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Abstract

The integration of Artificial Intelligence (Al) into nuclear medicine has transformed diagnostic and therapeutic
processes, yet the opaque nature of many Al models hinders clinical adoption and trust. This narrative review
aims to synthesize the current landscape of explainable Al (XAI) in nuclear medicine, emphasizing its role in
enhancing transparency, bias mitigation, and regulatory compliance for robust clinical integration. Key chapters
cover the fundamentals of XAl in nuclear medicine; XAl applications in PET and SPECT instrumentation and
acquisition; image reconstruction; quantitative imaging and corrections; post-reconstruction processing and
analysis; and radiotherapy. The review concludes with a discussion of challenges, limitations, and future
directions, advocating for interdisciplinary advancements to bridge Al innovation with practical utility in patient
care.
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1. Introduction

The integration of Artificial Intelligence (Al) into
nuclear medicine has revolutionized diagnostic and
therapeutic workflows, particularly in Positron
Emission Tomography (PET) and single-photon
emission computed tomography (SPECT) imaging, as
well as radionuclide therapy [1, 2]. While foundational
Al concepts trace back to the 1950s, the surge in Deep
Learning (DL) methodologies since the 2010s has
propelled applications in multimodal imaging,
enabling automated processes that surpass traditional
human-dependent tasks such as lesion detection,
image reconstruction, and quantitative analysis [2]. In
nuclear medicine, DL excels at managing high-
dimensional datasets from hybrid systems (e.g.,
PET/CT or SPECT/MR), mitigating noise, optimizing
radiation doses, and enhancing temporal resolution in
dynamic studies, all while adapting to patient-specific
variability and reducing inter-observer bias [3, 4].

Despite these advancements, the opaque "black-
box" nature of many DL models, wherein decision
pathways remain opaque, poses critical barriers in
clinical settings, where transparency is paramount for
regulatory compliance (e.g., FDA guidelines),
clinician adoption, and ethical patient care [5].
Explainable Al (XAI) emerges as a pivotal solution,
rendering model outputs interpretable through
techniques such as feature attribution (e.g., SHapley
Additive exPlanations [SHAP] or Local Interpretable
Model-agnostic Explanations [LIME]), uncertainty
quantification (e.g., Bayesian approaches or Monte
Carlo dropout), saliency maps, and physics-informed
architectures that incorporate domain-specific priors
like tracer kinetics or photon transport models [6, 7].
In PET and SPECT, XAI facilitates trustworthy
applications across the imaging pipeline: from
instrumentation  enhancements  (e.g., timing
calibration and motion correction) to reconstruction
algorithms that provide pixel-wise uncertainty maps,
quantitative corrections for attenuation and scatter,
post-reconstruction  segmentation  with  visual
attributions, and dosimetry in radionuclide therapy
(e.g., voxel-level dose predictions for ['7’Lu]-based
treatments) [8, 9]. For instance, XAl can attribute
predictions to physiologically relevant features, such
as metabolic hotspots in oncology or kinetic
parameters in neurology, thereby fostering clinician-
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model collaboration and improving outcomes in
theranostics [10-12].

A standard
encompasses examination planning, acquisition,
interpretation, and reporting, with Al augmenting each
phase, either by automating routine tasks to alleviate

nuclear medicine  workflow

workload or by achieving superhuman precision in
detecting subtle pathologies like micrometastases or
predicting therapeutic responses [13]. Recent
innovations, including inter-modality translation (e.g.,
MRI-to-CT for attenuation maps) and low-dose
enhancements, underscore Al's transformative
potential, yet highlight the imperative for XAI to
ensure reproducibility, bias mitigation, and alignment
with physical principles [14-20].

This narrative review synthesizes the evolving
landscape of XAl in nuclear medicine, with a primary
emphasis on PET/SPECT imaging and radionuclide
therapy. Drawing from recent literature, we delineate
foundational principles, key applications, inherent
challenges, and prospective directions to guide
interdisciplinary efforts toward robust, transparent Al
integration in clinical practice.

2. Fundamentals of Explainable Al in
Nuclear Medicine

In nuclear medicine, where high-stakes decisions
rely on interpreting complex, noisy datasets from PET,
SPECT, and radiation therapy, the "black-box"
opacity of traditional DL models poses significant
hurdles [5, 21, 22]. Opaque Al systems, such as
Convolutional Neural Networks (CNNs) trained on
volumetric PET/SPECT images, excel at tasks like
lesion detection, image reconstruction, and dosimetry
but obscure internal decision pathways, leading to
challenges in clinical validation, regulatory approval
(e.g., under FDA's AI/ML-enabled medical device
guidelines), and bias detection [5, 21, 23, 24]. For
instance, DL models may inadvertently amplify
artifacts from photon noise, scatter, or attenuation in
low-count PET acquisitions, resulting in non-
reproducible predictions without traceable reasoning
[25-30]. In contrast, XAl frameworks demystify these
processes by providing interpretable outputs, such as
feature attributions or uncertainty maps, that align
with domain-specific physics (e.g., tracer kinetics or
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Monte Carlo-based photon transport simulations) [5,
21].

XAI methods are broadly categorized into post-hoc
(applied after model training, e.g., model-agnostic
perturbations) and ad-hoc (intrinsically built-in, e.g.,
attention layers), with adaptations for nuclear
medicine's unique data characteristics: high-
dimensional 3D/4D volumes, inherent Poisson noise,
and multimodal fusion (e.g., PET/CT or SPECT/MR)
[5, 21, 23]. These enable clinicians to verify model
focus on physiologically relevant features, like
metabolic hotspots in oncology or perfusion deficits in
cardiology, fostering trust and integration into
workflows [5, 21, 31].

Core Principles of XAI

XAI principles derive from cognitive science and
game  theory,  distinguishing interpretability
(inherently transparent models, e.g., decision trees)
from explainability (post-hoc rationales for black-
boxes). Core taxonomy classifies by: (A) Scope: local
(per-instance) vs. global (model-level); (B) Timing:
ante-hoc (pre-training), intrinsic/ad-hoc (design-
embedded), post-hoc (after); (C) Granularity: signal-
level (voxels) to concept-level (e.g., "hotspot").

Key desiderata (properties for trustworthy XAI): (1)
Fidelity (matches model); (2) Stability (consistent
inputs); (3) Plausibility (human-aligned); (4)
Robustness (adversarial-resistant); (5) Simulatability
(mental replay). In nuclear medicine, prioritize
stability to combat scan noise (e.g., via robustness to
Gaussian perturbations) and plausibility to ensure
physics alignment (e.g., explanations mirroring signal
decay models), fostering clinician trust. Evaluation
blends quantitative (AOPC (Area Over Perturbation
Curve) for sufficiency via ranked voxel perturbations;
Infidelity for faithfulness via physics-like noise) and

Table 1. Classification of XAI Methods

qualitative (clinician surveys for plausibility) (Table
1) [32-34].

Post-hoc XAI techniques, dominant in nuclear
medicine due to their flexibility with pre-trained DL
models, generate explanations by analyzing model
outputs retrospectively, often through gradient
propagation or perturbations tailored to handle nuclear
medicine's noisy, volumetric data [5, 21, 23, 35, 36].
Gradient-based methods, such as saliency maps and
Gradient-weighted Class Activation Mapping (Grad-
CAM), compute voxel-wise importance by back-
propagating gradients from the output layer to
highlight influential regions in PET/SPECT images
[23, 37, 38]. For example, Gradient-based methods
like Grad-CAM improve interpretability in noisy
environments, such as myocardial perfusion SPECT
where low-dose acquisitions can introduce streak
artifacts due to reduced photon counts; variants like
Grad-CAM-++ further enhance spatial resolution by
incorporating pixel-wise weighting for multiple object
instances, potentially suppressing non-relevant
artifacts  [23, 38-40]. Relevance
Propagation (LRP) and Deep Learning Important
FeaTures (DeepLIFT) extend this by conserving

Layer-wise

relevance scores across layers, addressing gradient
saturation in deep networks, LRP, for instance, has
been adapted for dopamine transporter SPECT in
Parkinson's disease classification, visualizing striatal
uptake patterns in 3D volumes by propagating
relevance voxel-by-voxel, revealing model reliance on
binding ratios amid noise [41-43]. Perturbation-based
approaches like Local Interpretable Model-agnostic
Explanations (LIME) approximate local decision
boundaries by fitting interpretable surrogates (e.g.,
linear models) to perturbed super-voxels, grouping
similar pixels to manage nuclear medicine's high
dimensionality; LIME's efficiency shines in

Nuclear medicine

Scope Timing Method Category Core Principle Adaptation/Evaluation
Local/Global Pﬁ)osz_ Gradient (Grad-CAM)  Backprop sensitivities Voxel heatmaps; AOPC

Local Pﬁ)osz_ Perturbation (LIME) Surrogate fitting Super-voxels; Stability

Post- Game-theoretic . o L .

Local/Global hoc (SHAP) Marginal contributions Radiomics; Infidelity
Local/Global Intrinsic Attention Dynamic weighting 3D kinetics; Plausibility

Global Intrinsic PINNSs Physws-lc(:)(grslstralned Uncertainty maps; Fidelity
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volumetric imaging, where random perturbations
quantify contributions from noisy regions, as
demonstrated in CT for COVID-19 classification via
occlusion-based explanations of lung opacities, and in
SPECT for neurological disease detection, with
analogous potential for extension to PET tumor
segmentation by perturbing metabolic features to
assess boundary impacts [5, 35, 44, 45].

SHapley Additive exPlanations (SHAP), a game-
theoretic post-hoc method, provides robust, additive
feature attributions by computing average marginal
contributions across coalitions, offering both local
(instance-specific) and global (model-wide) insights
particularly suited for nuclear medicine's correlated
radiomic features [46]. In PET/CT radiomics for lung
cancer nodal staging, SHAP ranks features like
SUVmax (from PET) and texture metrics (e.g., Gray
Level Co-occurrence Matrix correlation from CT),
revealing contributions to metastasis prediction due to
tumor heterogeneity; this disentangles multimodal
synergies in noisy fusions, with SHAP outperforming
LIME in stability for high-dimensional data.
DeepSHAP, an approximation for deep learning, has
been applied to mapping multivariate relationships in
amyloid PET for Alzheimer's cognition prediction,
attributing regions to deposition patterns while
handling variability via reference baselines (e.g.,
healthy scans), though sensitive to anatomical
differences [47, 48].

Ad-hoc XAI methods embed interpretability during
model design, yielding intrinsically transparent
architectures better resilient to NM's challenges, such
as volumetric deformations and low signal-to-noise
ratios in SPECT. Attention mechanisms, integrated
via Transformer layers or self-attention modules,
dynamically weight relevant features, producing
attention maps that visualize information flow, in
SPECT for Parkinson's, attention-based DenseNet
models focus on basal ganglia regions (including
nigrostriatal pathways), suppressing noise from
surrounding  tissues by
normalized scores across patches, adaptable to 3D
volumes through multi-head attention for capturing

computing  softmax-

long-range dependencies in DaTSCAN tracer uptake.
Capsule networks, which encode hierarchical entity
representations via vector outputs and dynamic
routing, provide equivariant explanations robust to
rotations in volumetric data; though less common in
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NM, they mirror adaptations from CT nodule
detection, where capsules disentangle pose-invariant
features in noisy lung images, with potential
extensions to SPECT for dosimetry planning. Physics-
informed neural networks (PINNSs) further tailor ad-
hoc XAl by constraining losses with nuclear medicine
priors (e.g., radiative transfer equations analogous to
Boltzmann transport for scatter correction), generating
uncertainty-quantified outputs like Bayesian dropout
maps for voxel-level dose predictions in radiotherapy,
contrasting opaque models by enforcing physical
plausibility. For example, attention-augmented
models in multimodal PET/MRI for Alzheimer's
localize atrophy-metabolism mismatches, with rollout
visualizations tracing layer-wise contributions amid
noise [49-51].

Figure 1 highlights the fundamental explainability-
performance trade-off in Al systems: as models
prioritize superior accuracy (e.g., via complex deep
learning or ensemble techniques), their decision-
making processes become increasingly opaque
("black-box"). Conversely, transparent models like
decision trees or SVMs sacrifice some performance
for inherent interpretability. In medical imaging
contexts, such as nuclear medicine diagnostics, this
tension underscores the value of XAl strategies (e.g.,
post-hoc attributions like Grad-CAM or SHAP) to
"unlock" high-performing deep models, enabling
clinicians to trust and validate predictions without
compromising efficacy.

Despite these foundational principles, XAl in
nuclear medicine  confronts  domain-specific
challenges: scalability for 4D dynamic studies (e.g.,
SHAP coalitions scale, demanding approximations
like FastSHAP); fidelity in low-count regimes
(Poisson noise erodes attribution stability); and bias in
multimodality (e.g., PET/CT misalignments propagate
via uncalibrated gradients). Future directions pivot to
hybrid physics-XAI frameworks: physics-informed
SHAP (PINNs constraining losses with Boltzmann
transport, yielding uncertainty-aware attributions for
['”Lu]-dosimetry); perturbation hybrids (masking
voxels akin to ADNI multimodal drops for global
fidelity benchmarks); and real-time intrinsics
(quantized attentions for edge-deployed SPECT,
aligning with FDA's AI/ML SaMD guidelines). These
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Figure 1. Trade-off curve illustrating the inverse relationship between model explainability (x-axis) and learning
performance (y-axis) in machine learning paradigms. Highly interpretable models, such as simpler statistical approaches,
cluster toward greater explainability but lower predictive accuracy. In contrast, high-performance architectures like deep
neural networks and ensemble methods exhibit reduced transparency. Key categories include: Statistical Models [SVMs:
Support Vector Machines; AOGs: And-Or Graphs]; Graphical Models [Bayesian Belief Nets; SRL: Statistical Relational
Learning; CRFs: Conditional Random Fields; MLNs: Markov Logic Networks; Markov Models]; Neural Nets
[encompassing Deep Learning]; and Ensemble Methods [Random Forest; Decision Tree]. Reprinted from [52] under CC

BY 4.0 copyright

promise trustworthy, physics-plausible nuclear

medicine Al, bridging principles to practice [5].

3. Explainable Al in PET and SPECT
Instrumentation and Acquisition

In PET and SPECT systems, the foundational
processes of photon detection, signal processing, and
data acquisition directly dictate image quality,
quantitative accuracy, and clinical utility. These
modalities rely on scintillation crystals (e.g.,
LYSO:Ce for PET, Nal(Tl) for SPECT) coupled to
photosensors like silicon photomultipliers (SiPMs),
where raw waveforms encode critical information on
energy, position, and timing amid high noise, pile-up
events, and physical imperfections such as Depth-Of-
Interaction (DOI) variations or collimator septal
penetration. Conventional Al, particularly DL models
like CNNs, has revolutionized low-level tasks,
yielding 20-40% gains in timing precision, positioning
accuracy, and calibration stability, but often operates
as "black boxes," obscuring decision rationales in
noisy, physics-constrained environments. This opacity
risks propagating untraceable errors, especially in
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low-light yields (~10-30 photons/keV) or high-
activity scenarios, complicating validation against
physical principles and regulatory scrutiny (e.g.,
FDA's Al/ML-based SaMD framework (proposed
regulatory framework for modifications to artificial
intelligence/machine learning-based software as a
medical device)). XAl provides transparency and
enables physicists to dissect Al contributions, confirm
physics compliance, and optimize
hardware/acquisition.

iteratively

The integration of XAI into PET and SPECT
instrumentation represents an emerging frontier in
nuclear medicine, where transparency is paramount
for validating Al decisions against fundamental
physical principles. Unlike the mature application of
XAI in downstream tasks such as lesion detection,
image reconstruction, and diagnostic classification
(covered in the following sections), where methods
like SHAP and Grad-CAM
attributions in reconstructed

elucidate lesion

images, low-level
instrumentation processes (e.g., raw photon detection,
signal processing, and hardware calibration) remain
underexplored. Here, Al excels in handling noisy
scintillator waveforms from silicon photomultipliers
(SiPMs), achieving 20-40% improvements in timing
resolution, event positioning, and depth-of-interaction
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(DOI) decoding, but black-box models risk
untraceable errors in low-photon-yield (~10-30
photons/event) or high-pileup environments. XAl
bridges this by dissecting feature contributions (e.g.,
waveform rise time vs. decay tail), ensuring physics
compliance, and enabling iterative hardware design.
Seminal works are scarce, focusing primarily on PET
time-of-flight (TOF) estimation, while XAI
applications are accompanied by recommendations for
wider use [53-60].

efforts demonstrate XAl's
transformative potential in TOF-PET timing.
Naunheim et al. [54] introduced a gradient-boosted
decision tree (GBDT) model augmented with residual
physics constraints, modeling nonlinear timewalk as
At phys = f(energy, position), to process raw
LYSO:SiPM waveforms (Figure 2). The objective was
to surpass conventional constant-fraction
discriminators amid Poisson noise and variable photon

Pioneering

statistics, targeting sub-200 ps Coincidence Time
Resolution (CTR) for clinical total-body PET.
Achieved a 21% CTR gain (235 ps to 185 ps) in 19-
mm slab detectors using list-mode data. XAl via
SHAP provided global/local attributions: 81%
importance to measured At and photon count,
revealing learned higher-order corrections without
opacity; tree visualizations traced paths to physical
priors. This intrinsic/post-hoc hybrid validated model

fidelity against Monte Carlo simulations (GATE),
paving the way for scanner-agnostic deployment.

Complementing this, Petersen et al. [61] developed
a DL framework for event positioning and inter-
crystal scatter rejection in light-sharing, depth-
encoding PET detectors (e.g., Prism-PET modules).
The objective was to mitigate parallax errors (~5-10
mm) and scatter-induced blurring by decoding DOI
and interaction coordinates from multiplexed SiPM
signals, improving spatial resolution by 15-25% over
Anger logic. While DL excelled, the authors explicitly
highlighted XAlI's future necessity for clinician trust,
noting post-hoc tools (e.g., integrated gradients) could
map decisions to scatter paths (Klein-Nishina
compliant). No XAI was implemented, underscoring
the niche's nascency.

Despite these pioneering efforts, significant gaps in
XAI application to PET and SPECT instrumentation
highlight ripe opportunities for innovation. In SPECT,
where collimator septal penetration and Compton
scatter distort ~10-20% of events, no XAl frameworks
yet interpret gamma event localization in ML models,
DenseNets could leverage Grad-CAM heatmaps to
visualize penetration paths aligned with Klein-Nishina
physics, guiding collimator refinements. Similarly,
deep learning excels in DOI decoding for light-
sharing/monolithic setups, yet lacks XAI to unpack
multi-layer waveform attributions amid variable light

DA
L_ﬁQ_J
. Coincidence Unit ﬂ
Detector 1 ‘ Shifted radiation source ‘ Detector 2
2] t,
N Zs
/ L
E[{t; — t,}]
{t1 —t2} 0 ps At

Figure 2. This schematic depicts the labeling procedure for generating annotated datasets in supervised learning. The
radiation source (red cube) is methodically repositioned at discrete locations $ z s $ along the central z-axis of the
coordinate system. These shifts produce distinct y-photon travel times $t 1 $ and $t 2 $ to paired detectors. The expected
time difference $ \mathbb{E[t 1 - t 2] § is computed as the precise ground-truth label for each configuration. This
physics-driven method yields scalable, noise-aware labels, empowering models to infer source positions from real-time
time-of-flight data. Reprinted from [54] under CC BY 4.0 copyright
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yields. Event positioning via CNNs achieves sub-mm
precision in monolithic crystals, but SHAP could
dissect edge blurring from scatter, while SiPM gain
drifts await interpretable recalibration tracing
thermal/aging effects for scanner longevity. Hardware
optimization via physics-informed NNs (PINNs)
models can lead to promising development in PET and
SPECT instrumentation.

As total-body PET and SPECT systems continue to
push the boundaries of sensitivity (e.g., >100x gains
in human explorers like PennPET and EXPLORER)
and spatial/temporal resolution (sub-200 ps CTR, mm-
scale DOI), embedding XAl directly into
instrumentation, via lightweight, real-time methods
like SHAP-on-FPGA or intrinsic GBDTs, will
cultivate inherently trustworthy Al by demystifying
decisions at the photon level, from waveform parsing
to adaptive acquisition. This transparency empowers
physicists and engineers with actionable insights, such
as feature heatmaps linking SiPM drifts to CTR
degradation or Grad-CAM overlays revealing septal
penetration artifacts, thereby fueling rapid iterative
design cycles [62, 63].

4. Explainable Al in Image
Reconstruction

PET and SPECT image reconstruction has
traditionally relied on analytical methods like filtered
backprojection (FBP) and iterative algorithms such as
ordered subset expectation maximization (OSEM).
While effective, these approaches suffer from
limitations including noise amplification, reduced
contrast recovery, and sensitivity to artifacts from
attenuation, scatter, or motion. Al, particularly DL,
has revolutionized this field by framing reconstruction
as an image-to-image translation task [64-68]. DL
models, including CNNs, GANs, and unrolled
iterative networks, enable superior resolution, contrast
enhancement, noise suppression, and artifact
correction, often outperforming conventional methods
by 10-20% in quantitative metrics like normalized

root-mean-square error (NRMSE) [69].

Hybrid and physics-informed approaches dominate
recent advances: unrolled networks (e.g., unfolding
OSEM/MAP-EM into recurrent layers) embed
forward models for data fidelity, while post-hoc DL
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(e.g., U-Net denoising) refines outputs. In PET, kernel
priors support list-mode, motion-corrected, and
parametric imaging [70-72]. Clinically approved tools
now integrate multimodal data, promising routine
deployment. However, challenges like training data
scarcity and hallucination risks remain.

The Imperative for Explainable AI (XAI) in
Reconstruction

XAl addresses the "black-box" critique of DL recon
by providing interpretable insights into model
decisions, fostering clinician trust and regulatory
approval. In PET/SPECT, where artifacts mimic
lesions or obscure uptake, XAI overlays (e.g.,
attention maps, SHAP values) elucidate how networks
reduce noise, correct misalignments, or recover
lesions, critical for reducing false positives/negatives
and improving detectability. User-centric XAl aligns
with workflows, enabling rapid validation and hybrid
human-Al decisions.

In this regard, pioneering physics-informed
unrolled networks exemplify interpretable recon.
Mehranian and Reader's FBSEM-Net unrolls forward-
backward splitting
replacing priors with learnable CNN residuals while
fixing physics operators (e.g., system matrix),
inherently traceable via iteration blocks mirroring
OSEM [73]. This hybrid outperforms
OSEM/MAPEM (NRMSE ~14% vs. 21%) in low-
dose PET/MR brain data. Corda-D’Incan et al. [74]
extend it with iteration-dependent targets/losses and

expectation-maximization,

sequential training, slashing memory by 98% for 3D
fully unrolled nets (up to 100+ iterations), boosting
generalization without leapfrogging artifacts.

Physics-informed NNs (PINNs) advanced dynamic
PET as Ferrante et al. [50] embed AIF shape priors in
3D depth-wise CNNs for metabolite-corrected plasma
input (Figure 3), yielding Pearson r=0.89 vs. invasive
sampling, explainable via PDE residuals. Salomonsen
et al. [75] apply PINN-CycleGAN for voxel-wise
kinetics, predicting AIFs with parameter maps rivaling
references, interpretable through cycle-consistency
losses enforcing biophysics.

Direct XAl  applications  target
artifacts/interpretation: Champendal ef al. [76] define

recon

user-centric XAl criteria for PET/CT denoising, dual-
level explanations (global confidence scores + case-
specific ~ "what/when/how"  visuals)  preserve
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workflows. Salimi et al. [77] use organ segmentation
(lungs/liver) + random forest for respiratory
misalignment detection (AUC=0.93), mimicking
radiologist contour checks. Miller et al. [78]
demonstrate explainable DL (heatmaps) boosting
physician MPI accuracy (AUC 0.747 to 0.779) in
SPECT/PET perfusion. Reviews like Apostolopoulos
et al. [79] synthesize DL-SPECT cardiac recon, urging
XAl (e.g., Grad-CAM) for denoising/attenuation.

Future Directions

XAIin PET/SPECT recon remains niche, with <5%
of DL papers incorporating it, demanding dedicated
modeling like SHAP/Grad-CAM on unrolled layers,
adversarial XAl for hallucinations, and prospective
trials. Hybrid OSEM+DL+XAI pipelines, multimodal
fusion (e.g., PET/CT/MR), and real-time clinician
dashboards will drive adoption, reducing artifacts
while enhancing lesion detection. Collaborative
benchmarks and FDA-guided validation are essential
to transition from research to routine.

5. Explainable Al in Quantitative Imaging
and Corrections

Attenuation and Scatter Correction

SpatioTemporal

Encoder

Attenuation correction (AC) and scatter correction
(SC) are cornerstone processes for achieving
quantitative accuracy in PET and SPECT imaging,
enabling reliable standardized uptake value (SUV)
measurements critical for oncology tumor staging and
neurology neurodegenerative assessments. While DL
has proliferated for these tasks, exemplified by
indirect p-map generation from non-attenuated
corrected (NAC) emission data or direct AC image
prediction, the majority remain opaque black-box
models [28, 80-82]. This opacity hampers clinical
adoption, as clinicians cannot discern correction
artifacts (e.g., overestimation in inferior walls from
uncorrected diaphragmatic attenuation) or trust
quantitative outputs in heterogeneous oncology
lesions. XAl addresses this by providing interpretable
heatmaps or relevance scores, yet XAl integration in
PET/SPECT AC/SC remains niche, with only a few
DL works incorporating techniques like Grad-CAM or
SHAP.

Pioneering XAI applications have emerged in
synthetic CT (sCT) generation from MR images for
PET/MR AC, where attention mechanisms guide
bone/soft-tissue delineation to minimize SUV bias
(<3%). Dovletov et al. [83] proposed a Grad-CAM-
guided U-Net, using class-specific activation maps to
focus translation on bone/air regions, yielding 2-5 dB
PSNR gains and 10% MAE reduction versus baseline
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Figure 3. Overview of the deep learning architecture for arterial input function (AIF) estimation in dynamic PET
imaging. This schematic provides an illustrative overview of the proposed architecture's data flow, starting from the
input layers and advancing through successive computational stages to the final estimation of whole blood and parent
plasma input curves. Each block denotes a distinct computational unit or layer, engineered to capture key spatio-
temporal features from 4D PET datasets. These features are then channeled into the Physically-Informed Neural
Network (PINN) module, which enforces domain-specific physical constraints alongside curve morphology priors.

Reprinted from [50] under CC BY 4.0 copyright
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U-Net on public RIRE datasets, ideal for radiation-free
AC in brain oncology. Building thereon, Dovletov et
al. [84] introduced double Grad-CAM (coarse + fine-
grained) for enhanced sCT in pelvis/head, improving
SSIM by 0.05 and bone accuracy to 99%, preventing
harmful dosimetry errors. Complementary works
include Chen et al.'s [85] SHAP-like visualizations for
cross-vendor SPECT p-map synthesis from emissions
(NMSE 5.1%) and Shi et al's [86] ¢cGAN with
interpretable outputs (nMAE 3.6%), extending XAl to
CT-free SPECT.

Low-Dose and Fast-Acquisition Imaging

Al, particularly DL, has revolutionized image
reconstruction in low-dose PET and SPECT imaging,
enabling significant reductions in radiation exposure
and acquisition times while preserving diagnostic
quality [25, 87, 88]. In low-dose PET, CNNs, U-Net
architectures, GANs, and more recently diffusion
models have been extensively employed to denoise
and reconstruct standard-dose-like images from low-
count sinograms or projections, outperforming
traditional iterative methods like OSEM [89, 90].
Similarly, for fast-acquisition or sparse-view SPECT,
where fewer projections reduce scan duration and
patient motion artifacts, DL-based methods, including
GANSs and transformer variants, facilitate high-fidelity
reconstructions from undersampled data [91, 92].

Despite  these  advances, XAl  remains
underexplored in low-dose/fast PET and SPECT

(a) MRI

(b) L-PET

(¢) GT

reconstruction. While physics-informed neural
networks (PINNs) and uncertainty quantification
(UQ) via Bayesian methods are emerging, dedicated
XAI techniques (e.g., saliency maps, confidence
scores) are scarce, with a few publications addressing
interpretability in this niche.

In this regard, Vlasi¢ et al. [93] pioneered UQ in
low-dose PET via deep posterior sampling, a
cornerstone of XAI for trustworthiness. Their
conditional GAN generator, built on residual-in-
residual dense blocks (RRDBs) with StyleGAN-
inspired per-pixel noise injection, conditions on
MLEM-reconstructed L-PET (or very-low-dose vL-
PET) and T1-MRI to sample diverse standard-dose
PET realizations. A physics-informed consistency loss
(Radon transform alignment) ensures measurement
fidelity, alongside and first-moment
penalties to prevent mode collapse. On simulated
BrainWeb (L/VL-PET) and real ADNI data, it
surpasses MLEM and suDNN in PSNR/SSIM (e.g.,
31.97 dB/0.9216 ADNI vL-PET) while yielding
variance-based uncertainty maps that scale
meaningfully with dose, higher in low-count regions
for intuitive certainty visualization.

diversity

Complementing this, a physics-informed approach
proposed by Tang et al. [94], which introduces a
collaborative paradigm for joint low-dose PET/CT
reconstruction. From non-attenuation-corrected low-
dose PET (NAC-LPET) and low-dose CT (LCT), their

0.006

0.003

0.000

(d) Ours (e) UQ Ours

Figure 4. Standard-dose PET (S-PET) reconstructions alongside physically meaningful pixel-wise uncertainty
quantification (UQ) maps, generated from low-dose PET (L-PET) and MRI inputs using deep posterior sampling

(reproduced from Vlasi¢ et al., [93] under CC-BY 4.0)
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coarse-to-fine network reconstructs attenuation-
corrected standard-dose PET (AC-SD-PET) and
standard-dose CT (SCT). Key innovations include
modality-specific Mamba-powered Expert Networks
(hybrid U-shaped with tri-oriented Mamba layers for
long-range 3D dependencies in whole-body scans)
fused via Domain Adapters, and a novel Physics-
informed Mutual Loss enforcing PET-CT domain
consistency through mutual information
minimization. Evaluated on 251 TCIA NSCLC whole-
body cases, it achieves state-of-the-art PSNR (36.44
dB PET/37.19 dB CT) and SSIM (96.73%/97.32%),
outperforming 3D U-Net, cGAN, DDPM, AIGAN,
and MVAE, with ablations confirming each
component's value. This enhances explainability by
embedding physical priors transparently.

In summary, XAI in low-dose/fast PET/SPECT
remains a niche frontier, demanding advanced
algorithm development to integrate hybrid physics-DL
models, scalable UQ, and clinician-centric
visualizations for widespread adoption.

Artifact Reduction and Partial Volume Correction

Al has significantly advanced partial volume
correction (PVC) in PET and SPECT imaging,
addressing the limitations of traditional methods that
often rely on anatomical priors or simplified models.
Deep learning approaches have been employed to
jointly perform denoising and PVC, enabling more
accurate quantification of tracer uptake in small
structures like tumors or brain regions [95-97]. For
instance, attention-based neural networks have been
developed to predict PVC-corrected images directly
from non-corrected PET data, bypassing the need for
co-registered anatomical images and improving
recovery coefficients in low-dose scenarios. Similarly,
iterative deep learning frameworks incorporate spatial
resolution modeling to restore activity in partial
volume-affected areas, demonstrating superior
performance over classical techniques like the Yang

method in clinical datasets [98].

In artifact correction, Al algorithms excel at
detecting and mitigating issues such as halo artifacts,
metal-induced distortions, and truncation errors in
hybrid PET/CT or PET/MRI scans [65, 99].
Supervised learning models, trained on large datasets
of artifact-contaminated images, can automatically

FBT, Vol. 13, No. 1 (Winter 2026) 232-254

identify and correct these anomalies in real-time,
enhancing image quality and diagnostic reliability.

For post-reconstruction corrections, particularly
motion correction, Al has introduced robust solutions
to compensate for patient movement, which can
severely degrade image resolution and quantification
in dynamic PET/SPECT studies [100]. Deep learning-
based methods utilize fast reconstructions as inputs to
estimate and correct head or respiratory motion,
achieving sub-millimeter accuracy in brain imaging
without external hardware [101]. In whole-body
applications, unified frameworks integrate motion
estimation with reconstruction pipelines, leveraging
optical surface information or k-space data to phase-
sort and correct respiratory artifacts in SPECT,
thereby improving lesion detectability in pulmonary
regions [102]. Clinical evaluations of these
techniques, such as unsupervised respiratory motion
correction (URMC), have demonstrated enhanced
image sharpness and reduced blurring in real-world
settings, with potential extensions to cardiac and
oncologic imaging [103]. Overall, Al facilitates end-
to-end post-processing workflows that combine
motion correction with attenuation and scatter
adjustments, significantly outperforming traditional
gated or rigid registration methods in terms of speed
and efficacy [100, 104].

Despite these advancements in Al for PVC, artifact
correction, and motion correction in PET/SPECT, the
integration of XAl remains underexplored, presenting
key research opportunities. Incorporating XAl could
provide certainty maps or feature attribution
visualizations to elucidate model decisions, fostering
clinical trust and enabling validation in high-stakes
diagnostic scenarios where transparency is crucial for
regulatory approval and error mitigation.

6. Explainable Al in Post-Reconstruction
Processing and Analysis

Image Segmentation

Despite the extensive application of DL methods in
PET and SPECT segmentation tasks, such as tumor
delineation and organ contouring, research integrating
XAl remains remarkably limited. DL has
revolutionized nuclear medicine imaging by enabling
automated,  high-precision  segmentation  that
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outperforms traditional threshold-based or atlas-based
approaches, particularly in handling noisy, low-
resolution data inherent to these modalities [105-111].
Seminal works in DL for PET/SPECT segmentation
include the adaptation of U-Net architectures for
tumor segmentation in PET/CT scans, wherein these
studies highlight DL's efficacy in tasks like lesion
detection and quantitative analysis but often treat
models as black boxes, underscoring the need for XAl
to enhance clinical trust and error debugging.

Three key review articles provide broader context
on XAl in medical imaging, with varying relevance to
PET and SPECT imaging : Champendal et al. [112]
conducted a scoping review mapping XAI methods
across modalities like MRI, CT, and radiography,
identifying visual (e.g., saliency maps) and numerical
outputs as dominant for tasks including segmentation,
while noting terminology inconsistencies between
"explainable" and "interpretable"; Salih et al. [113]
focused on XAI for cardiac imaging, discussing
techniques like Grad-CAM and SHAP for interpreting
DL models in CMR and echocardiography
segmentation, emphasizing the trade-off between
performance and interpretability; and Usmani et al.
[114] reviewed DL-based segmentation of %Ga-
PSMA PET for prostate cancer tumor volume
assessment, highlighting Al's role in radiotherapy
planning but touching on XAI via visualization
methods like Grad-CAM to explain model focus on
metastatic regions, though primarily emphasizing
automation over full explainability. One notable
original work incorporating XAl in segmentation,
albeit for mammograms rather than PET/SPECT, is
Farrag et al. [115] which proposed a double-dilated
CNN to preserve local resolution during tumor
segmentation, addressing kernel sparsity issues in
dilated convolutions; the model achieved high Dice
similarity (0.92) and low miss detection rates, with
through  Grad-CAM

feature importance,

enhanced
interpret

explainability
visualizations to
demonstrating how XAI can mitigate class imbalance
and improve trust in pixel-level predictions. In PET-
CT tumor segmentation, Yang et al. [116] introduced
a multi-scale interpretability module (MSIM)
integrated with CNNs, improving Dice scores by 1.6-
2.36% on datasets for melanoma, lymphoma, and lung
cancer. The MSIM provided feature importance maps,
explaining how multi-scale features contribute to
boundary detection in noisy PET images.
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This scarcity of XAl-specific studies in
PET/SPECT segmentation presents a significant
research opportunity, as accurate segmentation is
critical for dosimetry, therapy planning, and
quantitative biomarker extraction in nuclear medicine,
where XAl could offer benefits like improved model
transparency, clinician adoption, error traceability,
and regulatory compliance, ultimately advancing
personalized patient care.

Image Interpretation

In nuclear medicine, PET and SPECT imaging are
pivotal for diagnosing, classifying, and detecting
diseases such as cancer, cardiovascular disorders, and
neurological conditions by providing functional and
metabolic insights. However, traditional interpretation
of these modalities is often subjective, time-
consuming, and prone to inter-observer variability,
which can lead to diagnostic errors or delayed
treatment. The integration of Al, particularly deep
learning models like CNNs and transformers, has
revolutionized automated analysis by achieving high
accuracy in tasks such as tumor segmentation, lymph
node metastasis prediction, and myocardial perfusion
classification [17, 117]. Despite these advances, the
"black-box" nature of Al models poses significant
barriers to clinical adoption, as clinicians require
transparency to trust predictions for critical decision-
making in diagnosis, staging, and therapy planning. In
PET and SPECT, where image noise, low resolution,
and multimodal fusion (e.g., PET-CT) add
complexity, XAl is essential for explaining how
models discern pathological patterns from normal
tissue, ultimately improving diagnostic precision and
patient outcomes [118, 119].

Recent review articles underscore the growing role
of XAl in PET and SPECT. Toumaj et al. [118]
highlight how XAI techniques like SHAP and Grad-
CAM are applied to cancer detection systems,
including those using PET/SPECT data, to make
black-box models transparent. They categorize XAl
methods by cancer type (e.g., breast, lung, brain) and
emphasize post-hoc interpretability tools for DL
models in diagnosis and classification. Similarly,
Mohamed et al. [119] in their systematic review
discuss XAl's application in cancer diagnosis and
prognosis, noting its use in PET/SPECT for
multimodal fusion and tumor detection, with tools like
LIME and SHAP improving interpretability in clinical
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workflows. Yang et al. [117] review Al in SPECT
imaging, pointing out opportunities for XAl in disease
detection (e.g., CAD in MPI) and challenges like
model opacity, advocating for explainable
frameworks to ensure trustworthy classification.
These reviews collectively stress that XAI not only
boosts accuracy but also bridges the gap between Al
predictions and clinical understanding in nuclear
medicine.

Several original studies demonstrate XAl's practical
utility in PET/SPECT-based automated tasks.
Papandrianos et al. [39] proposed an explainable CNN
with Grad-CAM for classifying SPECT myocardial
perfusion images as infarction, ischemia, or normal,
achieving 93.3% accuracy. Grad-CAM visualizations
highlighted stress/rest regions critical for CAD
diagnosis, enabling clinicians to validate model focus
on perfusion defects. Jiang et al. [120] developed an
explainable transformer fusing PET images and
tabular data for follicular lymphoma grading and
prognosis, with SHAP revealing 81-89% contribution
from PET features in predicting high-grade tumors
(AUC 0.936-0.971). For NSCLC lymph node
metastasis detection, Duan et al. [121] combined
clinical, radiomics, and DL features in an XGBoost
model (AUC 0.853), using SHAP to identify key
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interpretability. Luo et al. [122] used SHAP in an
interpretable ML model for lung cancer OS prognosis
post-radiotherapy, integrating PET/CT radiomics and
clinical parameters (C-index 0.76), showing nonlinear
interactions for better classification.

Despite these advancements, gaps persist in XAl
applications for PET/SPECT automated diagnosis and
classification. The field remains nascent, with limited
studies focusing on SPECT compared to PET, and
most algorithms relying on post-hoc methods that may
not fully capture intrinsic model reasoning. Future
work should prioritize inherently explainable models
and larger, multimodal datasets to enhance
generalizability and clinical integration.

7. Explainable Al in Radiotherapy

XAI has emerged as a vital component in radiation
therapy (RT), addressing the opacity of traditional Al
models that hinders clinical trust and adoption. By
providing transparency into model decision-making,
XAI enhances accountability, enables error detection,
and facilitates clinician-Al collaboration, ultimately

Training424 images 1
> Testing:94 images L“*i
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performance
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Results
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Figure 5. Overview of the explainable deep learning pipeline for classifying SPECT myocardial perfusion images
(MPI) as infarction, ischemia, or normal in coronary artery disease (CAD) diagnosis. This diagram illustrates a seven-
step methodological framework integrating a handcrafted RGB-CNN model with Grad-CAM for interpretable
predictions (reproduced from Papandrianos et al. [39] under CC-BY 4.0)
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Interpretable & Explainable ML
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PCA tSNE UMAP
Decision trees
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Inherent interpretable models Post-traininginterpretable methods

v

Ablation-based
Gradient-based
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Figure 6. Taxonomy of interpretable and explainable machine learning (ML) and deep learning (DL) techniques in
radiology and radiation oncology. This diagram categorizes approaches into three phases: (1) Explaining data (pre-
model), emphasizing dimensionality reduction like Principal Component Analysis (PCA, linear projection
maximizing variance), t-distributed Stochastic Neighbor Embedding (t-SNE, nonlinear for local similarities), and
Uniform Manifold Approximation and Projection (UMAP, balancing local/global structures for tasks like tumor
subpopulation identification); (2) Inherent interpretable models (during-model), transparent by design, such as linear
regression (predicting continuous outcomes linearly), decision trees (recursive partitioning for rule-based insights,
e.g., PET thresholds), and naive Bayes (probabilistic classification assuming independence); (3) Post-training
methods (post-model), elucidating black-box models via ablation (feature removal, e.g., influence functions),
gradient-based (Grad-CAM for saliency maps, e.g., CT tumor interfaces), and game theory-based (SHAP for
attribution, e.g., surgical predictions). Leaf nodes show examples; not exhaustive, it aids trust and bias mitigation in

segmentation, diagnosis, planning, and prognosis (reproduced from Cui ef al. [124] under CC-BY 4.0)

improving patient safety and treatment outcomes.
Recent reviews highlight the integration of XAl
techniques across RT workflows, from dose prediction
to outcome forecasting, balancing predictive accuracy
with interpretability.

Recent studies emphasize XAl's role in overcoming
the "black-box" nature of Al in RT prediction, relying
on methods like saliency maps, attention mechanisms,
SHAP (SHapley Additive exPlanations), and LIME
(Local Interpretable Model-agnostic Explanations) for
clarifying dose distributions and treatment plans. They
discuss post-hoc explainability for deep learning
models, showing how these techniques identify key
anatomical features influencing predictions, and
highlight gaps such as limited large-scale validation
and the trade-off between accuracy and interpretability
[123]. Similarly, Cui et al. [124] categorize XAl
approaches into pre-model (e.g., data explanation via
PCA or t-SNE for dimensionality reduction), during-
model (inherently interpretable methods like decision
trees), and post-model (e.g., gradient-based like Grad-
CAM or game theory-based like SHAP), with
applications in RT segmentation, prognosis, and
planning (Figure 6). They note that interpretability
builds safeguards against bias and supports regulatory
compliance, citing examples where Grad-CAM
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thresholds
prediction. Yang [125], in a dissertation focused on
medical imaging, develops XAI models for RT,

revealed dose critical for toxicity

including radiomic filtering to visualize lung
ventilation features from CT, neural ordinary
differential  equations (ODEs) for glioma

segmentation to explain multi-parametric MRI data
utilization, and multi-feature-combined models for

NSCLC local failure prediction, demonstrating
enhanced  explainability =~ without  sacrificing
performance.

Moreover, Luo et al. [126] balance accuracy and
interpretability in RT outcome modeling using logistic
regression and decision trees, showing that transparent
models like these can predict toxicity with clinician-
comprehensible features. To enhance interpretability
in deep learning models for radiation treatment
outcomes, gradient-weighted class activation mapping
(Grad-CAM) offers a powerful post-hoc explanation
technique, as exemplified in Figure 7. This figure
illustrates Grad-CAM's application to a CNN trained
on CT images for lung cancer prognostication, where
the model predicts patient survival. The visualization
breaks down the process across columns: the first
shows the original central axial slice (150 x 150 mm)
with tumor contours; the second zooms into a 50 x 50
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INPUT IMAGE WITH ANNOTATIONS

ACTIVATION HEATMAPS

Figure 7. Illustration of gradient-weighted activation
mapping in a convolutional CNN for lung cancer
prognostication using CT images. The first column
shows the central axial slice of the network input (150 x
150 mm) with tumor annotations; the second column
displays a cropped 50 x 50 mm patch around the tumor;
the third column overlays activation contours (blue for
lowest gradients, red for highest); and the fourth column
provides activation heatmaps for visual reference,
highlighting regions most influencing predictions like
tumor-stroma interfaces. This technique enhances
interpretability by revealing key radiographic features
contributing to survival stratification(reproduced from
Luo et al. [126] under CC-BY 4.0)

mm tumor-centered patch; the third overlays

activation contours (blue indicating low influence, red
high); and the fourth presents heatmaps for intuitive
reference. By highlighting critical radiographic
features, such as tumor-stroma interfaces that drive
survival stratification, Grad-CAM reveals the model's
focus areas, bridging the gap between predictive
accuracy and clinical understanding, thus mitigating
the "black box" radiation oncology
applications like toxicity prediction and personalized
adaptive radiotherapy.

issue in

Hosny et al. [127] apply Grad-CAM to deep
learning for lung cancer prognosis, visualizing tumor-
stroma interactions on CT as key predictors of
survival, highlighting post-hoc methods' value in
prognosis. Cui et al. [128] integrate multiomics in
deep architectures for NSCLC actuarial outcomes,
using Grad-CAM to explain how inflammation
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cytokines and PET radiomics influence radiation
pneumonitis predictions, demonstrating XAl in multi-
modal data fusion. Zhang et al. [129] use
reinforcement learning for interpretable pancreas
SBRT planning, where a human-in-the-loop bot
generates  explainable strategies like constraint
adjustments, aiding planning transparency. Lafata et
al. [130] employ radiomics for SBRT recurrence
prediction, with feature visualization explaining
texture-based risk stratification. Ji et al [131]
incorporate biological guidance in deep learning for
post-RT PET outcome prediction, using ODEs to
explain image dynamics and modality contributions,
enhancing data utilization insights. Wang ef al. [132]
develop  dose-distribution-driven = models  for
oropharyngeal cancer, with XAl revealing key pre-
treatment CT features for failure
supporting clinical decision-making.

prediction,

These studies underscore XAl's potential to bridge
Al innovation and RT practice, though challenges like
computational cost, standardization, and causal
inference remain. Future efforts should prioritize
domain-specific XAl multi-institutional validation,
and hybrid models to foster broader -clinical
integration.

8. Discussion

The advent of XAl in nuclear imaging represents a
paradigm shift from conventional "black-box" deep
learning models, offering substantial promise in
enhancing clinical reliability, regulatory compliance,
and interdisciplinary collaboration. Unlike opaque
conventional Al systems that excel in tasks such as
PET/SPECT lesion detection, image reconstruction,
and dosimetry but obscure decision pathways, XAl
frameworks demystify these processes, fostering trust
among clinicians and physicists by aligning outputs
with interpretable, physics-grounded rationales. This
transparency mitigates risks like untraceable artifacts
in low-dose acquisitions or biased predictions in
multimodal fusions (e.g., PET/CT), potentially
reducing false positives/negatives by 10-20% in
oncology diagnostics and improving therapeutic
outcomes in radionuclide therapy. Moreover, XAl's
benefits extend to bias detection and model
debugging, enabling iterative refinements that surpass
conventional models' limitations in reproducibility
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and ethical deployment, ultimately accelerating Al
integration into routine nuclear medicine workflows
while adhering to FDA guidelines for Al/ML-enabled
devices.

Available XAI models deliver explanations in
diverse formats tailored to nuclear imaging's
volumetric and noisy data, providing clinicians with
actionable insights into model decisions. For instance,
gradient-based methods like Grad-CAM generate
saliency maps, heatmaps overlaid on
PET/SPECT images highlighting influential regions,
such as metabolic hotspots or perfusion defects,
allowing intuitive verification of lesion attributions
[37, 39]. Perturbation-based techniques, including
LIME, approximate local decision boundaries via
interpretable surrogate models, outputting feature
weights or textual rules (e.g., "high SUVmax in striatal
region contributes 0.45 to Parkinson's classification")
that elucidate instance-specific contributions in high-
dimensional radiomics [35, 45]. SHAP, rooted in
game theory, provides additive feature attributions as
numerical scores or plots (e.g., force plots showing
positive/negative impacts intensities),
offering both local and global insights into multimodal

visual

of voxel

synergies, such as SUVm from PET and texture
metrics from CT [36, 47]. Uncertainty quantification
methods, like Bayesian dropout, yield probabilistic
maps or confidence intervals, visualizing voxel-wise
reliability in scatter-prone SPECT reconstructions
[93]. These explanations add varying computational
overheads: Grad-CAM is efficient, incurring minimal
post-training costs (e.g., <l second per image on
standard GPUs due to single backward passes) [38];
LIME and SHAP are more resource-intensive, with
SHAP's exact computation scaling exponentially
(O(2M) for M features) but approximations like
KernelSHAP reducing it to ON*M) for N
perturbations, often adding 10-100x inference time
(e.g., minutes per instance in volumetric PET) [5, 22];
overall, XAI overheads range from negligible
(intrinsic attention mechanisms) to 5-50% increased
training time and 2-10x inference latency in nuclear
medicine applications, though optimizations like
FastSHAP mitigate this for clinical scalability [7, 60].

Limitations and Challenges

Despite the promising advancements in XAl for
nuclear imaging, a significant limitation lies in the
constrained scale of current research, often restricted
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to small cohorts of patients and limited datasets, which
hampers the generalizability and robustness of these
models. Studies in PET/SPECT applications
frequently rely on datasets with fewer than 500
patients, as seen in various XAl implementations for
lesion segmentation or dosimetry, leading to potential
biased explanations that fail to capture diverse clinical
scenarios such as varying patient demographics [5,
22]. This scarcity is exacerbated by challenges in data
sharing due to privacy regulations resulting in models
that underperform in real-world, heterogeneous
environments [133, 134]. XAl's true advantages, such
as enhanced uncertainty quantification and feature
attribution in multimodal imaging, are poised to
manifest more profoundly on very large datasets,
potentially exceeding thousands of cases, enabling
better detection of subtle biases, improved model
fidelity, and scalable clinical translation, as evidenced
by calls for federated learning frameworks to
aggregate diverse nuclear medicine data without
compromising privacy [7, 135].

Another critical challenge is determining the
clinical value of XAI explanations, which often
manifest as technical representations like saliency
maps or SHAP values that primarily aid algorithm
developers in debugging and understanding model
internals, rather than delivering actionable insights
desirable in clinical settings. While these tools provide
voxel-wise attributions or uncertainty maps in
PET/SPECT workflows, their
overwhelm clinicians, leading to questions about

complexity can

whether they truly enhance diagnostic confidence or
treatment planning, or merely serve as "fancy"
visualizations without proven impact on patient
outcomes [1, 6]. For instance, in nuclear oncology,
explanations might highlight metabolic features but
fail to align with radiologists' intuitive reasoning,
risking misinterpretation and reduced adoption [136,
137]. Bridging this gap requires interdisciplinary
efforts to tailor XAl outputs to clinical needs, such as
user-centric dashboards integrating explanations with
evidence-based guidelines, while addressing ethical
concerns like accountability in errors, ultimately
ensuring that XAI fosters trust and utility beyond
technical novelty [138].

Future Directions

To fully realize the potential of XAl in nuclear
imaging, future developments could transcend current
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limitations by advancing beyond simplistic
visualization techniques, such as heatmaps (e.g.,
saliency or attention maps) and ranked feature
contributions from radiomics models, which often
provide limited insights into underlying mechanisms.
Instead, XAI should emphasize capturing complex,
relational structures within images to better elucidate
how local and global features interact and contribute
to predictive tasks. One promising avenue is the
adoption of explainable graph-based models, such as
graph neural networks (GNNs) integrated with
knowledge graphs (KGs), which model images as
interconnected nodes representing regions of interest
(e.g., voxels or anatomical segments in PET/SPECT
scans). These models can explicitly capture spatial
dependencies, hierarchical relationships, and
multimodal interactions, such as linking metabolic
hotspots in PET with structural features in CT, while
providing interpretable edge weights or node
attributions that reveal causal pathways in tasks like
lesion detection or disease progression prediction. For
instance, KG-enhanced XAl systems have been shown
to integrate domain knowledge (e.g., physiological
priors in nuclear medicine) with deep learning outputs,
enabling post-hoc explanations that map local features
(e.g., voxel intensity) to global patterns (e.g., tumor
heterogeneity), thereby improving fidelity and
robustness in medical image analysis [139, 140]. This
approach not only addresses the high-dimensional,
noisy nature of nuclear imaging data but also supports
tasks like bias detection in multimodal fusions, where
traditional methods fall short. Empirical studies in
related domains, such as brain MRI segmentation,
demonstrate that graph-based XAI outperforms
saliency methods in explaining model decisions by
quantifying relational influences, with potential
extensions to  PET/SPECT  for  enhanced
reproducibility in dynamic studies [141].

Furthermore, XAl outcomes could evolve to deliver
tangible clinical meaning and application, extending
beyond technical utilities like bias detection, risk
assessment, or uncertainty quantification to directly
inform patient care and decision-making. This
requires clinician-defined explanations, where XAl
frameworks are co-designed with healthcare
professionals to ensure outputs align with clinical
workflows, such as providing interpretable risk scores
tied to evidence-based guidelines or visualizations that
highlight actionable insights (e.g., predicting
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therapeutic response in radionuclide therapy with
explanations referencing SUV thresholds or kinetic
parameters). Recent clinician-informed evaluations
emphasize that such tailored explanations, e.g., feature
importance scores contextualized by clinical
relevance, increase trust and adoption, as they enable
radiologists to validate predictions against domain
expertise while mitigating over-reliance on opaque
models [136, 142]. For example, studies in cardiac
imaging show that XAI with clinician-preferred
formats (e.g., concise, patient-specific narratives) not
only detects biases in datasets but also enhances
diagnostic accuracy by 5-15%, fostering hybrid
human-Al collaboration [143]. In nuclear medicine,
this could translate to XAI tools that flag low-
confidence regions in low-dose PET reconstructions
with clinically interpretable alerts (e.g., "potential
artifact due to scatter, recommend rescan"), thereby
reducing errors and supporting personalized
theranostics. Interdisciplinary efforts, including
clinician-led checklists for XAl evaluation, are crucial
to validate these enhancements through prospective
trials, ensuring explanations provide measurable
clinical value like improved lesion detectability or
reduced inter-observer variability [144].

9. Conclusion

The rapid integration of XAl into nuclear medicine,
particularly in PET/SPECT imaging and radiation
therapy, marks a significant advancement toward
transparent, trustworthy Al-driven diagnostics and
treatments, mitigating the limitations of black-box
models and enhancing clinician-model collaboration.
By providing interpretable outputs such as saliency
maps, feature attributions, and uncertainty
quantifications, XAl not only aligns with regulatory
standards but also addresses domain-specific
challenges like noise, artifacts, and multimodal data
fusion, potentially improving patient outcomes
through more accurate lesion detection, dosimetry,
and personalized theranostics. However, as research
trends increasingly favor XAI adoption, the true
measure of success lies not in technical sophistication
alone but in demonstrating tangible clinical value,
ensuring explanations are intuitive, actionable, and
directly contribute to enhanced diagnostic confidence,
reduced errors, and better therapeutic decisions.

Future efforts must prioritize large-scale, multi-
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institutional studies with clinician-centric evaluations
to validate XAl's impact on real-world workflows,
while tackling scalability issues and ethical
considerations for broader adoption. Ultimately,
shifting focus from mere explainability to clinically
relevant insights will bridge the gap between Al
innovation and practical utility in nuclear imaging,
fostering a more reliable and equitable healthcare
ecosystem.
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