 0.9301 0.0006 0.0252 0.9182 
Total data 0.9292 0.0006 0.0253 0.9284 

RMS-Prop function 

Education 0.9673 0.0004 0.0201 0.9385 
Validation 0.9569 0.0005 0.0222 0.9083 

Test 0.9490 0.0005 0.0226 0.9271 
Total data 0.9578 0.0004 0.0204 0.9224 
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5. Conclusion 

Considering the activation command issued and 

how it is generated by the brain, research into the 

relationship between EEG and EMG signals still has 

ambiguities that, if resolved, could aid patients with 

muscular issues and stroke survivors. If the interaction 

between these two signals can be thoroughly 

examined, it would be possible to seek compensatory 

methods in case of problems within any components 

of this system. 

The goal of this research was to explore the 

connection between hand muscles and how each 

muscle affects the others by utilizing EEG signals. 

Before selecting the subjects, a mental health test will 

be conducted under the supervision of a neurologist 

and psychologist to ensure the physical and mental 

well-being of individuals. Their physical condition 

will also be assessed, and participants will be selected 

from healthy and normal individuals (not engaged in 

professional sports). The stimulation and motor 

command will be presented to the individual via a 

monitor, and the brain and muscle signals will be 

recorded. In this study, arm position was visually 

controlled using a chair design that naturally aligned 

the elbow at a 90-degree angle. Although precise 

biomechanical tools were not used, this method aligns 

with established practices in recent literature. 

Combined with repeated trials and participant 

selection criteria aimed at reducing inter-subject 

variability, this approach helped mitigate 

inconsistencies in movement execution. For future 

studies, we recommend incorporating more explicit 

biomechanical measurements, such as goniometric 

tracking or force sensors, to further improve control 

over motor parameters and enhance data reliability. A 

directional image of hand movement will be displayed 

on the monitor. The individual should not think about 

anything else during the experiment, which is why a 

rest period is required before starting the stimulation, 

facilitated by the monitor for the participant. 

Therefore, this research investigates the relationship 

between brain and muscle signals for rehabilitation 

and recovery purposes. Future research could benefit 

from incorporating additional EMG-derived features, 

such as spectral moments and RMS, to enhance the 

predictive capabilities and robustness of muscle 

synergy analyses. Expanding the feature set may 

provide deeper insights into neuromuscular dynamics 

and improve the applicability of the developed 

models. Based on the information gathered so far from 

research and literature, there has been no examination 

of the EEG signal graph concerning motor and 

muscular subjects and their relationship with the EMG 

signal. Since muscle behaviors require activity from 

various points and commands from the brain, it is 

expected that a collection of brain points will be active 

in this process. Thus, using graph theory can provide 

better insights into this interaction compared to 

conventional methods like examining brain 

connectivity. It should be noted that not much research 

has been done on this topic. So, we collected our data 

exclusively from males to ensure that variations in 

muscle mass and physical strength do not adversely 

impact the outcomes. In future and later studies, we 

could also record signals from the statistical 

population of women to generalize the findings. 

Another limitation of the present study lies in the 

unavailability of a comprehensive feature importance 

analysis, primarily due to constraints in data 

dimensionality and sample size. Given that the EEG 

recordings were limited to 19 channels, performing a 

reliable assessment of the individual predictive 

contributions of connectivity features was not 

methodologically feasible without introducing risks of 

overfitting and statistical instability. In future 

research, utilizing EEG systems with a higher number 

of channels may enable a more granular investigation 

of individual connectivity features, allowing for a 

clearer understanding of their respective contributions 

to model performance. 
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