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Purpose: Automated segmentation of abnormal tissues in medical images is considered as an essential part of 
those computer-aided detection and diagnosis systems which analyze medical images. However, automated 
segmentation of abnormalities is a challenging task due to the limitations of imaging technologies and complex 

versity, 
appearance inhomogeneity, and the vague boundaries of abnormalities. Therefore, more intelligent segmentation 
techniques are required to tackle these challenges. 
 

 In this study, a method, which is called MMTDNN, is proposed to segment and detect 
medical image abnormalities. MMTDNN, as a multi-view learning machine, utilizes convolutional neural 
networks in a massive training strategy. Moreover, the proposed method has four phases of preprocessing, view 
generation, pixel-level segmentation, and post-processing. The International Symposium on Biomedical Imaging 
(ISBI)-2016 dataset is used for the evaluation of the proposed method. 
 

Results: The performance of the proposed method has been evaluated on the task of skin lesion segmentation as 
one of the challenging applications of abnormal tissue segmentation. Both qualitative and quantitative results 

Dice similarity  
 

 -of-
the-art methods of skin lesion segmentation. 
 

 Medical Imaging; Abnormal Tissues Segmentation; Convolutional Neural Networks; Multi-View 
-View Massive Training Deep Neural Network. 
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1. Introduction  

Medical image segmentation is the task of 
delineating structures of interest in medical images, 
either manually or automatically. Segmentation of 
medical images has broad applications, including 
locating tumors and pathologies, studying anatomical 
structures, and measuring tissue volume. Among 
these, delineation of tissue abnormalities is one of the 
major application areas of medical image 
segmentation. As monitoring and analysis of abnormal 
tissues are crucial for optimal treatment, accurate 
segmentation of these abnormalities is required. In 
contrast to the automated segmentation of abnormal 
tissues, manual segmentation is commonly time-
consuming, cumbersome, error-prone, and subjective. 
Therefore, the automatic segmentation of these tissue 
abnormalities is preferred. 

Automated segmentation of abnormal tissues in 
medical images is a challenging and sophisticated task 
in both Computer-Aided Detection (CADe) and 
Computer-Aided Diagnosis (CADx) systems [1]. 
There are many cases of complexity, which mainly 
roots in the complex structure of the body tissues, 
abnormalities, and also limitations of imaging 
technologies. These complexities include 
inhomogeneity, partial volume effect, the existence of 
noise and artifacts, low contrast between normal and 
abnormal tissues, shape diversity, and the fuzzy border 
of abnormalities. With these circumstances, 
sophisticated methods are required to tackle 
mentioned difficulties; and consequently, accurate 
segmentation of abnormalities in medical images.  

Representation learning [2] methods are a candidate 
solution for challenging real-world problems, 
including segmentation of abnormal tissues in medical 
images and understanding their contents as well. The 
reason for the prosperity of representation learning 
methods is that they cover more general priors of real-
world intelligence. These priors include smoothness, 
multiple explanatory factors, the sparsity of features, 
transfer learning, independence of features, natural 
clustering and distributed representation, semi-
supervised learning, and hierarchical organization of 
features [3]. As describing the texture of medical 
images and segmentation of abnormalities based on 
the texture contents are among difficult tasks of 

computer vision, the power of representation learning 
is employed to address related issues.  

There are many representation learning techniques 
which act as end-to-end learning machines capable of 
segmenting abnormalities in medical images. In such 
techniques, the features are learned directly from the 
training images as a part of the training process. These 
methods, which mainly root in the neural networks, 
are fallen into two main categories of Massive 
Training Artificial Neural Networks (MTANNs) and 
Convolutional Neural Networks (CNNs). With many 
similarities, the main difference between these  two 
techniques is the place of the convolution operator. 
The convolution operator is outside of the network for 
the MTANN family while this operator is inside the 
network for CNNs [4].  

Although MTANNs are firstly proposed for the 
reduction of false positives in computerized detection 
of lung nodules in CT images [5], they are capable to 
perform various image processing and pattern 
recognition tasks thanks to the ability to learn useful 
features from the training data. As Figure 1 depicts, 
both input and output of a typical MTANN are images. 
Training input images of MTANN are overlapped sub-
regions of the original image, and the teacher image, 
which serves the network as desired output is an image 
as the same size as the training sub-regions. However, 
the main burden of learning is carried by the fully 
connected neural network component of MTANN. 
This component takes a gray level sub-image and 
produces a single output corresponding to the central 
pixel of that sub-image. Concerning the fact that the 
input of MTANN is a sub-image, in order to process 
and judge all pixels of the input image, the trained 
MTANN must slide over the input image. This sliding 
process is called convolution. In contrast to the CNN, 
where convolution is controlled inside the network 
structure, this process is controlled outside of the 
network structure in MTANN. 

Some representative abnormal tissue segmentation 
methods that are based on MTANN are segmentation 
of Multiple Scleroses (MS) lesions [6], [7], detection 
of polyps in CT colonography [8], [9], and other tasks 
related to segmentation and detection of abnormal 
tissues [10], [11], [12]. 
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The leading representative CNN-based studies for 
segmenting tissues include segmentation of brain 
tumors [13], [14], segmentation of bladder in CT 
images [15], skin lesion segmentation [16], [17], MS 
lesion segmentation [18], segmentation of white 
matter hyper-intensities [19], and segmentation of soft 
tissues in digital mammograms [20].  

In conclusion, both methods based on MTANN and 
CNN have many similarities. More concretely, both 
network architectures attempt to learn discriminative 
features directly from the data. Although CNNs are 
very good for analysis of visual data because of their 
excellent representation capabilities, they are 
suffering from some limitations, including long 
training time and need of massive amounts of training 
data. In contrast, the methods based on MTANN need 
less training exa
medical image analysis methods, where always proper 
training data are rare. In another perspective, MTANN 
may suffer from the fact that the data could not be 
represented as well as CNN. So, it is desired to have 
network
other words, the networks with high representation 
capabilities and trainable based on a small amount of 
data are desired.  

-based method for 
the segmentation of abnormalities in medical images 
called Multi-view Massive Training Deep Neural 
Network (MMTDNN). The proposed method relies 
mostly on the multi-view capabilities of 
Convolutional Neural Networks (CNNs), which 
attempts to describe sub-images that surround all  

 

 

 

 

 

 

 

 

 

 

 

pixels in a typical medical image in different 
perspectives and scales [21]. 

The multi-view concept allows to various global, 
regional, and local aspects of images which clue the 
segmentation be considered. Having CNNs with 
multi-view capability brings some challenges to the 
training of the proposed method. In order to tackle 
these challenges, besides the proper design of network 
architecture, enormous amounts of data are needed. 
The massive training concept in the proposed method 
deals with the generation of too many sub-images 
from the currently accessible image data for network 
training.  

The remainder of this paper is organized as follows. 
The proposed MMTDNN, as a segmentation method 
of abnormal tissues, is presented in section 2. 
Experimental results are presented and discussed in 
section 3. Finally, the paper is concluded in section 4. 

2. Materials and Methods  

2.1. Data-Set 

In order to evaluate the performance of the 
proposed method, a benchmark and publicly available 
data-set of skin lesions known as ISBI-2016 [22] is 
used. Because of significant variations in the intensity, 
color, shape, size, and texture of both lesion and 
normal areas, the segmentation of these lesions is 
challenging. This data-set consists of 900 and 379 

 

Figure 1. Architecture and training method of MTANN for detection of lung nodules in CT images [5] 
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training and testing images are provided with the 
ground truth generated by experts. Given the fact that 
these images are collected from various centers and 
devices; and the data-set contains lesions with various 
irregular shapes, diverse backgrounds, low contrast 
between lesion and non-lesion areas, inhomogeneous 
appearance, hair artifacts, color charts, and fuzzy 
borders, they are appropriate for robust evaluation of 
automated lesion segmentation methods. 

2.2. Method  

In this section, the proposed MMTDNN for the 
segmentation of abnormal tissues in medical images is 
explained. MMTDNN is considered as an extension of 
MTANN; in fact, the representation capability of 
MTANN is increased by replacing the fully connected 
layers with multiple convolutional layers. In other 
words, we add convolutional layers to the MTANN 
architecture to enable considering sub-images in their 
original two-dimensional form [23]. These 
convolutional layers allow generating better features 
than fully connected layers of the original MTANN. 
More concretely, convolution layers perform feature 
learning while fully connected layers perform the task 
of high-level reasoning [2]. In contrast to MTANN, 
which models abnormalities in local scale, the 
proposed method considers multiple views at multiple 
scales of the input image. In other words, the proposed 
method labels each pixel of the input image as either 
normal or abnormal by considering its local, regional, 
and global contextual information through local, 
regional, and global views, respectively. Indeed, the 
image patches, which surround a typical pixel in 
different views, are abstracted together using a 
customized CNN. Although the multi-view extension 
of MTANN leads a better description of image patches 
by utilizing convolutional layers inside the network, 
on the other hand, the power of MTANN utilizing 
outside convolution remains. Outside convolution 
allows generating multiple overlapped sub-regions of 
input image and model abnormalities with a small 
number of training images which is beneficiary for 
medical applications. The proposed MMTDNN uses 
the benefits of both CNN and MTANN 
simultaneously as two popular methods for the 
analysis of medical images.  

As the block diagram of the proposed MMTDNN in 
Figure 2 demonstrates, it has four phases, namely 
preprocessing, view generation, pixel-level 
segmentation, and post-processing. The input of the 
proposed method is a raw two-dimensional medical 
image, and its output is a binary mask that corresponds 
to abnormal areas of the input image. The sections 
ahead shall explain the goal and functionality of all 
four main phases of the proposed method. 

 

2.2.1. Preprocessing 

In order to segment the input images efficiently, 
two preprocessing tasks of image resizing and 
intensity normalization are performed in the 
preprocessing phase. In the image resizing task, all the 
images are resized to 300 × 400 pixels by utilizing 
pixel-area-relation interpolation. Also, the intensity of 
each RGB channel of images is rescaled to the range 
[0,1] using min-max normalization. 

2.2.2. View Generation 

As mentioned previously, the proposed pixel-based 
segmentation method judges each pixel of the input 
image by considering that pixel in various views. The 
main reason for considering a pixel in multiple views 
is that the information from multiple scales is 

Figure 2. Block diagram of the proposed MMTDNN; 
input of MMTDNN is a medical image with a lesion 
area, and the output is a lesion binary mask 
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complementary and leads to a more robust 
segmentation of abnormal tissues. In the proposed 
method, three views are supposed to impose 
complementary contextual information about each 
pixel in the segmentation pipeline. These views carry 
information in three levels of local, regional, and 
global. The local view is an n×n image patch centered 
on the pixel under analysis. The regional view is a 2n 
× 2n image path which is again centered on the pixel 
under analysis; this view allows having a broader view 
over the pixel under analysis. The global view is a 4n 
× 4n image path which is more extensive than both 
local and regional views.  

In the process of view generation, the marginal 
pixels, which are far from the center, are 
challenging. In this situation, a typical view that 
surrounds a marginal pixel may fall outside of the 
image under consideration. In order to tackle this 
problem, a suitable padding strategy is employed. In 
the proposed method, the images are extended by 
replicating columns and rows to empty columns and 
rows in the views. Moreover, by knowing the fact 
that lesions are mainly placed in the center of input 
images, marginal pixels are not very informative in 
the process of learning. 

After acquiring all three local, regional, and global 
views of a pixel, all of the image patches, which 
correspond to a view, are downscaled to have the size 
of n×n as the same size of the local view. These image 
patches are concatenated together to form a nine-
channel image. This nine-channel image can be 
considered as a comprehensive tensor which contains 
information about a pixel. In other words, this nine-
channel image or comprehensive tensor allows having 
more complementary information about a pixel. A set 
of tensors, each of which corresponds to a pixel of the 
preprocessed image are extracted in lexicographic 
order. Finally, each tensor, which is considered as an 
extension of a pixel, is passed to the next phase to 
compute the likelihood of that pixel belonging to the 
lesion area or not. 

2.2.3. Pixel-  

In order to perform accurate pixel-level 
segmentation, all three local, regional, and global 
views, which are concatenated to form a 
comprehensive tensor, must be considered 

simultaneously. For this matter, a CNN capable of 
handling this comprehensive tensor is proposed. The 
input of this network is a comprehensive tensor with 
extended information about a pixel. In addition, the 
network output is an abnormality likelihood of the 
pixel under consideration. The network receives 
contextual information at multiple levels through the 
tensor and jointly exploits features at different scales. 
Therefore, this network is capable of abstracting input 
data; and consequently, producing a posterior 
probability for each tensor which describes a pixel. As 
a result, pixels with a high posterior probability likely 
belongs to the abnormal areas. After considering all 

for that image is generated; later, this posterior 
probability map is processed to produce the final 
lesion mask. 

The segmentation network must have a particular 

to be able to compute the likelihood properly. With 
these conditions, a deep enough network is needed to 
generate more representative features to deal with the 
significant variations of both normal and abnormal 
tissues in medical images. As it is depicted in Figure 
3
total number of trainable parameters in this network is 
4,544,769, which leads the network optimization to be 
a hard task. In this architecture, nine convolutional 
layers carry the burden of feature learning. These 

rom the 
pixels belonging to abnormal tissues. The convolution 
kernel size for non-dimension-expansion layers is 
3×3. Fully connected layers at the end of the network 
carry the task of high-level reasoning and computing 
the final likelihood according to the features learned 
in the previous layers. Since training of such deep 
networks is challenging, some techniques, including 
batch normalization [24], dropout [25], and residual 
learning [26] are utilized to facilitate network training 
and parameter optimization. 

To conclude, the proposed pixel-based 
segmentation network makes use of multiple 

discriminatory features for distinguishing abnormal 
pixels from the normal ones. After the pixel-level 
segmentation phase, a likelihood map of the input  
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image is generated by putting all likelihood together 
in a 2D grid. From this likelihood map, the abnormal 
tissue mask is extracted after some post-processing 
tasks. 

To conclude, the proposed pixel-based 
segmentation network makes use of multiple 
convolutional layers to abstract and extract 
discriminatory features for distinguishing abnormal 
pixels from the normal ones. After the pixel-level 
segmentation phase, a likelihood map of the input 
image is generated by putting all likelihood together 
in a 2D grid. From this likelihood map, the abnormal 
tissue mask is extracted after some post-processing 
tasks. 

2.2.4. Post-Processing 

In the post-processing phase of the proposed 
method, the lesion likelihood map from the previous 
phase is further processed to generate a binary lesion 
mask. For this matter, the output lesion mask is 
thresholded to generate the initial binary lesion mask. 
In order to perform binarization, the Otsu thresholding 
method is employed [27]. The initial lesion mask goes 
under the connected-component-analysis processes to 
select the largest connected component as the best 
candidate for lesion mask. Finally, this largest 
connected component goes under the whole-filling 
process to produce the final lesion mask. 

3. Results and Discussion 

After the successful implementation of the 
proposed segmentation method, its performance has 
been evaluated in the challenging task of skin lesion 
segmentation. In order to quantitatively measure the 
performance of the proposed segmentation method, a 
variety of standard measures are utilized [1]. These 
measures, which perform an evaluation at a pixel  

 

 

 

 

 

 

level, include Accuracy (ACC), Sensitivity (SEN), 
Specificity (SPE), Dice Similarity Coefficient (DSC), 
and Jaccard index (JAC). 

Definition of ACC, SEN, SPE, DSC, and JAC are 
described by Equations 1 to 5, respectively. These 
measures are calculated based on four quantifiers of 
True Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FN). TP is the 
number of pixels that the proposed segmentation 
method correctly identified as belonging to a lesion 
area; TN is the number of pixels that the proposed 
segmentation method correctly identified as belonging 
to a normal area; FP is the number of pixels that the 
proposed segmentation method wrongly identified as 
belonging to a lesion area, and FN is the number of 
pixels that the proposed segmentation method 
wrongly identified as belonging to a normal area. 
Moreover, SEN and SPE quantify the performance of 
the proposed segmentation methods on identifying 
pixels belonging to the abnormal regions and the 
pixels belonging to the normal areas, respectively. 
Besides, DSC and JAC attempt to summarize SEN and 
SPE in one unique measure capable of reflecting both 
SEN and SPE. 

    (1) 

    (2) 

    (3) 

    (4) 

 (5) 

The quantitative performance of the proposed 
method is measured for all of the images in the test-
set. With this regard, all of the mentioned performance 
measures are calculated for each image individually 
by incorporating a ground-truth mask and the lesion 
mask produced by the proposed segmentation method. 

Figure 3. The block diagram of the proposed pixel-based segmentation network 
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Furthermore, alongside the segmentation network 
architecture, the view sizes, and the threshold value of 
the likelihood map are critical components of the 
proposed method to be validated for the best 
performance. In the paragraphs ahead, we will discuss 
how the parameters of the proposed method are 
selected and tuned; later, the results with the best 
settings are reported, discussed, and compared to the 
state-of-the-art. 

3.1. Training of the Segmenta�on Network 

The segmentation network, with the structure, 
explained in section 2.2.3, is the heart of MMTDNN. 
As a result, proper training of this network is 
mandatory for better performance. The input of the 
segmentation network is a tensor. As explained in 
section 2.2.2, each tensor provides information for the 
description of a typical pixel. Accordingly, for each 
image in the training set, a set of tensors is extracted 
to be used as training data of the segmentation 
network. Furthermore, 20 percent of the training 
images are selected as the validation set to monitor the 
training process. To set the network weights properly, 
Stochastic Gradient Descends (SGD) is employed as 
an optimizer [28]. Important parameters of this 
optimizer are the learning rate and the momentum 
which has been set to 0.01 and 0.9, respectively. SGD 
optimized the network in a total of 40 epochs; in the 
last 15 epochs, no more significant improvement on 
the accuracy of the validation set has occurred. 
Therefore, the training is ended at epoch 40 in its best 
situation. Continuing training for more epochs leads 
the training accuracy to improve more and the 
validation accuracy to decline. In other words, in the 
last 15 epochs, the accuracy of the validation become 
oscillatory and had started to reverse from its optimal 
condition. In this situation, where the accuracy of the 
training set continues to improve, the training process 
is stopped in its best point to prevent the network from 
overfitting. 

3.2. The Effect of View Size on the 
Segmenta�on Network 

The size of views is an important parameter that 
affects the performance of the segmentation network; 
and consequently, the performance of the proposed 
MMTDNN. To choose the best view size, the 

performance of the segmentation network under views 
of various sizes is evaluated. Meanwhile, the accuracy 
of the segmentation network for view sizes of 25×25, 
31×31, and 35×35 are measured. As is summarized in 
Table 1, the best view size is 31×31. This size gives 
the highest possible amount of accuracy on the 
validation set. Performance of the best size is almost 
near the performance of the views of size 25×25 and 
far from the views of size 35×35; this means that the 
more extensive views cannot perform as accurately as 
small views. 

Table 1. Effect of view size on the performance 
of the segmentation network 

3.3. Evalua�on of the Proposed Method on the 
Test Set  

After finding the best settings of different 
components of the proposed segmentation method, its 
performance has been evaluated on the test set. In this 
round of evaluation, all of the previously mentioned 
measures are calculated for each image in the test set. 
These results, which are averaged over all of the 
testing images, are summarized in Table 2. 

In terms of accuracy, the proposed method performs 
satisfactorily; this means that the segmentation 
network correctly learns the patterns that are necessary 
for distinguishing lesion and non-lesion pixels. The 
high specificity of MMTDNN demonstrates that the 
proposed method can accurately identify nearly all 
normal pixels of the testing images as normal. In 
contrast to specificity, the sensitivity of MMTDNN is 
low; this means that the proposed method fails to 
correctly identify some of the pixels belonging to the 
lesion areas. Overall, the proposed method performs 
well in terms of quantitative measures, including 
ACC, SEN, SPE, DSC, and JAC. This satisfactory 
performance is the result of learning various patterns 
by the segmentation network. In other words, the 
segmentation network is trained with numerous 
profiles of both normality and abnormality thanks to 
the massive training strategy. 

35×35 31×31 25×25 Window Size 
0.952 0.975 0.961 Accuracy 
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Table 2. Performance of the proposed MMTDNN on the 
test-set 

Performance 
Measure ACC SEN SPE DSC JAC 

Value 0.973 0.912 0.986 0.931 0.876 

Figure 4 demonstrates a set of challenging 
examples, in which the proposed automatic 
segmentation method of skin lesions performs well. In 
this set, Figures 4(a), 4(b), and 4(c) show examples 
with massive hair artifacts; Figures 4(g) and 4(h) 
depict examples with color charts; Figures 4(c) and 
4(d) demonstrate examples of low contrast between 
the lesion and normal areas; Figures 4(i) and 4(j) 
represent examples of inhomogeneous appearance; 
Figure 4(k) and 4(l) display examples with fuzzy 
borders. Overall, the proposed method is almost robust 
to all of these challenging circumstances; 
consequently, it can accurately delineate nearly all 
lesion areas in these situations. 

Although the proposed method can achieve 
satisfactory performance in delineating lesion areas in 
examples with the previously mentioned challenging 
conditions, there are still some limitations. The 
proposed method, sometimes over-segment or under-
segment the lesion areas. As Figure 5 depicts, usually, 
the cases with low contrast, unsharp borders, and 
irregular shapes suffer from the adverse phenomena of 
under/over-segmentation. 

The main reason for this shortcoming is that the 
proposed segmentation network cannot learn the 
discriminative patterns in these examples as well as 
other examples. Increasing the network capacity and 
proper post-processing techniques may alleviate these 
problems. 

The main reason for this shortcoming is that the 
proposed segmentation network cannot learn the 
discriminative patterns in these examples as well as 
other examples. Increasing the network capacity and 
proper post-processing techniques may alleviate these 
problems. 

3.4. Comparing the Results of MMTDNN with 
the Results of Other Methods 

In this section, we shall compare the performance 
of the proposed method with some of the existing 
representative methods of skin lesion segmentation. 
For the sake of fair comparison, only those studies that 
use ISBI-2016 dataset in their evaluation procedure 
are considered. The results of this comparison in terms 
of quantitative measures are summarized in Table 3. 
As it is shown in this table, the proposed MMTDNN 
outperforms all of these methods of skin lesion 
segmentation.   

In terms of ACC, DSC, JAC, and SPE, our method 
performs superior to other methods in this table. In 
other words, MMTDNN reduces the error rate (1-
ACC) of the segmentation by 27 percent. As the 
segmentation of abnormal tissues is a class-imbalance 
problem, JAC can better describe the performance of 
MMTDNN. Therefore, we insist that MMTDNN 
improves the gap (1-JAC) to the best JAC value by 38 
percent. Besides this excellent performance, the 
proposed method performs poorly in terms of SEN 

Figure 4. Examples that MMTDNN correctly 
segments the lesion areas. The red and green 
contours indicate the segmentation results of the 
ground truth and MMTDNN, respectively 

Figure 5. Examples that the proposed method over-
segments or under-segments lesion areas. The red and 
green contours indicate the segmentation results of the 
ground truth and MMTDNN, respectively 
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measure. In other words, MMTDNN is less sensitive 
than the two methods highlighted in Table 3. Lower 
sensitivity indicates that the proposed method 
performs worse than the two mentioned methods, to 
identify the pixels belonging to the lesion areas 
correctly. Overall, MMTDNN performs very 
satisfactorily in comparison to the methods that have 
been evaluated on the ISBI-2016 dataset. 

This study aimed to increase the representation 
capability of MTANN by providing more powerful 
architecture based on CNNs. In order to demonstrate 
the superiority of MMTDNN over MTANN, we 
perform an experiment and provide the results in  
Table 3. As was expected, MTANN performs very 
poorly. 

4. Conclusion 

In this study, we have proposed and developed a 
pattern recognition technique mainly based on 
artificial neural networks, termed multi-view massive 
training deep neural network. The proposed method is, 
in fact, an extension of both MTANN and CNN in a 
way to better handling multi-view or tensor input. In 
other words, the proposed method attempts to gain the 
benefits of both CNN and MTANN. CNN increases 
representation capability than MTANN by 
automatically learning sophisticated and relevant 
features directly from the data.  

In another perspective, the proposed method is 
suitable for cases that the training data are rare; in such 
situations, too many training samples are generated 
thanks to the massive training strategy. Also, a 
massive training strategy prevents the network from 
overfitting and leading the network to be more 
generalized. The key to this high generalizability 

might be due to the division of one image into a large 
number of overlapped sub-regions. 

In this study, the performance of the proposed 
method has been evaluated on the task of automated 
skin lesion segmentation. As experimental results 
demonstrate, the proposed method outperforms state-
of-the-art methods of skin lesion segmentation. 
Moreover, MMTDNN is robust to hair artifacts, shape 
irregularities, appearance inhomogeneity, and fuzzy 
boundaries. The main reason for the prosperity of 
MMTDNN is its high capability of learning 
discriminative features in the multi-view 
neighborhood of image pixels. Moreover, the 
proposed method is very promising to be applied to 
other tasks of abnormality detection and segmentation 
in medical images.  

The performance of the proposed method can be 
improved by incorporating more views in the view 
generation process and also increasing the capacity of 
the model by creating a deeper segmentation network 
and adding more feature maps to the convolutional 
layers. Also, the proposed MMTDNN can be 
implemented in parallel to be run faster. 

In our future works, we will increase the capacity of 
the segmentation network to reduce network error. 
Moreover, generating more informative and 
compliment views is another effort for improving 
performance of the proposed method.  
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