Frontiers in Biomedical Technologies Vol. 13, No. 1 (Winter 2026) 40-53

ORIGINAL ARTICLE

Estimating the Relationship between EMG Signals and EEG Signal Connections
Using Convolutional Neural Networks

Elham Samadi %, Fereidoun Nowshiravan Rahatabad®* " , Ali Motie Nasrabadi2, Nader Jafarnia Dabanloo !

1 Department of Medical Science and Technology, SR.C., Islamic Azad University, Tehran, Iran

2Department of Biomedical Engineering, Shahed University, Tehran, Iran

*Corresponding Author: Fereidoun Nowshiravan Rahatabad Received: 04 February 2025 / Accepted: 03 August 2025

Email: nooshiravan@gmail.com
Abstract

Purpose: Understanding the functional relationships between different parts of the human body can enhance the
control of Brain-Computer Interface (BCI) systems. The brain, as the decision-making organ, controls all body
parts to perform activities. In this study, the main objective is to estimate the activation of hand muscles and the
effect of each muscle on another using Electroencephalogram (EEG) signals.

Materials and Methods: To discover the connection of hand muscles through brain signals, brain connections
are extracted as influential components, and a convolutional network is utilized to assess the impact of EEG
signals on the relationships among hand muscles. Five different connectivity methods were used to analyze the
connections between EEG signal channels, such as correlation, coherence, the directed transfer function, Granger
causality, and the phase delay index. The relationships between electromyogram (EMGQG) signal channels are also
calculated using Granger causality. Signals are recorded in two phases: rest and activity, and ultimately, the EMG
signal activity is estimated solely using EEG signals.

Results: Simulation results estimate the correlation between the estimated and actual patterns for test data to be
around 0.949, indicating a high correlation between the estimated outputs and actual values.

Conclusion: Research indicates that exploring techniques for calculating relationships can be useful in evaluating
the synergy and causal connections between EMG and EEG signals. In comparison to alternative graph-based
techniques, this approach, utilizing regression analysis, demonstrated notably superior performance. This study
could contribute to advancements in rehabilitation techniques and brain-computer interfaces.
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1. Introduction

The interpretation of biological signals is a
fundamental outcome of signal-processing techniques
and has been extensively explored in the literature.
These signals range from hand tremor recordings to
more complex neurophysiological signals such as
Electroencephalography (EEG), which has been
developed for over a century, and functional Magnetic
Resonance Imaging (fMRI), [1] introduced a few
decades ago—both of which are used to investigate
brain function. Biomedical signal processing is widely
employed in research and clinical practice to detect
abnormalities, diagnose diseases, and classify subjects
into normal and abnormal groups. One of the most
promising biomedical signal processing applications
is Brain-Computer Interface (BCI) technology. It
leverages brain activity to facilitate direct interaction
between the brain and external devices, presenting
new opportunities for individuals with motor
impairments [2-5]. BCI technology allows individuals
who cannot speak or move their limbs to communicate
or operate assistive devices for walking and handling
objects [6]. A BCI is a computer-driven system that
records brain signals, processes them, and converts
them into commands to operate a device for a specific
task. As a result, BCIs circumvent the usual pathways
of peripheral nerves and muscles. The EEG equipment
captures brain signals but does not generate an output
that interacts with the user's surroundings [6]. One of
the challenging issues in BCI discussions is the
limitations of EEG signals in converting rules
corresponding to other signals. For instance, hand
muscle signals are much more efficient for guiding
and controlling an electric arm than EEG signals.
However, EMG signals are less frequently used for
reasons such as amputation and the need for needle
electrodes. BCI systems that use EEG signals to
estimate EMG signals are known as Hybrid BCls.
These systems utilize the electrical activities of the
brain (EEG) and muscles (EMG) to control devices or
send commands to external systems. The advantages
of developing Hybrid BCIs include increased
accuracy and speed of control, enhanced user
capabilities, and reduced user fatigue. These systems
can be applied in medical fields (such as motion
rehabilitation for individuals with motor disabilities)
and non-medical fields (such as controlling video
games). Therefore, having an interface that can read
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the information transmitted to the muscles from EEG
signals can be fruitful. Limited studies have been
conducted in this area to extract this hidden
information from EEG signals. In 2014, Panzicha and
his group [7] analyzed the connection between brain
and muscle signals using coherence connections in
patients with Unverricht-Lundborg disease, which
causes uncontrollable muscle spasms. Thirteen
patients and twelve healthy individuals participated in
this experiment. The normal and daily muscle
behaviors of these individuals were studied. In 2017,
Perez and his group [8] worked on the connection
between brain and muscle signals in patients with
spinocerebellar ataxia, a condition where individuals
lose coordination among their muscles. This research
involved 19 patients and 25 healthy individuals,
during which participants lifted objects. The patients
were in the initial phases of the illness. The findings
indicated that the correlation between EEG and EMG
signals in the patients was considerably less than that
observed in healthy individuals, and this information
could be utilized for the early detection of the disease.
In 2018, Larraz and his group [9] used EEG and EMG
signals to diagnose movement decisions in stroke
patients. This study involved 20 patients. The group
concluded that these two signals contained
complementary information, and by combining them,
more accurate movement decision diagnoses could be
achieved. Recently, graph theory-based methods have
been used to analyze and investigate diseases of
nervous origin, such as Alzheimer’s. In a study by
Jalili and his group in 2020 [10], Alzheimer’s was
diagnosed using graph features. Initially, functional
connections were obtained, and then graph features
were derived using the connectivity matrix. Genetic
algorithms and ant colony algorithms were used to
reduce the graph features. In 2020, Kim and
colleagues [11] estimated two-dimensional wrist
movements based on seven-channel
electromyography signals in both moving and
stationary hand states. Synergy-based linear
regression model combined with a musculoskeletal
model was used to process EMG signals. When
trained on each wrist movement test, the synergy-
based
statistically significant effectiveness, as indicated by
the Pearson correlation coefficient for both dynamic

linear regression model demonstrated

and static wrist states. The electromyography signals
were analyzed using a linear regression model based
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on synergy and a musculoskeletal model. Using each
of the wrist movement tests as a training set, the
synergy-based linear regression model demonstrated
statistically significant performance with a Pearson
correlation coefficient for both moving and stationary
wrist states. In 2023, Borzelli and his colleagues [12]
conducted a regression-based estimation for mapping
EMG to force. Two datasets, both collected during
submaximal isometric force applications in various
directions with the upper limb, were utilized. One
dataset included data collected over five sessions,
while the other was gathered during force applications
and the creation of different contraction levels. The
accuracy and consistency of the EMG-to-force
mappings were evaluated to determine the strengths
and weaknesses of each algorithm [12]. In 2023,
Donahoe and his colleagues [13] utilized synergy
functions to recognize muscles that engage in
synergistic interactions within a muscle group, thereby
simplifying the complexity of wearable sensor arrays.
Electromyography (EMG) and kinematic data from
nine healthy individuals' leg muscles were collected
while they walked. Synergy models for four distinct
pairs of muscle input model sets were confirmed using
EMG data. The impact of incorporating kinematic data
(angular velocity) from the thigh and shank regions
was also investigated [13]. In 2023, Das et al. used a
neuromuscular approach to create a hierarchical
synergy between EEG and EMG for predicting finger
movement and estimating its kinematics. EEG, EMG,
and kinematics of the Metacarpophalangeal (MCP)
joint were obtained during five finger flexion
movements in humans. EMG was estimated for five
finger movements and kinematics from EEG using
linear regression [14]. A Long Short-Term Memory
(LSTM) network and a random forest regression were
hierarchically connected to predict finger movements
and estimate finger kinematics from the estimated
EMG [14]. In 2025, Zhang proposed a multimodal
fusion method based on functional connectivity
between EEG and EMG signals to detect pre-
movement intentions. By constructing EEG-EMG
connectivity networks from signals recorded before
movement onset, the method extracted discriminative
spatial features. Zhang reported a classification
accuracy of 94.33 % using mutual information—based
EEG EMG connectivity, significantly outperforming
EEG-only (73.89%) and EMG-only (89.16 %)
approaches, which demonstrated that leveraging EEG-
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EMG functional connectivity can enhance the
performance of brain-machine interface systems [15].
Wang and colleagues in 2025 introduced a hybrid
Brain-Machine Interface (BMI) that combines Steady-
State Visually Evoked Potential (SSVEP)-based EEG
and facial EMG signals to enhance multimodal control
while mitigating user fatigue in assistive applications.
By dynamically alternating between EEG and EMG
inputs, the system adapted to task demands,
optimizing control and reducing physical strain. In a
virtual navigation task, the hybrid system achieved
task completion times comparable to EMG-only
approaches, with 90% of users reporting reduced or
equal physical demand. These findings underscored
the potential of multimodal BMI systems to improve
usability and long-term adherence in assistive
technologies [16]. A recent pilot study in 2025
investigated inter-muscular connectivity among lower
limb muscles using Magnitude-Squared Coherence
(MSC) across alpha (8—13 Hz), beta (13—30 Hz), and
gamma (30—100 Hz) frequency bands during postural
control tasks. The study found a significant increase (p
< 0.05) in beta and gamma band coherence between
the medial gastrocnemius and soleus muscles under
challenging balance conditions, indicating enhanced
neural coordination for maintaining stability. These
findings highlight the functional relevance of EMG
connectivity metrics in assessing neuromuscular
control  strategies during dynamic postural
adjustments [17]. Another study in 2020 investigated
intermuscular beta-band coherence during gait in
young and older adults, reporting significant age-
related decreases of 43—62% in coherence between
key lower limb muscle pairs such as gastrocnemius
medialis—soleus (GL—SL) and Rectus Femoris—Vastus
Lateralis (RF-VL). Additionally, experimentally
induced fatigue modulated connectivity patterns, with
reductions in coherence between rectus femoris—
biceps femoris (RF-BF) and increases between
Tibialis Anterior—Peroneus Longus (TA-PL). These
findings emphasize the utility of EMG-based
coherence metrics for assessing neuromuscular
coordination and its alterations due to aging and
fatigue [18]. In the domain of hand gesture
recognition, functional muscle networks derived from
coherence analyses of multi-channel EMG signals
have demonstrated high discriminative power. A 2024
study employing 12 EMG channels recorded during
17 hand gestures achieved an 85.1% classification
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accuracy using solely coherence-based network
features, without resorting to deep learning models.
This underscores the critical role of inter-muscular
connectivity patterns in encoding complex motor
intentions, providing a robust basis for prosthetic
control and human-machine interfaces [19]. Another
Research in 2024 on diabetic peripheral neuropathy
patients highlighted alterations in muscle network
connectivity, where transfer entropy measures
between pairs of muscles (e.g., tibialis anterior—
extensor digitorum) exhibited significant reductions (p
< 0.01) compared to healthy controls. These
connectivity disruptions correlated with clinical
neuropathy severity, suggesting that EMG-based
connectivity metrics can serve as sensitive biomarkers
for early neuromuscular impairments and guide
therapeutic interventions [20]. Albarracin et al. (2025)
investigated intermuscular connectivity using EMG
coherence analysis across six lower-limb muscles
during postural control tasks with and without visual
feedback. Their findings revealed task-dependent
changes in beta-band coherence, with decreased
global connectivity and increased bilateral
coordination under challenging conditions. The results
demonstrate that muscle networks dynamically

reorganize in response to sensory constraints,
reflecting adaptable neuromuscular strategies for
balance maintenance [21]. In this study, regression
between the connectivity matrices of EEG and EMG
signals was used to establish this relationship. Deep

convolutional networks were also employed for

Granger Causality
Correlation

Coherence

Phase Lag Index

::¢ Pre Processing

E:> Granger Causality

creating the regression. The article is organized in a
way that the proposed method will be detailed in the
second part. The third section will focus on discussing
and presenting the results, while the final section will
summarize the conclusions.

2. Materials and Methods

In this paper, the goal is to estimate the relationship
between EEG signal connectivity and EMG signal
connectivity. For this purpose, methods for calculating
signal relationships were applied, and then the data
was input into convolutional networks aimed at
regression between this information. The proposed
approach's detailed block diagram is shown in Figure
1.

2.1. Data Recording

The steps of the study are shown in Figure 1. A one-
kilogram weight was hanging from the hand of the
participant sitting behind the table. While concurrently
recording EEG and EMG signals, [22] the elbow angle
was kept at 90 degrees. The design of the chair
armrests is such that, when individuals are seated and
move their arms parallel to the armrests, the elbow
angle naturally assumes a 90-degree position. Any
potential displacement is minimal, on the order of a
few millimeters, and is considered negligible for this
study. With the usage of an advanced Biopac device,
it is possible to simultaneously record two signals

CNN-Regression

Evaluation

¥ EI

Figure 1. Detailed block diagram of the method used in this study
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during this process; EEG and EMG signals were
captured simultaneously. A data acquisition device
with 19 channels was used for EEG recording using
the International 10-20 system. In this study,] KHz
was chosen as a sampling frequency.

To maintain consistent joint positioning during the
experiment, participants seated on an
ergonomically designed chair with armrests, which
guided the arms to approximately a 90-degree elbow
angle. The effects of joint angle and contraction force
were thoroughly considered and, according to relevant
studies and literature in this field, minor variations
such as joint angle deviations less than 5 degrees are
considered negligible [23]. Our experimental design
was carefully structured to prevent participants from
exceeding such angular deviations. Moreover,

Wwere

Participants were selected from non-athletes with
approximately similar body size and weight to ensure
comparable muscle mass and reduce inter-subject
variability. We meticulously monitored the procedure
and provided detailed instructions to ensure consistent
force application. Movement speed was also
synchronized with a trigger display. All these
measures were implemented to guarantee uniformity
and homogeneity in data acquisition. Therefore, in
designing our data collection protocol, we deliberately
minimized such variability to ensure it did not
compromise the integrity of our results [24].

EMG was recorded from six muscles:[25] short
head of the biceps brachii (BSH), long head of the
triceps brachii (TRIO), Pectoralis Major (PMJ),
deltoid (DEL), long head of the triceps brachii (TRIO),
and lateral head of the triceps brachii (TRIA) [25].
Typically, 12 participants between the age range of
30-35 years participated in this study; we had two
exclusion criteria that were removed due to high noise.
Considering the difference in muscle mass between
females and males, as the initial study in this field, we
aimed for homogeneous results.

So, we exclusively chose participants from the male
population, all of whom were right-handed. To be able
to have sufficient data from each participant, 100
records (one record per minute) were obtained. About
1000 records were collected. EMG and EEG records
were collected through 6 channels - 12 leads and 19
channels, respectively (Figure 2).
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It is essential to highlight that all participants were
made aware of the project and gave their consent by
signing a formal agreement. Furthermore, the ethics
committee approval ID is
IR.IAU.SRB.REC.1400.111.

Figure 2. Data recording process

2.2. Preprocessing

For main processing, it is essential to preprocess the
signals first. EEG and EMG signals are affected by
unwanted effects from adjacent sources, which need to
be eliminated using source separation analysis
methods. For this purpose, Independent Component
Analysis (ICA) is employed in this study. ICA is a
widely used technique for blind source separation. It
has been employed in various applications and is often
used as a black box, with users not fully grasping its
internal workings. ICA is viewed as an improvement
over Principal Component Analysis (PCA) [26].
However, PCA focuses on optimizing the data's
covariance matrix, which denotes second-order
statistics, while ICA enhances higher-order statistics,
PCA detects

ICA finds
components that are independent components. As a

result, PCA can identify independent sources when the

such as kurtosis. Consequently,

uncorrelated components, whereas

correlations of higher order in the mixed data are
limited or negligible. Each signal is represented as a
time-varying sequence [27].

2.3.  Brain Connectivity
The main goal of brain connectivity is to fully map

the connections between neural elements with their
anatomical distribution [28]. These elements can be
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individual neurons, specific neural populations, or
large-scale brain regions. The number of possible
connections between these elements is vast [28]. For
any network of N nodes, the number of possible
connections is 2N [29]. There are three types of brain
connectivity models: anatomical, functional, and
effective [30]. The anatomical connection model
represents the actual physical connections based on
the structure and cellular organization of the brain
[30]. Functional models represent a non-directional
statistical relationship between brain regions [30],
while effective models indicate a direct causal
relationship between brain regions [30]. Different
techniques are available for calculating brain
connectivity, and this
approaches: Granger causality, correlation, directed

research utilizes four

transfer function, and coherence, which will be
discussed below.

2.3.1. Granger Causality

The Granger causality index [31], which signifies
how channel x is affected by channel y, is defined as
the ratio of the residual variance logarithm for a single
channel to the residual variance of a dual-channel
model [32] (Equation 1):

GC@qx=ln(£) 1)

This definition can be broadened to encompass a
multi-channel system by analyzing the impact of a
particular channel on the residual variance ratios. To
measure the direct effect from channel (x_j) to (x_j)
for the autoregressive process of channel (n) in the
time domain, we take into account the following
MVAR models (n) and (n-1). Initially, the model is
applied to the complete n-channel system, yielding the
residual variance (V_[7](t) = \text[8](E_[8](t))) for the
signal (x 1).[33] Next, an MVAR model with (n-1)
dimensions is applied to (n-1) channels, excluding
channel (j), which produces the residual (V_{in-
1}1[3](t) = \text[8](E_{i,n-1}(t))). Granger causality is
subsequently defined by Equation 2:

Vin(t) )

GCI_;(t) =In
-i(0) (Vi,n_l(t)

2)

The Granger causality index cannot exceed 1, as the
variance in the n-dimensional system is less than that
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of the residual variance in the n-1-dimensional system.
GCI(t) evaluates causal relationships within the time
domain. The spectral features of the brain signals are
considerable, since during a unique task, a growth in
propagation in a specific frequency band may coincide
with a reduction in another frequency band [34].

2.3.2. Correlation

In a simple sense, the correlation of signals from
two anatomically separated brain regions indicates
that these areas are functionally related in the brain
[35]. Statistical dependencies between two signals can
arise in various ways [36], but in statistics, it typically
refers to the degree of linear relationship between a
pair of variables. Correlation is expressed as Equation
3 [37]:

pxy = corr(x,y)
E[XY] — E[X]E[Y] (3)

- JVEIX?] — E[X]?.{E[Y?] — E[Y]?

where E[.] denotes the expected value. Using the
above relation, the connectivity of each signal channel
with another will be calculated in the form of a matrix.

2.3.3. Direct Transfer Function

Kaminski and Blinowska [38] presented the direct
transfer function as Equation 4 follows:

|Hi; (N (4)

DTFZ(f) = kol Him ()2

Hij(f) denotes a component of the transfer matrix in
the MVAR model. The DTF signifies the causal
influence of channel j on channel i at frequency f.
Equation 7 outlines a normalized form of DTF that
ranges from 0 to 1; this is achieved by calculating the
ratio of the flow from channel (j) to channel (i) against
the total inputs received by channel (i). The
unnormalized DTF, which is directly associated with
pairwise power [39], is defined as Equation 5:

NDTFZ,(f) = |Hy;(F)|” (5)

In addition to reflecting direct flows, DTF shows
cascading flows too; it means that if there is
propagation from channel 3 to channel 2 and then to
channel 1, it also indicates propagation from channel
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3 directly to channel 1. The directed direct transfer
function (dDTF) was introduced to differentiate direct
flow from indirect flow [40]. dDTF is characterized as
the result of a modified DTF adjusted by partial
coherence. The alteration of the DTF entails
normalizing the function to guarantee that the
denominator is unaffected by frequency. The
dDTFj—1i from channel j to i is defined as Equation 6:

dDTF?(f) = Fi;*(/)Cii%(f)
2
H;; (6)
Fi*(f) = |k i)l 3
2f Lm=1lHan (I
Cij(f) presents the partial coherence. When both

functions Fij(f) and Cij(f) are non-zero, dDTFj—1i will
also have a non-zero value, signifying a direct causal

relationship between channels (j) and (i). DTF can be
utilized to assess propagation in point processes [41],
such as spike trains, or to evaluate causal relationships
between spike trains and local field potentials [42].

2.3.4. Coherence

Coherence is a factor in signal processing that can
be utilized to analyze the connection between two
signals or datasets, and it is frequently employed to
assess the power transfer between the input and output
of a linear system [43]. The coherence between two
signals x(t) and y(t) is a real-valued function described
as Equation 7:

|Gy (D]

l 7
Gxx (f) Gyy (f) @

ny (f) =

In this function, (G_{xy}(f)) denotes the cross-
spectral density of signals (x) and (y), whereas
(G_{xx}(f)) and (G_[43](f)) indicate the auto-spectral
densities of (x) and (y), respectively. The magnitude
of the spectral density is denoted by |Gl|.[44]
Considering the previously mentioned constraints.
(ergodicity, linearity), the coherence measures the
extent to which y(t) can be predicted from x(t) using
the optimal linear least squares function [44].
Coherence values always range between 0 and 1. For
an ideal linear system with a fixed parameter and a
single input x(t) and a single output y(t), coherence
will equal one [44].
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2.4. Convolutional Neural Networks

Deep Convolutional Neural Networks (CNNs) have
shown considerable success as versatile models for a
wide range of issues, particularly in tackling
regression problems in recent times. CNNs are
primarily used for two-dimensional arrays such as
image data. However, CNNs can also be applied to
analyze regression data [45]. In this study, a neural
network is designed with a structure similar to the
well-known SegNet, which was created to solve image
segmentation problems. The difference between this
network and the SegNet architecture lies in the number
of layers and the input-output size [46]. In SegNet, the
input and output are equal. However, in this network,
the input size corresponds to the number of EEG
channels [46], while the output size corresponds to the
number of EMG channels [46].

The input layer is chosen to be 5*19*19, where 5 i
ndicates the count of connectivity computational tech
niques,19 denotes the quantity of EEG channels, resu
Iting in 19*19 because of the interconnections among

each channel and itself. The layers were created using

built-in MATLAB functions, and the architecture was
developed through an iterative trial-and-error process.
This procedure was systematic rather than arbitrary:
we started with a minimal network and incrementally
increased the number of layers following standard
neural network design practices. At each stage, the
model was trained with fixed hyperparameters such as
optimizer, activation functions, and learning rate to
isolate the impact of architectural changes. To ensure
robust evaluation and prevent overfitting, 80% of the
dataset was used for training, within which a subset of
10% was allocated for wvalidation during
hyperparameter tuning and architecture selection via
cross-validation. The remaining 20% of the data was
held out as an independent test set, used only for the
final performance evaluation after model selection,
thus preventing data leakage and providing an
unbiased assessment of the model’s generalization .
The intended output is the connectivity matrix of the
EMG signal, represented as a 6 by 6 matrix
corresponding to the number of EMG signal channels
[22]. To calculate this matrix, the Granger causality
method is used. The structure proposed to address this
problem is illustrated in Table 1:
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Table 1. The arrangement of the network created to tackle the regression problem that involves transforming the EEG
signal connectivity matrix into the EMG signal connectivity matrix.

n]:l?gl(::r Layer type Layer properties
Input layer with size 5*19%19 with zero center
1 Image Input o .
normalization
2 Convolution 25 kernels with size 7x7 with step 1 and without layering
3 ReLU Activity function
4 Convolution 50 kernels with size 5x5 with step 1 and without layering
5 ReLU Activity function
6 Convolution 100 kernels with size 3x3 with step 1 and without layering
7 ReLU Activity function
8 Fully Connected Fully connected layer with 36 neurons
9 Regression Output QOutput layer with mean squared error cost function

After designing the networks, they are subjected to
the training process. For this purpose, the
characteristics of the network must also be designed.
Therefore, the features of the constructed networks are
shown in Table 2.

Choosing a suitable optimization algorithm for the
deep learning model is very important and has a
significant impact on the time taken to reach the
desired outcome. The Adam optimization algorithm
[47] is considered a generalized version of the
Stochastic Gradient Descent (SGD) algorithm, which
has been more widely used for deep learning
applications in the fields of computer vision and
natural language processing [47, 48]. The Adam
algorithm can be considered as a combination of
RMSprop and stochastic gradient descent with
momentum [49]. These various trial-and-error tests
have been conducted to tune these parameters, and the
results will be reported below.

Table 2. Tuned features for training the network

Feature Value
Optimizer function Adam
Maximum repetitions 10
Primary education 001
rate
Reduction coefficient 95%

of the education rate
The period of
reduction in the
education rate
Validation error
calculation step
Maximum chance of
validation error

Each 2 Repetition

20
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3. Results

The connectivity matrix between the EMG signal
channels was calculated using the Granger causality
method. Therefore, there is only one configuration for
training the network. Four methods are used to
validate the results generated against the expected
actual values. The four methods consist of Mean
Squared Error (MSE), Mean Absolute Error (MAE),
the R-squared metric, and the correlation coefficient.
Each of these metrics has its distinct evaluations. For
instance, R-squared reflects the degree to which the
regression model aligns with the data, whereas the
correlation coefficient assesses the degree of
similarity (correlation) between the output estimated
by the regression model and the actual output [50].
While R-squared is a relative metric for assessing the
appropriateness of model fitting to dependent
variables, MSE is an absolute metric for this purpose
[50]. The MAE metric is similar to MSE in terms of
characteristics, with the difference that in MAE, the
absolute error is calculated instead of the mean
squared error [50] (the difference between the
estimated output and the actual output).

In deep learning, the data is categorized into three
groups for model training: training, validation, and
testing. This is done because, with limited data, the
model is trained so that other data can be used for
evaluation. In this study, the ratios of 70%, 10%, and
20% are determined for training, validation, and
testing data, respectively. Figure 2 shows the training
trend chart for the connectivity matrix between the
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EMG signal channels with the parameters set in Table
2.

By changing the optimizer from Adam to SGD and
RMS-Prop, the RMSE and error functions will be as
shown in Figures 3 and 4.

Adam's lower, but their initial error was better than
Adam's. However, it can ultimately be claimed that the
Adam function performed better than the other two
functions due to its evaluation parameters. Table 3
presents the results of the simulated evaluation
parameters for the regression between the EEG signal
connectivity matrix and the EMG signal connectivity
matrix.

RMSE

05

0 100 200 300 400 500 600 700

0

4. Discussion

The current study sought to reveal the functional
connections between hand muscles utilizing EEG
signals, with the ultimate goal of enhancing the control
mechanisms of BCI systems. Our findings suggest a
significant correlation (r =~ 0.949) between the
estimated EMG signal activity derived from EEG and
the actual muscle activation patterns. This high
correlation underscores the potential of EEG-based
estimations in accurately reflecting muscle activity,
paving the way for more intuitive BCI applications.
Our approach leveraged convolutional networks and
advanced signal processing techniques, including

Loss Function
12 T T
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.

0 L s 1% L
0 100 200 300 400 500 600 700

Figure 3. Training trend chart for regression among the EEG signal connectivity matrix and the EMG signal

connectivity matrix using the Adam function

RMSE
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Figure 4. Training trend chart for regression among the EEG signal connectivity matrix and the EMG signal

connectivity matrix using the SGD function
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Table 3. Regression among the EEG signal connectivity matrix and the EMG signal connectivity matrix

R-Square MSE MAE Correlation Data
0.9432 0.0153 0.0003 0.9738 Education
0.9149 0.0196 0.0004 0.9379 Validation Adam function
0.9270 0.0185 0.0004 0.9489 Test
0.9352 0.0173 0.0004 0.9682 Total data
0.8985 0.0254 0.0006 0.9392 Education
0.9125 0.0255 0.0007 0.9287 Validation SGD function
0.9182 0.0252 0.0006 0.9301 Test
0.9284 0.0253 0.0006 0.9292 Total data
0.9385 0.0201 0.0004 0.9673 Education
0.9083 0.0222 0.0005 0.9569 Validation .
0.9271 0.0226 0.0005 0.9490 Test RMS-Prop function
0.9224 0.0204 0.0004 0.9578 Total data

Granger causality and coherence analyses, to elucidate
the interactions between EEG signals and muscle
outputs. As this study focused on temporal and causal
interactions using Granger causality, conventional
EMG-derived features such as RMS and spectral
moments were not included in the analysis. This
choice aligns with the study’s objective to emphasize
intermuscular information flow rather than signal
amplitude or spectral Nevertheless,
integrating such features in future research may

content.

complement causality-based measures and enhance
the robustness and interpretability of synergy models.
The use of these sophisticated methods allowed us to
effectively model the complex interrelationships
among hand muscles, revealing how activation in one
muscle group can influence the activity of others. This
finding aligns with existing literature that recognizes
the interconnected nature of muscle activation in
motor tasks. In conventional
approaches, our
exhibited superior performance in estimating EMG

signals from EEG data. This superiority is particularly

comparison to
regression-based methodology

noteworthy considering the challenges associated with
extracting meaningful signals from the EEG due to
noise and interference, which often complicate
traditional methods. The implementation of directed
transfer functions and phase delay indices contributed
to a deeper understanding of the causal dynamics
involved, highlighting the potential for these
techniques in future research on neural control of
movement. While our results are promising, the study
is not without limitations. The reliance on simulation
data necessitates further validation with real-time BCI
applications. Future studies should investigate
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incorporating additional modalities, such as real-time
feedback mechanisms, to strengthen the robustness of
our model. Additionally, expanding the participant
demographic in follow-up studies may yield insight
into interindividual variability in muscle activation
patterns, which is crucial for the generalization of our
findings across diverse populations. Estimating inter-
muscle connectivity from EEG offers a more realistic
representation of neuromuscular control, as natural
movements are driven by coordinated patterns of
interaction among multiple muscles rather than
isolated activations. This perspective enhances BCI-
based rehabilitation, particularly
Electrical Stimulation (FES) systems, by enabling
stimulation strategies that reflect the brain’s inherent

in Functional

muscle coordination patterns. As a result, it can
improve the effectiveness of artificially induced
movements, reduce compensatory activations, and
support adaptive, patient-specific neurorehabilitation,
especially in individuals with motor impairments such
as spinal cord injury.

Ultimately, this study adds to the expanding body
of knowledge on the interaction between neural
signals and muscular activity, with implications for the
development of advanced rehabilitation techniques
and more efficient BCI systems. As we continue to
refine our understanding of these connections, we can
create more sophisticated tools for individuals with
motor impairments, ultimately enhancing their quality
of life.
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5. Conclusion

Considering the activation command issued and
how it is generated by the brain, research into the
relationship between EEG and EMG signals still has
ambiguities that, if resolved, could aid patients with
muscular issues and stroke survivors. If the interaction
between these two signals can be thoroughly
examined, it would be possible to seek compensatory
methods in case of problems within any components
of this system.

The goal of this research was to explore the
connection between hand muscles and how each
muscle affects the others by utilizing EEG signals.
Before selecting the subjects, a mental health test will
be conducted under the supervision of a neurologist
and psychologist to ensure the physical and mental
well-being of individuals. Their physical condition
will also be assessed, and participants will be selected
from healthy and normal individuals (not engaged in
professional sports). The stimulation and motor
command will be presented to the individual via a
monitor, and the brain and muscle signals will be
recorded. In this study, arm position was visually
controlled using a chair design that naturally aligned
the elbow at a 90-degree angle. Although precise
biomechanical tools were not used, this method aligns
with established practices in recent literature.
Combined with repeated trials and participant
selection criteria aimed at reducing inter-subject
variability,  this  approach  helped mitigate
inconsistencies in movement execution. For future
studies, we recommend incorporating more explicit
biomechanical measurements, such as goniometric
tracking or force sensors, to further improve control
over motor parameters and enhance data reliability. A
directional image of hand movement will be displayed
on the monitor. The individual should not think about
anything else during the experiment, which is why a
rest period is required before starting the stimulation,
facilitated by the monitor for the participant.
Therefore, this research investigates the relationship
between brain and muscle signals for rehabilitation
and recovery purposes. Future research could benefit
from incorporating additional EMG-derived features,
such as spectral moments and RMS, to enhance the
predictive capabilities and robustness of muscle
synergy analyses. Expanding the feature set may
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provide deeper insights into neuromuscular dynamics
and improve the applicability of the developed
models. Based on the information gathered so far from
research and literature, there has been no examination
of the EEG signal graph concerning motor and
muscular subjects and their relationship with the EMG
signal. Since muscle behaviors require activity from
various points and commands from the brain, it is
expected that a collection of brain points will be active
in this process. Thus, using graph theory can provide
better insights into this interaction compared to
conventional methods like examining brain
connectivity. It should be noted that not much research
has been done on this topic. So, we collected our data
exclusively from males to ensure that variations in
muscle mass and physical strength do not adversely
impact the outcomes. In future and later studies, we
could also record signals from the statistical
population of women to generalize the findings.
Another limitation of the present study lies in the
unavailability of a comprehensive feature importance
analysis, primarily due to constraints in data
dimensionality and sample size. Given that the EEG
recordings were limited to 19 channels, performing a
reliable assessment of the individual predictive
contributions of connectivity features was not
methodologically feasible without introducing risks of
overfitting and statistical instability.
research, utilizing EEG systems with a higher number

In future

of channels may enable a more granular investigation
of individual connectivity features, allowing for a
clearer understanding of their respective contributions
to model performance.
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