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1. Introduction

yocardial perfusion (MP) PET provides 
improved diagnostic quality, certainty, 
and accuracy over conventional MP 
SPECT imaging [1-5]. The prognos-
tic value in predicting adverse cardiac 
outcomes has also been demonstrated 

in an increasing number of studies [6-8]. In particular, 
dynamic MP PET imaging followed by tracer kinetic 
analysis (e.g. compartmental modelling applied to Rb-
82 [9-15]), provides a powerful mean to estimate the 
tracer transport rate K1, and subsequently myocardial 
blood flow (MBF) which when measured under rest 
and stress used to calculate the coronary flow reserve 
(CFR). The CFR has been shown to be related to the 
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M
degree of coronary artery stenosis (CAS) [16]. It thus al-
lows for non-invasive assessment of the functional im-
portance of CAS and may aid identification of patients 
with either diffuse, nonocclusive luminal coronary 
artery narrowing or a balanced reduction in coronary 
artery blood flow (extensive multi-vessel coronary dis-
ease) [17, 18]. CFR has also been shown to be reduced 
as a function of various coronary risk factors before the 
onset of clinically overt disease (e.g. in asymptomatic 
men with a family history of coronary artery disease 
(CAD) and high-risk lipid profiles [19]). Degradation 
of CFR based on other risk factors (e.g. hyperlipidemia, 
diabetes, smoking), has also been shown, supporting the 
beneficial effects of risk-factor modifications and novel 
medical therapies [20-32]. Non-invasive MP quantifica-
tion may, therefore, allow early detection of preclinical 
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atherosclerosis, providing an opportunity to modify risk 
factors or initiate treatment. These studies have contrib-
uted to a paradigm shift in the perception of CAD, away 
from a pure macroscopic view of luminal stenoses and 
toward an emphasis on microcirculation and endothelial 
function [33-35]. Specifically, in persons with angio-
graphically normal arteries, CFR has been shown to be 
a marker of coronary microvascular dysfunction [36], 
which can represent a new therapeutic target. Overall, 
changes in CFR promise to be extremely useful in as-
sessing the effectiveness of treatment [37, 38]. 

Nonetheless, notwithstanding the vast potentials of the 
dynamic MP PET modality, it has remained primarily 
limited to research, and remains to be widely adopted 
in clinical practice [18, 39]. In fact, dynamic MP PET 
imaging is specifically challenged by the presence of 
additional noise due to division of the data into shorter 
frames, ultimately adversely impacting absolute flow 
quantification. In the present work, we propose a direct 
4D reconstruction framework applicable to dynamic 
MP PET imaging enabling significant reductions in 
noise, and in fact, enabling parametric imaging at the 
individual voxel level.

2. Proposed Cardiac Parametric Imaging 
Framework

Conventional dynamic MP PET imaging consists of 
reconstructing the individual data frames followed by 
compartmental analysis to estimate kinetic parameters. 
A novel alternative is to instead directly estimate the 
kinetic parameters from the dynamic datasets. This ap-
proach has been reviewed elsewhere [40-42], and has 
typically involved parametric imaging at the voxel level 
for brain studies, or at the ROI-level in some cardiac 
studies. The present work elaborates upon our efforts 
[43-45] to develop and evaluate direct parametric imag-
ing for dynamic cardiac PET imaging.

2.1. The Kinetic Model

We consider the one-tissue compartmental model (Figure 
1) as commonly invoked in the literature to model kinetics 
of Rb-82 [10, 12, 13, 15]:

dCM (t)
dt

= K1Ca (t) − k2CM (t)                           (1) 

Where 

� 

Ca (t)  and CM (t)  are the concentrations of Rb-
82 in the arterial blood and the myocardium, respective-
ly. By measuring the concentration CLV (t)  via a small 
region size in the center of the LV cavity, nearly com-

plete recovery of the arterial input curve and minimal 
myocardial spillover can be achieved [46], allowing a 
non-invasive approach; i.e. Ca (t) = CLV (t) . Furthermore, 
to address the contribution of blood in the myocardial 
measurements, one writes: 

C(t) = FCa (t) + (1− F)CM (t)                                     (2)

where C(t) is the measured concentration of the tracer 
in the myocardium, and F  represents the total fractional 
blood volume, combining (a) spillover due to the partial 
volume effect from the blood pool into the myocardial 
region or voxel of interest as well as (b) the presence 
of arterial blood in the muscle. Solving the abovemen-
tioned two equations yields: 

C(t) = FCa (t) + (1 − F)K1 exp(−k2t) * Ca (t)                (3)

  

2.2. Direct 4D Problem Formulation and Numerical 
Optimization

To formulate the 4D problem, we next note that for a 
given parameter set K consisting of K1, k2, F across the 
voxels, the accumulated activity x jm  at any voxel j for 
any given dynamic frame m (spanning duration t1 to t2) 
can be written as: 

x jm = Cj (τ )dτ
t1

t2

∫                                          (4) 

Where Cj(t) is given by (3) for any voxel j. This can 
then be used in connection with the system matrix 

 to arrive at the estimated projection-space 

data yim = pij x jm
j

∑  for every LOR i. To achieve direct 
parametric estimation, we then note that the log-likeli-
hood (L) function, to be maximized, is given by: 

Figure 1. One-tissue compartmental model for kinetic mod-
elling of Rb-82 MP PET imaging. The ellipse indicates the 
additional contribution of blood to the region or voxel of 
interest.



6

 This is depicted in Figure 2.

Wang and Qi applied the optimization transfer concept 
to direct parametric imaging in the case of linear kinetic 
models [52]. They also pursued the non-linear context 
developing a separable paraboloidal surrogate [53] and 
an EM surrogate [54]. The latter approach was shown to 
exhibit more favourable convergence properties, which 
we also use towards dynamic MP PET imaging as elab-
orated next.

In particular, the resulting surrogate function to the 
log-likelihood function (5) can be shown to be: 

Q(K;Kn ) = pij
i

∑





x̂ jm
EM Kn( )log x jm (K) − x jm (K)( )

m
∑











j
∑          (6)

where 

x̂ jm
EM (Kn ) =

x jm (Kn )
pij

i
∑

pij yjm

piqxqm (Kn )
q

∑i
∑                            (7) 

is an EM update to the existing image estimate x jm Kn( ). 
An important observation is that the surrogate function 
(6) is separable in voxels, and thus its maximization can 
be conveniently carried out voxel-by-voxel:

Kn+1 = arg max
K

 Q(K;Kn )                                           (8)

Overall, instead of performing direct parametric imag-
ing via maximization of the log-likelihood (5), the alter-
native optimization transfer formulation (6), (7) and (8) 

L(y | K) = yim
i,m
∑ log yim (K) − yim (K)                       (5)

where the actual measured data are denoted by yim. 

We then apply numerical methods to iteratively search 
for kinetic parameters maximizing the L function, start-
ing with an initial estimate K(0) and arriving at subse-
quent updates to the parametric set. We considered pre-
conditioned gradient ascent as we all as preconditioned 
conjugate gradient algorithms, implemented in C using 
numerical recipes, including ordered subsets and pre-
conditioners. This is elaborated in Sec. 2.4.

2.3. Optimization Transfer

Aside from its nonconvex nature, numerical maxi-
mization of (5) is challenged by the computational 
burden of operations mapping the parametric image 
estimates to the projection-space at every iterative up-
date. A powerful technique in optimization problems 
is to seek surrogate functions that can be more conve-
niently optimized, referred to as “optimization transfer” 
as explored in different contexts in the past [47-51]. 
Specifically, these techniques seek a surrogate func-
tion Q(q;qn )  depending on the current estimated pa-
rameter set of interest qn  in the log-likelihood function
L(y | qn )  such that   L(y | q) − Q(q;qn ) has its minimum when 
q = qn. Then, if we find the next estimate qn+1  that maxi-
mizes  Q(q;qn ) , i.e. q

n+1 = arg max
q

 Q(q;qn ) , it follows that  
L(y | qn+1) ≥  L(y | qn )  thus guaranteeing improved estima-
tion. This is because:

L(y | qn+1) = Q(qn+1;qn ) + L(y | qn+1) − Q(qn+1;qn )( )
                ≥  Q(qn;qn ) + L(y | qn ) − Q(qn;qn )( )
                = L(y | qn )  

The surrogate functions are designed such that they 
are easier and/or less computationally intense to opti-
mize than the original log-likelihood function. As such, 
for every update, the optimization is ‘transferred’ to 
the surrogate function, thus the name is optimization 
transfer. We also note that a very natural special case of 
the above condition is having a surrogate function that 
bounds the log-likelihood function from below every-
where, touching it at qn ; i.e.

 

L(y | q) ≥ Q(q;qn )
L(y | qn ) = Q(qn;qn )

Figure 2. Optimization using surrogate functions that are it-
eratively constructed and maximized providing subsequent 
updates.

Arman Rahmim et al.  Direct 4D Parametric Imaging in Dynamic Myocardial Perfusion PET



7

January  2014, Volume 1, Number 1

enables decoupling of the kinetic-parameter-to-image 
and image-to-sinogram relationships at each iteration, 
allowing more convenient and more frequent updates. 
Thus one starts with an initial estimate K(0) of the pa-
rameter set, followed by utilization of the sinogram data 
to produce λ̂ j

EM ,m
 according to (7), and subsequently us-

ing (6) and (8) to work conveniently in the image-space 
domain only, performing optimization of Q voxel-by-
voxel, to arrive at the next update parameter set K, and 
onwards. 

2.4. Ordered-Subsets Method and the Detailed 
Numerical Implementation

Analogous to the concept of ordered-subsets (OS) as 
utilized in standard OS-EM algorithms [55], it is pos-
sible to similarly expand both aforementioned formula-
tions (schemes without and with optimization transfer). 
In particular, for every update, only an angular subset 
of the measured dynamic dataset is utilized, in order to 
speed up the computations. 

To compare the performance of steepest ascent vs. 
conjugate gradient methods in the context of OS, we 
first simplify the numeric problem to the standard case 
of static image reconstruction. The standard EM algo-
rithm can in fact be formulated as a fixed step-size spe-
cial case of preconditioned steepest ascent (PSA), while 
PSA and preconditioned conjugate gradient (PCG) 
algorithms allow variable, optimal step-sizes for each 
new direction. To see this, we note that the standard log-
likelihood function is given by: 

L(y | x) = yi
i

∑ log yi − yi
     

                                   (9) 

where

yi = pij x j
j

∑                                                      
 (10)

 

Furthermore, the EM algorithm maximizing the above 
log-likelihood function is given by [56, 57]: 

x j
(t +1) =

x j
(t )

pij
i

∑
pij yi

piqxq
(t )

q
∑i

∑  

     
                               

    (11)

Where t denotes the iterative update number. It is easy 
to see [58-60] that the EM algorithm is effectively a 
fixed step-size special case of preconditioned gradient 
ascent: consider a preconditioner Cj  and step-size α . 
Then, the update iteration is as follows:

x j
(t +1) = x j

(t ) + αCj
∂L(y | x)

∂x j
(t )

    
                                    (12) 

Noting that:

∂L(y | x)
∂xi

=
pij yi

piqxq
q

∑
− pij















i

∑                                   
     (13)

It follows that (11) and (12) are equivalent if  α = 1 
and the preconditioner is set as follows:

Cj =
x j

(t )

pij
i

∑
                                                                  (14)

For our direct 4D parametric imaging framework (5), 
we utilized a general form somewhat similar to (12) but 
optimized with respect to the kinetic parameters K j

p

 (p=1,2,3; where for a given voxel j, three parameters 
K1, k2, FLV  are to be estimated):

 K j
p,(t +1) = K j

p,(t ) + αCj
p ∂L(y | K )

∂K j
p,(t )                                                                  (15)

With our preconditioners set to:

Cj
p =

K j
p,(t )

pij
i

∑                                                                                  (16)

The numerical update algorithm then optimizes in 
each iteration for steepest ascent, thus arriving at PSA. 
We also implemented a PCG variant, involving the 
Fletcher-Reeves-Polak-Ribiere method [61]. The OS 
technique, commonly applied to achieve OS-EM, was 
then applied to result in OS-PSA and OS-PCG variants. 

3. Experimental Design 

3.1. Simulations

We generated myocardial perfusion Rb-82 PET da-
tasets using the XCAT phantom [62], combined with 
analytic simulations, including the effects of attenuation 
and normalization. The geometry of the GE Discovery 
RX PET [63] was considered, including realistic aver-
age counts and noise levels based on clinical studies of 
five patients with healthy myocardia at the Johns Hop-
kins PET Center, as we also previously utilized in a dif-
ferent context [64]. Rb-82 PET patient organ time ac-
tivity curves for the various organs in the field-of-view 
were acquired (Figure 3) and fitted to generate a set of 
kinetic parameters for the organs. The resulting para-
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metric images (Figure 4) served as the basis, and refer-
ence truth, for the realistic simulations. 

 

3.2. Quantitative Analysis

To track convergence of OS methods, we computed 
a metric, referred to as the asymptotic normalized log-
likelihood difference (NLD), given by: 

 
NLD(n) =

L(y | x̂) − L(y | x(n) )
L(y | x̂) − L(y | x(0) )

                                                                                   (17)

 

where x̂  denotes a reference image after substantial 
iterations (i.e. at near convergence). This enabled us to 
identify whether OS-PSA or OS-PCG is more appro-
priate as method of choice for numerical optimization 
(Sec. 4.1).

For quantitative assessment of the results, polar maps 
were created from the estimated K1 values on the left 
ventricular myocardium. The polar maps were subdi-

vided into 10 sub-regions as depicted in Figure 5, for 
additional regional quantitative analysis.

Figure 5. Masks to divide the polar map into different seg-
ments for analysis.

The three approaches of (i) conventional reconstruc-
tion followed by compartmental fitting, as well as direct 
4D parametric imaging (ii) without and (iii) with opti-
mization transfer, as elaborated in Sec. 2, were consid-
ered. Comparisons were performed using noise vs. bias 
trade-off curves as generated with increasing iterations 
into the reconstructions. This was performed for the en-
tire LV myocardium, as well as the 10 segments shown 
above.

4. Results

4.1. Optimization Methods in the Context of OS

For our initial studies in the case of static imaging, 
PSA and PCG algorithms were seen to converge as 
fast as the EM algorithm, while producing overlapping 
noise vs. bias trade-off curves (not shown). However, 
when utilizing subsets, the OS-PCG algorithm was seen 
to converge relatively poorly relative to both OS-EM 
and OS-PSA algorithms, as shown in Figure 6 (normal-
ized likelihood difference, computed by (17), was seen 
to be larger by factors of 1.8 and 2.5 respectively). We 
attribute this to the fact that while the PCG technique 
has theoretical advantages compared to moving in the 
direction of steepest ascent, this effect disappears for 
OS data due to inherent inconsistencies between the 
data subsets. We thus concluded that usage of the PCG 
algorithm in the OS context is not recommended, while 
OS-PSA and OS-EM algorithms pose more favorable 

Figure 3. Average organ time activity curves from 5 patients 
with healthy myocardia.

Figure 4. A transaxial slice of the K1, k2, and FLV parametric 
images generated for the NCAT phantom, and used for sub-
sequent simulations.
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alternatives. In applications where the EM solution 
does not exist (e.g. non-linear 4D parametric imaging 
pursued in this work), usage of OS-PSA optimization is 

instead recommended, which is what we utilized in the 
rest of this work.

Figure 6. In the context of OS, PCG is seen to converge relatively slowly compared to the PSA and EM counterparts.

Figure 7. Noise vs. bias curves (generated by varying the iterations) for the entire K1 polar map and for the 
individual segments. The 4D direct reconstruction outperforms conventional compartmental fitting following 
reconstruction of individual frames.

4.2 Direct 4D Parametric Imaging without 
Optimization Transfer

Analysis of noise (normalized standard deviation) vs. 
bias (normalized mean squared error) trade-off curves, 

as generated by varying the iterations, revealed signifi-
cant improvements for the proposed 4D method in the 
entire polar map and in all individual regions of inter-
est (apex, anterior, lateral, inferior and septal) relative 
to conventional indirect parametric imaging, as seen 
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in Figure 7. For visual inspection, Figure 8 shows the 
two polar maps which were picked in such a way to be 
quantitatively matched in terms of bias: clearly reduced 
noise levels are observed; in fact, the proposed 4D tech-
nique produced over 50% overall reduction in noise, 
with matched bias.

4.3. Direct 4D Parametric Imaging with Optimiza-
tion Transfer

A significant factor-of-five improvement in computa-
tional efficiency was achieved for 4D parametric imag-
ing utilizing optimization transfer compared to the 4D 
approach not utilizing optimization transfer. This is 
due to the decoupling between the sinogram and im-
age space domains, as discussed in Sec. 2.3. Moreover, 
noise vs. bias trade-off analysis, as shown in Figure 9, 
revealed enhanced quantitatively performance for opti-
mization transfer, as could also be detected via visual 

Figure 8. Polar maps with matched bias for (left) conven-
tional indirect kinetic parameter estimation, and (right) pro-
posed direct 4D parametric imaging. Clearly suppressed 
noise levels are observed.

Figure 10. Polar maps obtained using direct 4D reconstruc-
tion (left) without and (right) with optimization transfer.

Figure 9. Noise vs. bias curves (generated by varying the it-
erations) for the entire K1 polar map. The approach utilizing 
optimization transfer is seen to perform favorably compared 
to the baseline direct 4D reconstruction methods. 

inspection (Figure 10): over 15% reduction in noise was 
obtained, with matched bias. 

5. Discussion

5.1 Parameter Estimation Outside the Myocardium

An area of caution in direct parametric imaging is the 
inherent assumption that the compartmental model of 
interest is valid everywhere within the image. Other-
wise, if the model is inaccurate outside a region of in-
terest, errors can still be propagated to the region [65, 
66], unlike the conventional indirect estimation frame-
work where kinetic fitting is independently performed 
for each voxel or region of interest. In any case, in our 
context of Rb-82 MP PET, our preliminary analysis in-
dicated that time activity curves outside the myocardi-
um were appropriately fit using the standard one-tissue 
compartment model (no systematic residual errors). It is 
worth noting, at the same time, that we do not interpret 
the fits outside the myocardium, though Rb-82 has been 
proposed as a tracer with potential for renal blood flow 
imaging, including demonstration of appropriate fits in 
the kidney using the one-tissue compartmental model 
[67].

5.2 Addressing the Partial Volume Effect (PVE)

One presented issue in both static and dynamic imag-
ing is PVE, which arises from the contributions of reso-
lution degrading phenomena [68]. In the case of dynam-
ic imaging, an attempt to address PVE has been through 
additional parameters in the kinetic modelling analysis 
[15, 69-74] (e.g. note that the fractional blood volume F 
as implemented in Sec. 2.1 is aimed, in part, to model 
the spillover from the blood pool to the myocardium). 
However, use of additional variable(s) can degrade esti-
mation robustness. Other alternatives explored for car-
diac imaging include post-reconstruction partial volume 
correction (PVC) [75-79] or reconstruction-based reso-

Arman Rahmim et al.  Direct 4D Parametric Imaging in Dynamic Myocardial Perfusion PET
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lution modelling [80-82]. In fact, in one explicit com-
parison by Nuyts et al. [75], PVC was seen to outperform 
the expanded kinetic modelling approach. A downside to 
direct 4D parametric estimation is that because individual 
images are not reconstructed, PVC cannot be applied as 
such to final reconstructed individual images; however, it 
is possible to investigate application of PVC to the final 
parametric image, though this is not an equivalent ap-
proach. By contrast, resolution modelling can be easily 
incorporated in the context of 4D image reconstruction. 
However, resolution modelling itself is an area that needs 
to be approached with caution, especially in the context 
of quantitative imaging [83] because even though it leads 
to improved resolution and contrast recovery (reduced 
quantitative bias) it can amplify variability (i.e. reduce 
reproducibility) for small regions of interest, and can lead 
to edge artifacts [84].

6. Summary

A direct 4D parametric imaging method was devel-
oped incorporating kinetic modeling within the recon-
struction of dynamic cardiac PET data. With realistic 
simulations, we demonstrated improved quantitative 
performance of the proposed technique over conven-
tional indirect quantification of myocardial blood flow 
following reconstruction of individual images. Opti-
mization transfer via construction of an image-domain 
surrogate function was seen to notably enhance com-
putational as well as quantitative performance of direct 
parametric image estimation. 
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