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Abstract 

The integration of Artificial Intelligence (AI) into nuclear medicine has transformed diagnostic and therapeutic 

processes, yet the opaque nature of many AI models hinders clinical adoption and trust. This narrative review 

aims to synthesize the current landscape of explainable AI (XAI) in nuclear medicine, emphasizing its role in 

enhancing transparency, bias mitigation, and regulatory compliance for robust clinical integration. Key chapters 

cover the fundamentals of XAI in nuclear medicine; XAI applications in PET and SPECT instrumentation and 

acquisition; image reconstruction; quantitative imaging and corrections; post-reconstruction processing and 

analysis; and radiotherapy. The review concludes with a discussion of challenges, limitations, and future 

directions, advocating for interdisciplinary advancements to bridge AI innovation with practical utility in patient 

care.  
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1. Introduction  

The integration of Artificial Intelligence (AI) into 

nuclear medicine has revolutionized diagnostic and 

therapeutic workflows, particularly in Positron 

Emission Tomography (PET) and single-photon 

emission computed tomography (SPECT) imaging, as 

well as radionuclide therapy [1, 2]. While foundational 

AI concepts trace back to the 1950s, the surge in Deep 

Learning (DL) methodologies since the 2010s has 

propelled applications in multimodal imaging, 

enabling automated processes that surpass traditional 

human-dependent tasks such as lesion detection, 

image reconstruction, and quantitative analysis [2]. In 

nuclear medicine, DL excels at managing high-

dimensional datasets from hybrid systems (e.g., 

PET/CT or SPECT/MR), mitigating noise, optimizing 

radiation doses, and enhancing temporal resolution in 

dynamic studies, all while adapting to patient-specific 

variability and reducing inter-observer bias [3, 4]. 

Despite these advancements, the opaque "black-

box" nature of many DL models, wherein decision 

pathways remain opaque, poses critical barriers in 

clinical settings, where transparency is paramount for 

regulatory compliance (e.g., FDA guidelines), 

clinician adoption, and ethical patient care [5]. 

Explainable AI (XAI) emerges as a pivotal solution, 

rendering model outputs interpretable through 

techniques such as feature attribution (e.g., SHapley 

Additive exPlanations [SHAP] or Local Interpretable 

Model-agnostic Explanations [LIME]), uncertainty 

quantification (e.g., Bayesian approaches or Monte 

Carlo dropout), saliency maps, and physics-informed 

architectures that incorporate domain-specific priors 

like tracer kinetics or photon transport models [6, 7]. 

In PET and SPECT, XAI facilitates trustworthy 

applications across the imaging pipeline: from 

instrumentation enhancements (e.g., timing 

calibration and motion correction) to reconstruction 

algorithms that provide pixel-wise uncertainty maps, 

quantitative corrections for attenuation and scatter, 

post-reconstruction segmentation with visual 

attributions, and dosimetry in radionuclide therapy 

(e.g., voxel-level dose predictions for [177Lu]-based 

treatments) [8, 9]. For instance, XAI can attribute 

predictions to physiologically relevant features, such 

as metabolic hotspots in oncology or kinetic 

parameters in neurology, thereby fostering clinician-

model collaboration and improving outcomes in 

theranostics [10-12]. 

A standard nuclear medicine workflow 

encompasses examination planning, acquisition, 

interpretation, and reporting, with AI augmenting each 

phase, either by automating routine tasks to alleviate 

workload or by achieving superhuman precision in 

detecting subtle pathologies like micrometastases or 

predicting therapeutic responses [13]. Recent 

innovations, including inter-modality translation (e.g., 

MRI-to-CT for attenuation maps) and low-dose 

enhancements, underscore AI's transformative 

potential, yet highlight the imperative for XAI to 

ensure reproducibility, bias mitigation, and alignment 

with physical principles [14-20].  

This narrative review synthesizes the evolving 

landscape of XAI in nuclear medicine, with a primary 

emphasis on PET/SPECT imaging and radionuclide 

therapy. Drawing from recent literature, we delineate 

foundational principles, key applications, inherent 

challenges, and prospective directions to guide 

interdisciplinary efforts toward robust, transparent AI 

integration in clinical practice. 

2. Fundamentals of Explainable AI in 

Nuclear Medicine 

In nuclear medicine, where high-stakes decisions 

rely on interpreting complex, noisy datasets from PET, 

SPECT, and radiation therapy, the "black-box" 

opacity of traditional DL models poses significant 

hurdles [5, 21, 22]. Opaque AI systems, such as 

Convolutional Neural Networks (CNNs) trained on 

volumetric PET/SPECT images, excel at tasks like 

lesion detection, image reconstruction, and dosimetry 

but obscure internal decision pathways, leading to 

challenges in clinical validation, regulatory approval 

(e.g., under FDA's AI/ML-enabled medical device 

guidelines), and bias detection [5, 21, 23, 24]. For 

instance, DL models may inadvertently amplify 

artifacts from photon noise, scatter, or attenuation in 

low-count PET acquisitions, resulting in non-

reproducible predictions without traceable reasoning 

[25-30]. In contrast, XAI frameworks demystify these 

processes by providing interpretable outputs, such as 

feature attributions or uncertainty maps, that align 

with domain-specific physics (e.g., tracer kinetics or 
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Monte Carlo-based photon transport simulations) [5, 

21]. 

XAI methods are broadly categorized into post-hoc 

(applied after model training, e.g., model-agnostic 

perturbations) and ad-hoc (intrinsically built-in, e.g., 

attention layers), with adaptations for nuclear 

medicine's unique data characteristics: high-

dimensional 3D/4D volumes, inherent Poisson noise, 

and multimodal fusion (e.g., PET/CT or SPECT/MR) 

[5, 21, 23]. These enable clinicians to verify model 

focus on physiologically relevant features, like 

metabolic hotspots in oncology or perfusion deficits in 

cardiology, fostering trust and integration into 

workflows [5, 21, 31]. 

Core Principles of XAI 

XAI principles derive from cognitive science and 

game theory, distinguishing interpretability 

(inherently transparent models, e.g., decision trees) 

from explainability (post-hoc rationales for black-

boxes). Core taxonomy classifies by: (A) Scope: local 

(per-instance) vs. global (model-level); (B) Timing: 

ante-hoc (pre-training), intrinsic/ad-hoc (design-

embedded), post-hoc (after); (C) Granularity: signal-

level (voxels) to concept-level (e.g., "hotspot").  

Key desiderata (properties for trustworthy XAI): (1) 

Fidelity (matches model); (2) Stability (consistent 

inputs); (3) Plausibility (human-aligned); (4) 

Robustness (adversarial-resistant); (5) Simulatability 

(mental replay). In nuclear medicine, prioritize 

stability to combat scan noise (e.g., via robustness to 

Gaussian perturbations) and plausibility to ensure 

physics alignment (e.g., explanations mirroring signal 

decay models), fostering clinician trust. Evaluation 

blends quantitative (AOPC (Area Over Perturbation 

Curve) for sufficiency via ranked voxel perturbations; 

Infidelity for faithfulness via physics-like noise) and 

qualitative (clinician surveys for plausibility) (Table 

1) [32-34]. 

Post-hoc XAI techniques, dominant in nuclear 

medicine due to their flexibility with pre-trained DL 

models, generate explanations by analyzing model 

outputs retrospectively, often through gradient 

propagation or perturbations tailored to handle nuclear 

medicine's noisy, volumetric data [5, 21, 23, 35, 36]. 

Gradient-based methods, such as saliency maps and 

Gradient-weighted Class Activation Mapping (Grad-

CAM), compute voxel-wise importance by back-

propagating gradients from the output layer to 

highlight influential regions in PET/SPECT images 

[23, 37, 38]. For example, Gradient-based methods 

like Grad-CAM improve interpretability in noisy 

environments, such as myocardial perfusion SPECT 

where low-dose acquisitions can introduce streak 

artifacts due to reduced photon counts; variants like 

Grad-CAM++ further enhance spatial resolution by 

incorporating pixel-wise weighting for multiple object 

instances, potentially suppressing non-relevant 

artifacts [23, 38-40]. Layer-wise Relevance 

Propagation (LRP) and Deep Learning Important 

FeaTures (DeepLIFT) extend this by conserving 

relevance scores across layers, addressing gradient 

saturation in deep networks, LRP, for instance, has 

been adapted for dopamine transporter SPECT in 

Parkinson's disease classification, visualizing striatal 

uptake patterns in 3D volumes by propagating 

relevance voxel-by-voxel, revealing model reliance on 

binding ratios amid noise [41-43]. Perturbation-based 

approaches like Local Interpretable Model-agnostic 

Explanations (LIME) approximate local decision 

boundaries by fitting interpretable surrogates (e.g., 

linear models) to perturbed super-voxels, grouping 

similar pixels to manage nuclear medicine's high 

dimensionality; LIME's efficiency shines in 

Table 1. Classification of XAI Methods 

Scope Timing Method Category Core Principle 
Nuclear medicine 

Adaptation/Evaluation 

Local/Global 
Post-

hoc 
Gradient (Grad-CAM) Backprop sensitivities Voxel heatmaps; AOPC 

Local 
Post-

hoc 
Perturbation (LIME) Surrogate fitting Super-voxels; Stability 

Local/Global 
Post-

hoc 

Game-theoretic 

(SHAP) 
Marginal contributions Radiomics; Infidelity 

Local/Global Intrinsic Attention Dynamic weighting 3D kinetics; Plausibility 

Global Intrinsic PINNs 
Physics-constrained 

loss 
Uncertainty maps; Fidelity 
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volumetric imaging, where random perturbations 

quantify contributions from noisy regions, as 

demonstrated in CT for COVID-19 classification via 

occlusion-based explanations of lung opacities, and in 

SPECT for neurological disease detection, with 

analogous potential for extension to PET tumor 

segmentation by perturbing metabolic features to 

assess boundary impacts [5, 35, 44, 45]. 

SHapley Additive exPlanations (SHAP), a game-

theoretic post-hoc method, provides robust, additive 

feature attributions by computing average marginal 

contributions across coalitions, offering both local 

(instance-specific) and global (model-wide) insights 

particularly suited for nuclear medicine's correlated 

radiomic features [46]. In PET/CT radiomics for lung 

cancer nodal staging, SHAP ranks features like 

SUVmax (from PET) and texture metrics (e.g., Gray 

Level Co-occurrence Matrix correlation from CT), 

revealing contributions to metastasis prediction due to 

tumor heterogeneity; this disentangles multimodal 

synergies in noisy fusions, with SHAP outperforming 

LIME in stability for high-dimensional data. 

DeepSHAP, an approximation for deep learning, has 

been applied to mapping multivariate relationships in 

amyloid PET for Alzheimer's cognition prediction, 

attributing regions to deposition patterns while 

handling variability via reference baselines (e.g., 

healthy scans), though sensitive to anatomical 

differences [47, 48].  

Ad-hoc XAI methods embed interpretability during 

model design, yielding intrinsically transparent 

architectures better resilient to NM's challenges, such 

as volumetric deformations and low signal-to-noise 

ratios in SPECT. Attention mechanisms, integrated 

via Transformer layers or self-attention modules, 

dynamically weight relevant features, producing 

attention maps that visualize information flow, in 

SPECT for Parkinson's, attention-based DenseNet 

models focus on basal ganglia regions (including 

nigrostriatal pathways), suppressing noise from 

surrounding tissues by computing softmax-

normalized scores across patches, adaptable to 3D 

volumes through multi-head attention for capturing 

long-range dependencies in DaTSCAN tracer uptake. 

Capsule networks, which encode hierarchical entity 

representations via vector outputs and dynamic 

routing, provide equivariant explanations robust to 

rotations in volumetric data; though less common in 

NM, they mirror adaptations from CT nodule 

detection, where capsules disentangle pose-invariant 

features in noisy lung images, with potential 

extensions to SPECT for dosimetry planning. Physics-

informed neural networks (PINNs) further tailor ad-

hoc XAI by constraining losses with nuclear medicine 

priors (e.g., radiative transfer equations analogous to 

Boltzmann transport for scatter correction), generating 

uncertainty-quantified outputs like Bayesian dropout 

maps for voxel-level dose predictions in radiotherapy, 

contrasting opaque models by enforcing physical 

plausibility. For example, attention-augmented 

models in multimodal PET/MRI for Alzheimer's 

localize atrophy-metabolism mismatches, with rollout 

visualizations tracing layer-wise contributions amid 

noise [49-51]. 

Figure 1 highlights the fundamental explainability-

performance trade-off in AI systems: as models 

prioritize superior accuracy (e.g., via complex deep 

learning or ensemble techniques), their decision-

making processes become increasingly opaque 

("black-box"). Conversely, transparent models like 

decision trees or SVMs sacrifice some performance 

for inherent interpretability. In medical imaging 

contexts, such as nuclear medicine diagnostics, this 

tension underscores the value of XAI strategies (e.g., 

post-hoc attributions like Grad-CAM or SHAP) to 

"unlock" high-performing deep models, enabling 

clinicians to trust and validate predictions without 

compromising efficacy. 

Despite these foundational principles, XAI in 

nuclear medicine confronts domain-specific 

challenges: scalability for 4D dynamic studies (e.g., 

SHAP coalitions scale, demanding approximations 

like FastSHAP); fidelity in low-count regimes 

(Poisson noise erodes attribution stability); and bias in 

multimodality (e.g., PET/CT misalignments propagate 

via uncalibrated gradients). Future directions pivot to 

hybrid physics-XAI frameworks: physics-informed 

SHAP (PINNs constraining losses with Boltzmann 

transport, yielding uncertainty-aware attributions for 

[¹⁷⁷Lu]-dosimetry); perturbation hybrids (masking 

voxels akin to ADNI multimodal drops for global 

fidelity benchmarks); and real-time intrinsics 

(quantized attentions for edge-deployed SPECT, 

aligning with FDA's AI/ML SaMD guidelines). These  
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promise trustworthy, physics-plausible nuclear 

medicine AI, bridging principles to practice [5]. 

3. Explainable AI in PET and SPECT 

Instrumentation and Acquisition 

In PET and SPECT systems, the foundational 

processes of photon detection, signal processing, and 

data acquisition directly dictate image quality, 

quantitative accuracy, and clinical utility. These 

modalities rely on scintillation crystals (e.g., 

LYSO:Ce for PET, NaI(Tl) for SPECT) coupled to 

photosensors like silicon photomultipliers (SiPMs), 

where raw waveforms encode critical information on 

energy, position, and timing amid high noise, pile-up 

events, and physical imperfections such as Depth-Of-

Interaction (DOI) variations or collimator septal 

penetration. Conventional AI, particularly DL models 

like CNNs, has revolutionized low-level tasks, 

yielding 20-40% gains in timing precision, positioning 

accuracy, and calibration stability, but often operates 

as "black boxes," obscuring decision rationales in 

noisy, physics-constrained environments. This opacity 

risks propagating untraceable errors, especially in 

low-light yields (~10-30 photons/keV) or high-

activity scenarios, complicating validation against 

physical principles and regulatory scrutiny (e.g., 

FDA's AI/ML-based SaMD framework (proposed 

regulatory framework for modifications to artificial 

intelligence/machine learning-based software as a 

medical device)). XAI provides transparency and 

enables physicists to dissect AI contributions, confirm 

physics compliance, and iteratively optimize 

hardware/acquisition.  

The integration of XAI into PET and SPECT 

instrumentation represents an emerging frontier in 

nuclear medicine, where transparency is paramount 

for validating AI decisions against fundamental 

physical principles. Unlike the mature application of 

XAI in downstream tasks such as lesion detection, 

image reconstruction, and diagnostic classification 

(covered in the following sections), where methods 

like SHAP and Grad-CAM elucidate lesion 

attributions in reconstructed images, low-level 

instrumentation processes (e.g., raw photon detection, 

signal processing, and hardware calibration) remain 

underexplored. Here, AI excels in handling noisy 

scintillator waveforms from silicon photomultipliers 

(SiPMs), achieving 20-40% improvements in timing 

resolution, event positioning, and depth-of-interaction 

 

Figure 1. Trade-off curve illustrating the inverse relationship between model explainability (x-axis) and learning 

performance (y-axis) in machine learning paradigms. Highly interpretable models, such as simpler statistical approaches, 

cluster toward greater explainability but lower predictive accuracy. In contrast, high-performance architectures like deep 

neural networks and ensemble methods exhibit reduced transparency. Key categories include: Statistical Models [SVMs: 

Support Vector Machines; AOGs: And-Or Graphs]; Graphical Models [Bayesian Belief Nets; SRL: Statistical Relational 

Learning; CRFs: Conditional Random Fields; MLNs: Markov Logic Networks; Markov Models]; Neural Nets 

[encompassing Deep Learning]; and Ensemble Methods [Random Forest; Decision Tree]. Reprinted from [52] under CC 

BY 4.0 copyright 
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(DOI) decoding, but black-box models risk 

untraceable errors in low-photon-yield (~10-30 

photons/event) or high-pileup environments. XAI 

bridges this by dissecting feature contributions (e.g., 

waveform rise time vs. decay tail), ensuring physics 

compliance, and enabling iterative hardware design. 

Seminal works are scarce, focusing primarily on PET 

time-of-flight (TOF) estimation, while XAI 

applications are accompanied by recommendations for 

wider use [53-60]. 

Pioneering efforts demonstrate XAI's 

transformative potential in TOF-PET timing. 

Naunheim et al. [54] introduced a gradient-boosted 

decision tree (GBDT) model augmented with residual 

physics constraints, modeling nonlinear timewalk as 

Δt_phys = f(energy, position), to process raw 

LYSO:SiPM waveforms (Figure 2). The objective was 

to surpass conventional constant-fraction 

discriminators amid Poisson noise and variable photon 

statistics, targeting sub-200 ps Coincidence Time 

Resolution (CTR) for clinical total-body PET. 

Achieved a 21% CTR gain (235 ps to 185 ps) in 19-

mm slab detectors using list-mode data. XAI via 

SHAP provided global/local attributions: 81% 

importance to measured Δt and photon count, 

revealing learned higher-order corrections without 

opacity; tree visualizations traced paths to physical 

priors. This intrinsic/post-hoc hybrid validated model 

fidelity against Monte Carlo simulations (GATE), 

paving the way for scanner-agnostic deployment. 

Complementing this, Petersen et al. [61] developed 

a DL framework for event positioning and inter-

crystal scatter rejection in light-sharing, depth-

encoding PET detectors (e.g., Prism-PET modules). 

The objective was to mitigate parallax errors (~5-10 

mm) and scatter-induced blurring by decoding DOI 

and interaction coordinates from multiplexed SiPM 

signals, improving spatial resolution by 15-25% over 

Anger logic. While DL excelled, the authors explicitly 

highlighted XAI's future necessity for clinician trust, 

noting post-hoc tools (e.g., integrated gradients) could 

map decisions to scatter paths (Klein-Nishina 

compliant). No XAI was implemented, underscoring 

the niche's nascency. 

Despite these pioneering efforts, significant gaps in 

XAI application to PET and SPECT instrumentation 

highlight ripe opportunities for innovation. In SPECT, 

where collimator septal penetration and Compton 

scatter distort ~10-20% of events, no XAI frameworks 

yet interpret gamma event localization in ML models, 

DenseNets could leverage Grad-CAM heatmaps to 

visualize penetration paths aligned with Klein-Nishina 

physics, guiding collimator refinements. Similarly, 

deep learning excels in DOI decoding for light-

sharing/monolithic setups, yet lacks XAI to unpack 

multi-layer waveform attributions amid variable light 

 

Figure 2. This schematic depicts the labeling procedure for generating annotated datasets in supervised learning. The 

radiation source (red cube) is methodically repositioned at discrete locations $ z_s $ along the central z-axis of the 

coordinate system. These shifts produce distinct γ-photon travel times $ t_1 $ and $ t_2 $ to paired detectors. The expected 

time difference $ \mathbb{E[t_1 - t_2] $ is computed as the precise ground-truth label for each configuration. This 

physics-driven method yields scalable, noise-aware labels, empowering models to infer source positions from real-time 

time-of-flight data. Reprinted from [54] under CC BY 4.0 copyright 
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yields. Event positioning via CNNs achieves sub-mm 

precision in monolithic crystals, but SHAP could 

dissect edge blurring from scatter, while SiPM gain 

drifts await interpretable recalibration tracing 

thermal/aging effects for scanner longevity. Hardware 

optimization via physics-informed NNs (PINNs) 

models can lead to promising development in PET and 

SPECT instrumentation. 

As total-body PET and SPECT systems continue to 

push the boundaries of sensitivity (e.g., >100× gains 

in human explorers like PennPET and EXPLORER) 

and spatial/temporal resolution (sub-200 ps CTR, mm-

scale DOI), embedding XAI directly into 

instrumentation, via lightweight, real-time methods 

like SHAP-on-FPGA or intrinsic GBDTs, will 

cultivate inherently trustworthy AI by demystifying 

decisions at the photon level, from waveform parsing 

to adaptive acquisition. This transparency empowers 

physicists and engineers with actionable insights, such 

as feature heatmaps linking SiPM drifts to CTR 

degradation or Grad-CAM overlays revealing septal 

penetration artifacts, thereby fueling rapid iterative 

design cycles [62, 63]. 

4. Explainable AI in Image 

Reconstruction 

PET and SPECT image reconstruction has 

traditionally relied on analytical methods like filtered 

backprojection (FBP) and iterative algorithms such as 

ordered subset expectation maximization (OSEM). 

While effective, these approaches suffer from 

limitations including noise amplification, reduced 

contrast recovery, and sensitivity to artifacts from 

attenuation, scatter, or motion. AI, particularly DL, 

has revolutionized this field by framing reconstruction 

as an image-to-image translation task [64-68]. DL 

models, including CNNs, GANs, and unrolled 

iterative networks, enable superior resolution, contrast 

enhancement, noise suppression, and artifact 

correction, often outperforming conventional methods 

by 10-20% in quantitative metrics like normalized 

root-mean-square error (NRMSE) [69]. 

Hybrid and physics-informed approaches dominate 

recent advances: unrolled networks (e.g., unfolding 

OSEM/MAP-EM into recurrent layers) embed 

forward models for data fidelity, while post-hoc DL 

(e.g., U-Net denoising) refines outputs. In PET, kernel 

priors support list-mode, motion-corrected, and 

parametric imaging [70-72]. Clinically approved tools 

now integrate multimodal data, promising routine 

deployment. However, challenges like training data 

scarcity and hallucination risks remain. 

The Imperative for Explainable AI (XAI) in 

Reconstruction 

XAI addresses the "black-box" critique of DL recon 

by providing interpretable insights into model 

decisions, fostering clinician trust and regulatory 

approval. In PET/SPECT, where artifacts mimic 

lesions or obscure uptake, XAI overlays (e.g., 

attention maps, SHAP values) elucidate how networks 

reduce noise, correct misalignments, or recover 

lesions, critical for reducing false positives/negatives 

and improving detectability. User-centric XAI aligns 

with workflows, enabling rapid validation and hybrid 

human-AI decisions. 

In this regard, pioneering physics-informed 

unrolled networks exemplify interpretable recon. 

Mehranian and Reader's FBSEM-Net unrolls forward-

backward splitting expectation-maximization, 

replacing priors with learnable CNN residuals while 

fixing physics operators (e.g., system matrix), 

inherently traceable via iteration blocks mirroring 

OSEM [73]. This hybrid outperforms 

OSEM/MAPEM (NRMSE ~14% vs. 21%) in low-

dose PET/MR brain data. Corda-D’Incan et al. [74] 

extend it with iteration-dependent targets/losses and 

sequential training, slashing memory by 98% for 3D 

fully unrolled nets (up to 100+ iterations), boosting 

generalization without leapfrogging artifacts. 

Physics-informed NNs (PINNs) advanced dynamic 

PET as Ferrante et al. [50] embed AIF shape priors in 

3D depth-wise CNNs for metabolite-corrected plasma 

input (Figure 3), yielding Pearson r=0.89 vs. invasive 

sampling, explainable via PDE residuals. Salomonsen 

et al. [75] apply PINN-CycleGAN for voxel-wise 

kinetics, predicting AIFs with parameter maps rivaling 

references, interpretable through cycle-consistency 

losses enforcing biophysics. 

Direct XAI applications target recon 

artifacts/interpretation: Champendal et al. [76] define 

user-centric XAI criteria for PET/CT denoising, dual-

level explanations (global confidence scores + case-

specific "what/when/how" visuals) preserve 
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workflows. Salimi et al. [77] use organ segmentation 

(lungs/liver) + random forest for respiratory 

misalignment detection (AUC=0.93), mimicking 

radiologist contour checks. Miller et al. [78] 

demonstrate explainable DL (heatmaps) boosting 

physician MPI accuracy (AUC 0.747 to 0.779) in 

SPECT/PET perfusion. Reviews like Apostolopoulos 

et al. [79] synthesize DL-SPECT cardiac recon, urging 

XAI (e.g., Grad-CAM) for denoising/attenuation. 

Future Directions 

XAI in PET/SPECT recon remains niche, with <5% 

of DL papers incorporating it, demanding dedicated 

modeling like SHAP/Grad-CAM on unrolled layers, 

adversarial XAI for hallucinations, and prospective 

trials. Hybrid OSEM+DL+XAI pipelines, multimodal 

fusion (e.g., PET/CT/MR), and real-time clinician 

dashboards will drive adoption, reducing artifacts 

while enhancing lesion detection. Collaborative 

benchmarks and FDA-guided validation are essential 

to transition from research to routine. 

5. Explainable AI in Quantitative Imaging 

and Corrections 

Attenuation and Scatter Correction 

Attenuation correction (AC) and scatter correction 

(SC) are cornerstone processes for achieving 

quantitative accuracy in PET and SPECT imaging, 

enabling reliable standardized uptake value (SUV) 

measurements critical for oncology tumor staging and 

neurology neurodegenerative assessments. While DL 

has proliferated for these tasks, exemplified by 

indirect μ-map generation from non-attenuated 

corrected (NAC) emission data or direct AC image 

prediction, the majority remain opaque black-box 

models [28, 80-82]. This opacity hampers clinical 

adoption, as clinicians cannot discern correction 

artifacts (e.g., overestimation in inferior walls from 

uncorrected diaphragmatic attenuation) or trust 

quantitative outputs in heterogeneous oncology 

lesions. XAI addresses this by providing interpretable 

heatmaps or relevance scores, yet XAI integration in 

PET/SPECT AC/SC remains niche, with only a few 

DL works incorporating techniques like Grad-CAM or 

SHAP. 

Pioneering XAI applications have emerged in 

synthetic CT (sCT) generation from MR images for 

PET/MR AC, where attention mechanisms guide 

bone/soft-tissue delineation to minimize SUV bias 

(<3%). Dovletov et al. [83] proposed a Grad-CAM-

guided U-Net, using class-specific activation maps to 

focus translation on bone/air regions, yielding 2-5 dB 

PSNR gains and 10% MAE reduction versus baseline 

 

Figure 3. Overview of the deep learning architecture for arterial input function (AIF) estimation in dynamic PET 

imaging. This schematic provides an illustrative overview of the proposed architecture's data flow, starting from the 

input layers and advancing through successive computational stages to the final estimation of whole blood and parent 

plasma input curves. Each block denotes a distinct computational unit or layer, engineered to capture key spatio-

temporal features from 4D PET datasets. These features are then channeled into the Physically-Informed Neural 

Network (PINN) module, which enforces domain-specific physical constraints alongside curve morphology priors. 

Reprinted from [50] under CC BY 4.0 copyright 
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U-Net on public RIRE datasets, ideal for radiation-free 

AC in brain oncology. Building thereon, Dovletov et 

al. [84] introduced double Grad-CAM (coarse + fine-

grained) for enhanced sCT in pelvis/head, improving 

SSIM by 0.05 and bone accuracy to 99%, preventing 

harmful dosimetry errors. Complementary works 

include Chen et al.'s [85] SHAP-like visualizations for 

cross-vendor SPECT μ-map synthesis from emissions 

(NMSE 5.1%) and Shi et al.'s [86] cGAN with 

interpretable outputs (nMAE 3.6%), extending XAI to 

CT-free SPECT. 

Low-Dose and Fast-Acquisition Imaging 

AI, particularly DL, has revolutionized image 

reconstruction in low-dose PET and SPECT imaging, 

enabling significant reductions in radiation exposure 

and acquisition times while preserving diagnostic 

quality [25, 87, 88]. In low-dose PET, CNNs, U-Net 

architectures, GANs, and more recently diffusion 

models have been extensively employed to denoise 

and reconstruct standard-dose-like images from low-

count sinograms or projections, outperforming 

traditional iterative methods like OSEM [89, 90]. 

Similarly, for fast-acquisition or sparse-view SPECT, 

where fewer projections reduce scan duration and 

patient motion artifacts, DL-based methods, including 

GANs and transformer variants, facilitate high-fidelity 

reconstructions from undersampled data [91, 92].  

Despite these advances, XAI remains 

underexplored in low-dose/fast PET and SPECT 

reconstruction. While physics-informed neural 

networks (PINNs) and uncertainty quantification 

(UQ) via Bayesian methods are emerging, dedicated 

XAI techniques (e.g., saliency maps, confidence 

scores) are scarce, with a few publications addressing 

interpretability in this niche. 

In this regard, Vlašić et al. [93] pioneered UQ in 

low-dose PET via deep posterior sampling, a 

cornerstone of XAI for trustworthiness. Their 

conditional GAN generator, built on residual-in-

residual dense blocks (RRDBs) with StyleGAN-

inspired per-pixel noise injection, conditions on 

MLEM-reconstructed L-PET (or very-low-dose vL-

PET) and T1-MRI to sample diverse standard-dose 

PET realizations. A physics-informed consistency loss 

(Radon transform alignment) ensures measurement 

fidelity, alongside diversity and first-moment 

penalties to prevent mode collapse. On simulated 

BrainWeb (L/vL-PET) and real ADNI data, it 

surpasses MLEM and suDNN in PSNR/SSIM (e.g., 

31.97 dB/0.9216 ADNI vL-PET) while yielding 

variance-based uncertainty maps that scale 

meaningfully with dose, higher in low-count regions 

for intuitive certainty visualization. 

Complementing this, a physics-informed approach 

proposed by Tang et al. [94], which introduces a 

collaborative paradigm for joint low-dose PET/CT 

reconstruction. From non-attenuation-corrected low-

dose PET (NAC-LPET) and low-dose CT (LCT), their 

 

Figure 4. Standard-dose PET (S-PET) reconstructions alongside physically meaningful pixel-wise uncertainty 

quantification (UQ) maps, generated from low-dose PET (L-PET) and MRI inputs using deep posterior sampling 

(reproduced from Vlašić et al., [93] under CC-BY 4.0) 
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coarse-to-fine network reconstructs attenuation-

corrected standard-dose PET (AC-SD-PET) and 

standard-dose CT (SCT). Key innovations include 

modality-specific Mamba-powered Expert Networks 

(hybrid U-shaped with tri-oriented Mamba layers for 

long-range 3D dependencies in whole-body scans) 

fused via Domain Adapters, and a novel Physics-

informed Mutual Loss enforcing PET-CT domain 

consistency through mutual information 

minimization. Evaluated on 251 TCIA NSCLC whole-

body cases, it achieves state-of-the-art PSNR (36.44 

dB PET/37.19 dB CT) and SSIM (96.73%/97.32%), 

outperforming 3D U-Net, cGAN, DDPM, AIGAN, 

and MVAE, with ablations confirming each 

component's value. This enhances explainability by 

embedding physical priors transparently. 

In summary, XAI in low-dose/fast PET/SPECT 

remains a niche frontier, demanding advanced 

algorithm development to integrate hybrid physics-DL 

models, scalable UQ, and clinician-centric 

visualizations for widespread adoption. 

Artifact Reduction and Partial Volume Correction 

AI has significantly advanced partial volume 

correction (PVC) in PET and SPECT imaging, 

addressing the limitations of traditional methods that 

often rely on anatomical priors or simplified models. 

Deep learning approaches have been employed to 

jointly perform denoising and PVC, enabling more 

accurate quantification of tracer uptake in small 

structures like tumors or brain regions [95-97]. For 

instance, attention-based neural networks have been 

developed to predict PVC-corrected images directly 

from non-corrected PET data, bypassing the need for 

co-registered anatomical images and improving 

recovery coefficients in low-dose scenarios. Similarly, 

iterative deep learning frameworks incorporate spatial 

resolution modeling to restore activity in partial 

volume-affected areas, demonstrating superior 

performance over classical techniques like the Yang 

method in clinical datasets [98].  

In artifact correction, AI algorithms excel at 

detecting and mitigating issues such as halo artifacts, 

metal-induced distortions, and truncation errors in 

hybrid PET/CT or PET/MRI scans [65, 99]. 

Supervised learning models, trained on large datasets 

of artifact-contaminated images, can automatically 

identify and correct these anomalies in real-time, 

enhancing image quality and diagnostic reliability.  

For post-reconstruction corrections, particularly 

motion correction, AI has introduced robust solutions 

to compensate for patient movement, which can 

severely degrade image resolution and quantification 

in dynamic PET/SPECT studies [100]. Deep learning-

based methods utilize fast reconstructions as inputs to 

estimate and correct head or respiratory motion, 

achieving sub-millimeter accuracy in brain imaging 

without external hardware [101]. In whole-body 

applications, unified frameworks integrate motion 

estimation with reconstruction pipelines, leveraging 

optical surface information or k-space data to phase-

sort and correct respiratory artifacts in SPECT, 

thereby improving lesion detectability in pulmonary 

regions [102]. Clinical evaluations of these 

techniques, such as unsupervised respiratory motion 

correction (uRMC), have demonstrated enhanced 

image sharpness and reduced blurring in real-world 

settings, with potential extensions to cardiac and 

oncologic imaging [103]. Overall, AI facilitates end-

to-end post-processing workflows that combine 

motion correction with attenuation and scatter 

adjustments, significantly outperforming traditional 

gated or rigid registration methods in terms of speed 

and efficacy [100, 104]. 

Despite these advancements in AI for PVC, artifact 

correction, and motion correction in PET/SPECT, the 

integration of XAI remains underexplored, presenting 

key research opportunities. Incorporating XAI could 

provide certainty maps or feature attribution 

visualizations to elucidate model decisions, fostering 

clinical trust and enabling validation in high-stakes 

diagnostic scenarios where transparency is crucial for 

regulatory approval and error mitigation. 

6. Explainable AI in Post-Reconstruction 

Processing and Analysis 

Image Segmentation 

Despite the extensive application of DL methods in 

PET and SPECT segmentation tasks, such as tumor 

delineation and organ contouring, research integrating 

XAI remains remarkably limited. DL has 

revolutionized nuclear medicine imaging by enabling 

automated, high-precision segmentation that 
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outperforms traditional threshold-based or atlas-based 

approaches, particularly in handling noisy, low-

resolution data inherent to these modalities [105-111]. 

Seminal works in DL for PET/SPECT segmentation 

include the adaptation of U-Net architectures for 

tumor segmentation in PET/CT scans, wherein these 

studies highlight DL's efficacy in tasks like lesion 

detection and quantitative analysis but often treat 

models as black boxes, underscoring the need for XAI 

to enhance clinical trust and error debugging.  

Three key review articles provide broader context 

on XAI in medical imaging, with varying relevance to 

PET and SPECT imaging : Champendal et al. [112] 

conducted a scoping review mapping XAI methods 

across modalities like MRI, CT, and radiography, 

identifying visual (e.g., saliency maps) and numerical 

outputs as dominant for tasks including segmentation, 

while noting terminology inconsistencies between 

"explainable" and "interpretable"; Salih et al. [113] 

focused on XAI for cardiac imaging, discussing 

techniques like Grad-CAM and SHAP for interpreting 

DL models in CMR and echocardiography 

segmentation, emphasizing the trade-off between 

performance and interpretability; and Usmani et al. 

[114] reviewed DL-based segmentation of 68Ga-

PSMA PET for prostate cancer tumor volume 

assessment, highlighting AI's role in radiotherapy 

planning but touching on XAI via visualization 

methods like Grad-CAM to explain model focus on 

metastatic regions, though primarily emphasizing 

automation over full explainability. One notable 

original work incorporating XAI in segmentation, 

albeit for mammograms rather than PET/SPECT, is 

Farrag et al. [115] which proposed a double-dilated 

CNN to preserve local resolution during tumor 

segmentation, addressing kernel sparsity issues in 

dilated convolutions; the model achieved high Dice 

similarity (0.92) and low miss detection rates, with 

explainability enhanced through Grad-CAM 

visualizations to interpret feature importance, 

demonstrating how XAI can mitigate class imbalance 

and improve trust in pixel-level predictions. In PET-

CT tumor segmentation, Yang et al. [116] introduced 

a multi-scale interpretability module (MSIM) 

integrated with CNNs, improving Dice scores by 1.6-

2.36% on datasets for melanoma, lymphoma, and lung 

cancer. The MSIM provided feature importance maps, 

explaining how multi-scale features contribute to 

boundary detection in noisy PET images. 

This scarcity of XAI-specific studies in 

PET/SPECT segmentation presents a significant 

research opportunity, as accurate segmentation is 

critical for dosimetry, therapy planning, and 

quantitative biomarker extraction in nuclear medicine, 

where XAI could offer benefits like improved model 

transparency, clinician adoption, error traceability, 

and regulatory compliance, ultimately advancing 

personalized patient care. 

Image Interpretation 

In nuclear medicine, PET and SPECT imaging are 

pivotal for diagnosing, classifying, and detecting 

diseases such as cancer, cardiovascular disorders, and 

neurological conditions by providing functional and 

metabolic insights. However, traditional interpretation 

of these modalities is often subjective, time-

consuming, and prone to inter-observer variability, 

which can lead to diagnostic errors or delayed 

treatment. The integration of AI, particularly deep 

learning models like CNNs and transformers, has 

revolutionized automated analysis by achieving high 

accuracy in tasks such as tumor segmentation, lymph 

node metastasis prediction, and myocardial perfusion 

classification [17, 117]. Despite these advances, the 

"black-box" nature of AI models poses significant 

barriers to clinical adoption, as clinicians require 

transparency to trust predictions for critical decision-

making in diagnosis, staging, and therapy planning. In 

PET and SPECT, where image noise, low resolution, 

and multimodal fusion (e.g., PET-CT) add 

complexity, XAI is essential for explaining how 

models discern pathological patterns from normal 

tissue, ultimately improving diagnostic precision and 

patient outcomes [118, 119]. 

Recent review articles underscore the growing role 

of XAI in PET and SPECT. Toumaj et al. [118] 

highlight how XAI techniques like SHAP and Grad-

CAM are applied to cancer detection systems, 

including those using PET/SPECT data, to make 

black-box models transparent. They categorize XAI 

methods by cancer type (e.g., breast, lung, brain) and 

emphasize post-hoc interpretability tools for DL 

models in diagnosis and classification. Similarly, 

Mohamed et al. [119] in their systematic review 

discuss XAI's application in cancer diagnosis and 

prognosis, noting its use in PET/SPECT for 

multimodal fusion and tumor detection, with tools like 

LIME and SHAP improving interpretability in clinical 
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workflows. Yang et al. [117] review AI in SPECT 

imaging, pointing out opportunities for XAI in disease 

detection (e.g., CAD in MPI) and challenges like 

model opacity, advocating for explainable 

frameworks to ensure trustworthy classification. 

These reviews collectively stress that XAI not only 

boosts accuracy but also bridges the gap between AI 

predictions and clinical understanding in nuclear 

medicine. 

Several original studies demonstrate XAI's practical 

utility in PET/SPECT-based automated tasks. 

Papandrianos et al. [39] proposed an explainable CNN 

with Grad-CAM for classifying SPECT myocardial 

perfusion images as infarction, ischemia, or normal, 

achieving 93.3% accuracy. Grad-CAM visualizations 

highlighted stress/rest regions critical for CAD 

diagnosis, enabling clinicians to validate model focus 

on perfusion defects. Jiang et al. [120] developed an 

explainable transformer fusing PET images and 

tabular data for follicular lymphoma grading and 

prognosis, with SHAP revealing 81-89% contribution 

from PET features in predicting high-grade tumors 

(AUC 0.936-0.971). For NSCLC lymph node 

metastasis detection, Duan et al. [121] combined 

clinical, radiomics, and DL features in an XGBoost 

model (AUC 0.853), using SHAP to identify key 

PET/CT texture features like 

glrlm_LongRunHighGrayLevelEmphasis for 

interpretability. Luo et al. [122] used SHAP in an 

interpretable ML model for lung cancer OS prognosis 

post-radiotherapy, integrating PET/CT radiomics and 

clinical parameters (C-index 0.76), showing nonlinear 

interactions for better classification. 

Despite these advancements, gaps persist in XAI 

applications for PET/SPECT automated diagnosis and 

classification. The field remains nascent, with limited 

studies focusing on SPECT compared to PET, and 

most algorithms relying on post-hoc methods that may 

not fully capture intrinsic model reasoning. Future 

work should prioritize inherently explainable models 

and larger, multimodal datasets to enhance 

generalizability and clinical integration. 

7. Explainable AI in Radiotherapy  

XAI has emerged as a vital component in radiation 

therapy (RT), addressing the opacity of traditional AI 

models that hinders clinical trust and adoption. By 

providing transparency into model decision-making, 

XAI enhances accountability, enables error detection, 

and facilitates clinician-AI collaboration, ultimately 

 

Figure 5. Overview of the explainable deep learning pipeline for classifying SPECT myocardial perfusion images 

(MPI) as infarction, ischemia, or normal in coronary artery disease (CAD) diagnosis. This diagram illustrates a seven-

step methodological framework integrating a handcrafted RGB-CNN model with Grad-CAM for interpretable 

predictions (reproduced from Papandrianos et al. [39] under CC-BY 4.0) 
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improving patient safety and treatment outcomes. 

Recent reviews highlight the integration of XAI 

techniques across RT workflows, from dose prediction 

to outcome forecasting, balancing predictive accuracy 

with interpretability. 

Recent studies emphasize XAI's role in overcoming 

the "black-box" nature of AI in RT prediction, relying 

on methods like saliency maps, attention mechanisms, 

SHAP (SHapley Additive exPlanations), and LIME 

(Local Interpretable Model-agnostic Explanations) for 

clarifying dose distributions and treatment plans. They 

discuss post-hoc explainability for deep learning 

models, showing how these techniques identify key 

anatomical features influencing predictions, and 

highlight gaps such as limited large-scale validation 

and the trade-off between accuracy and interpretability 

[123]. Similarly, Cui et al. [124] categorize XAI 

approaches into pre-model (e.g., data explanation via 

PCA or t-SNE for dimensionality reduction), during-

model (inherently interpretable methods like decision 

trees), and post-model (e.g., gradient-based like Grad-

CAM or game theory-based like SHAP), with 

applications in RT segmentation, prognosis, and 

planning (Figure 6). They note that interpretability 

builds safeguards against bias and supports regulatory 

compliance, citing examples where Grad-CAM 

revealed dose thresholds critical for toxicity 

prediction. Yang [125], in a dissertation focused on 

medical imaging, develops XAI models for RT, 

including radiomic filtering to visualize lung 

ventilation features from CT, neural ordinary 

differential equations (ODEs) for glioma 

segmentation to explain multi-parametric MRI data 

utilization, and multi-feature-combined models for 

NSCLC local failure prediction, demonstrating 

enhanced explainability without sacrificing 

performance. 

Moreover, Luo et al. [126] balance accuracy and 

interpretability in RT outcome modeling using logistic 

regression and decision trees, showing that transparent 

models like these can predict toxicity with clinician-

comprehensible features. To enhance interpretability 

in deep learning models for radiation treatment 

outcomes, gradient-weighted class activation mapping 

(Grad-CAM) offers a powerful post-hoc explanation 

technique, as exemplified in Figure 7. This figure 

illustrates Grad-CAM's application to a CNN trained 

on CT images for lung cancer prognostication, where 

the model predicts patient survival. The visualization 

breaks down the process across columns: the first 

shows the original central axial slice (150 × 150 mm) 

with tumor contours; the second zooms into a 50 × 50 

 

Figure 6. Taxonomy of interpretable and explainable machine learning (ML) and deep learning (DL) techniques in 

radiology and radiation oncology. This diagram categorizes approaches into three phases: (1) Explaining data (pre-

model), emphasizing dimensionality reduction like Principal Component Analysis (PCA, linear projection 

maximizing variance), t-distributed Stochastic Neighbor Embedding (t-SNE, nonlinear for local similarities), and 

Uniform Manifold Approximation and Projection (UMAP, balancing local/global structures for tasks like tumor 

subpopulation identification); (2) Inherent interpretable models (during-model), transparent by design, such as linear 

regression (predicting continuous outcomes linearly), decision trees (recursive partitioning for rule-based insights, 

e.g., PET thresholds), and naive Bayes (probabilistic classification assuming independence); (3) Post-training 

methods (post-model), elucidating black-box models via ablation (feature removal, e.g., influence functions), 

gradient-based (Grad-CAM for saliency maps, e.g., CT tumor interfaces), and game theory-based (SHAP for 

attribution, e.g., surgical predictions). Leaf nodes show examples; not exhaustive, it aids trust and bias mitigation in 

segmentation, diagnosis, planning, and prognosis (reproduced from Cui et al. [124] under CC-BY 4.0) 
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mm tumor-centered patch; the third overlays 

activation contours (blue indicating low influence, red 

high); and the fourth presents heatmaps for intuitive 

reference. By highlighting critical radiographic 

features, such as tumor-stroma interfaces that drive 

survival stratification, Grad-CAM reveals the model's 

focus areas, bridging the gap between predictive 

accuracy and clinical understanding, thus mitigating 

the "black box" issue in radiation oncology 

applications like toxicity prediction and personalized 

adaptive radiotherapy. 

Hosny et al. [127] apply Grad-CAM to deep 

learning for lung cancer prognosis, visualizing tumor-

stroma interactions on CT as key predictors of 

survival, highlighting post-hoc methods' value in 

prognosis. Cui et al. [128] integrate multiomics in 

deep architectures for NSCLC actuarial outcomes, 

using Grad-CAM to explain how inflammation 

cytokines and PET radiomics influence radiation 

pneumonitis predictions, demonstrating XAI in multi-

modal data fusion. Zhang et al. [129] use 

reinforcement learning for interpretable pancreas 

SBRT planning, where a human-in-the-loop bot 

generates explainable strategies like constraint 

adjustments, aiding planning transparency. Lafata et 

al. [130] employ radiomics for SBRT recurrence 

prediction, with feature visualization explaining 

texture-based risk stratification. Ji et al. [131] 

incorporate biological guidance in deep learning for 

post-RT PET outcome prediction, using ODEs to 

explain image dynamics and modality contributions, 

enhancing data utilization insights. Wang et al. [132] 

develop dose-distribution-driven models for 

oropharyngeal cancer, with XAI revealing key pre-

treatment CT features for failure prediction, 

supporting clinical decision-making. 

These studies underscore XAI's potential to bridge 

AI innovation and RT practice, though challenges like 

computational cost, standardization, and causal 

inference remain. Future efforts should prioritize 

domain-specific XAI, multi-institutional validation, 

and hybrid models to foster broader clinical 

integration. 

8. Discussion 

The advent of XAI in nuclear imaging represents a 

paradigm shift from conventional "black-box" deep 

learning models, offering substantial promise in 

enhancing clinical reliability, regulatory compliance, 

and interdisciplinary collaboration. Unlike opaque 

conventional AI systems that excel in tasks such as 

PET/SPECT lesion detection, image reconstruction, 

and dosimetry but obscure decision pathways, XAI 

frameworks demystify these processes, fostering trust 

among clinicians and physicists by aligning outputs 

with interpretable, physics-grounded rationales. This 

transparency mitigates risks like untraceable artifacts 

in low-dose acquisitions or biased predictions in 

multimodal fusions (e.g., PET/CT), potentially 

reducing false positives/negatives by 10-20% in 

oncology diagnostics and improving therapeutic 

outcomes in radionuclide therapy. Moreover, XAI's 

benefits extend to bias detection and model 

debugging, enabling iterative refinements that surpass 

conventional models' limitations in reproducibility 

 

Figure 7. Illustration of gradient-weighted activation 

mapping in a convolutional CNN for lung cancer 

prognostication using CT images. The first column 

shows the central axial slice of the network input (150 × 

150 mm) with tumor annotations; the second column 

displays a cropped 50 × 50 mm patch around the tumor; 

the third column overlays activation contours (blue for 

lowest gradients, red for highest); and the fourth column 

provides activation heatmaps for visual reference, 

highlighting regions most influencing predictions like 

tumor-stroma interfaces. This technique enhances 

interpretability by revealing key radiographic features 

contributing to survival stratification(reproduced from 

Luo et al. [126] under CC-BY 4.0) 
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and ethical deployment, ultimately accelerating AI 

integration into routine nuclear medicine workflows 

while adhering to FDA guidelines for AI/ML-enabled 

devices. 

Available XAI models deliver explanations in 

diverse formats tailored to nuclear imaging's 

volumetric and noisy data, providing clinicians with 

actionable insights into model decisions. For instance, 

gradient-based methods like Grad-CAM generate 

visual saliency maps, heatmaps overlaid on 

PET/SPECT images highlighting influential regions, 

such as metabolic hotspots or perfusion defects, 

allowing intuitive verification of lesion attributions 

[37, 39]. Perturbation-based techniques, including 

LIME, approximate local decision boundaries via 

interpretable surrogate models, outputting feature 

weights or textual rules (e.g., "high SUVmax in striatal 

region contributes 0.45 to Parkinson's classification") 

that elucidate instance-specific contributions in high-

dimensional radiomics [35, 45]. SHAP, rooted in 

game theory, provides additive feature attributions as 

numerical scores or plots (e.g., force plots showing 

positive/negative impacts of voxel intensities), 

offering both local and global insights into multimodal 

synergies, such as SUVmax from PET and texture 

metrics from CT [36, 47]. Uncertainty quantification 

methods, like Bayesian dropout, yield probabilistic 

maps or confidence intervals, visualizing voxel-wise 

reliability in scatter-prone SPECT reconstructions 

[93]. These explanations add varying computational 

overheads: Grad-CAM is efficient, incurring minimal 

post-training costs (e.g., <1 second per image on 

standard GPUs due to single backward passes) [38]; 

LIME and SHAP are more resource-intensive, with 

SHAP's exact computation scaling exponentially 

(O(2M) for M features) but approximations like 

KernelSHAP reducing it to O(N*M) for N 

perturbations, often adding 10-100x inference time 

(e.g., minutes per instance in volumetric PET) [5, 22]; 

overall, XAI overheads range from negligible 

(intrinsic attention mechanisms) to 5-50% increased 

training time and 2-10x inference latency in nuclear 

medicine applications, though optimizations like 

FastSHAP mitigate this for clinical scalability [7, 60]. 

Limitations and Challenges 

Despite the promising advancements in XAI for 

nuclear imaging, a significant limitation lies in the 

constrained scale of current research, often restricted 

to small cohorts of patients and limited datasets, which 

hampers the generalizability and robustness of these 

models. Studies in PET/SPECT applications 

frequently rely on datasets with fewer than 500 

patients, as seen in various XAI implementations for 

lesion segmentation or dosimetry, leading to potential 

biased explanations that fail to capture diverse clinical 

scenarios such as varying patient demographics [5, 

22]. This scarcity is exacerbated by challenges in data 

sharing due to privacy regulations resulting in models 

that underperform in real-world, heterogeneous 

environments [133, 134]. XAI's true advantages, such 

as enhanced uncertainty quantification and feature 

attribution in multimodal imaging, are poised to 

manifest more profoundly on very large datasets, 

potentially exceeding thousands of cases, enabling 

better detection of subtle biases, improved model 

fidelity, and scalable clinical translation, as evidenced 

by calls for federated learning frameworks to 

aggregate diverse nuclear medicine data without 

compromising privacy [7, 135]. 

Another critical challenge is determining the 

clinical value of XAI explanations, which often 

manifest as technical representations like saliency 

maps or SHAP values that primarily aid algorithm 

developers in debugging and understanding model 

internals, rather than delivering actionable insights 

desirable in clinical settings. While these tools provide 

voxel-wise attributions or uncertainty maps in 

PET/SPECT workflows, their complexity can 

overwhelm clinicians, leading to questions about 

whether they truly enhance diagnostic confidence or 

treatment planning, or merely serve as "fancy" 

visualizations without proven impact on patient 

outcomes [1, 6]. For instance, in nuclear oncology, 

explanations might highlight metabolic features but 

fail to align with radiologists' intuitive reasoning, 

risking misinterpretation and reduced adoption [136, 

137]. Bridging this gap requires interdisciplinary 

efforts to tailor XAI outputs to clinical needs, such as 

user-centric dashboards integrating explanations with 

evidence-based guidelines, while addressing ethical 

concerns like accountability in errors, ultimately 

ensuring that XAI fosters trust and utility beyond 

technical novelty [138]. 

Future Directions 

To fully realize the potential of XAI in nuclear 

imaging, future developments could transcend current 
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limitations by advancing beyond simplistic 

visualization techniques, such as heatmaps (e.g., 

saliency or attention maps) and ranked feature 

contributions from radiomics models, which often 

provide limited insights into underlying mechanisms. 

Instead, XAI should emphasize capturing complex, 

relational structures within images to better elucidate 

how local and global features interact and contribute 

to predictive tasks. One promising avenue is the 

adoption of explainable graph-based models, such as 

graph neural networks (GNNs) integrated with 

knowledge graphs (KGs), which model images as 

interconnected nodes representing regions of interest 

(e.g., voxels or anatomical segments in PET/SPECT 

scans). These models can explicitly capture spatial 

dependencies, hierarchical relationships, and 

multimodal interactions, such as linking metabolic 

hotspots in PET with structural features in CT, while 

providing interpretable edge weights or node 

attributions that reveal causal pathways in tasks like 

lesion detection or disease progression prediction. For 

instance, KG-enhanced XAI systems have been shown 

to integrate domain knowledge (e.g., physiological 

priors in nuclear medicine) with deep learning outputs, 

enabling post-hoc explanations that map local features 

(e.g., voxel intensity) to global patterns (e.g., tumor 

heterogeneity), thereby improving fidelity and 

robustness in medical image analysis [139, 140]. This 

approach not only addresses the high-dimensional, 

noisy nature of nuclear imaging data but also supports 

tasks like bias detection in multimodal fusions, where 

traditional methods fall short. Empirical studies in 

related domains, such as brain MRI segmentation, 

demonstrate that graph-based XAI outperforms 

saliency methods in explaining model decisions by 

quantifying relational influences, with potential 

extensions to PET/SPECT for enhanced 

reproducibility in dynamic studies [141]. 

Furthermore, XAI outcomes could evolve to deliver 

tangible clinical meaning and application, extending 

beyond technical utilities like bias detection, risk 

assessment, or uncertainty quantification to directly 

inform patient care and decision-making. This 

requires clinician-defined explanations, where XAI 

frameworks are co-designed with healthcare 

professionals to ensure outputs align with clinical 

workflows, such as providing interpretable risk scores 

tied to evidence-based guidelines or visualizations that 

highlight actionable insights (e.g., predicting 

therapeutic response in radionuclide therapy with 

explanations referencing SUV thresholds or kinetic 

parameters). Recent clinician-informed evaluations 

emphasize that such tailored explanations, e.g., feature 

importance scores contextualized by clinical 

relevance, increase trust and adoption, as they enable 

radiologists to validate predictions against domain 

expertise while mitigating over-reliance on opaque 

models [136, 142]. For example, studies in cardiac 

imaging show that XAI with clinician-preferred 

formats (e.g., concise, patient-specific narratives) not 

only detects biases in datasets but also enhances 

diagnostic accuracy by 5-15%, fostering hybrid 

human-AI collaboration [143]. In nuclear medicine, 

this could translate to XAI tools that flag low-

confidence regions in low-dose PET reconstructions 

with clinically interpretable alerts (e.g., "potential 

artifact due to scatter, recommend rescan"), thereby 

reducing errors and supporting personalized 

theranostics. Interdisciplinary efforts, including 

clinician-led checklists for XAI evaluation, are crucial 

to validate these enhancements through prospective 

trials, ensuring explanations provide measurable 

clinical value like improved lesion detectability or 

reduced inter-observer variability [144]. 

9. Conclusion 

The rapid integration of XAI into nuclear medicine, 

particularly in PET/SPECT imaging and radiation 

therapy, marks a significant advancement toward 

transparent, trustworthy AI-driven diagnostics and 

treatments, mitigating the limitations of black-box 

models and enhancing clinician-model collaboration. 

By providing interpretable outputs such as saliency 

maps, feature attributions, and uncertainty 

quantifications, XAI not only aligns with regulatory 

standards but also addresses domain-specific 

challenges like noise, artifacts, and multimodal data 

fusion, potentially improving patient outcomes 

through more accurate lesion detection, dosimetry, 

and personalized theranostics. However, as research 

trends increasingly favor XAI adoption, the true 

measure of success lies not in technical sophistication 

alone but in demonstrating tangible clinical value, 

ensuring explanations are intuitive, actionable, and 

directly contribute to enhanced diagnostic confidence, 

reduced errors, and better therapeutic decisions. 

Future efforts must prioritize large-scale, multi-
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institutional studies with clinician-centric evaluations 

to validate XAI's impact on real-world workflows, 

while tackling scalability issues and ethical 

considerations for broader adoption. Ultimately, 

shifting focus from mere explainability to clinically 

relevant insights will bridge the gap between AI 

innovation and practical utility in nuclear imaging, 

fostering a more reliable and equitable healthcare 

ecosystem. 
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