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1. Introduction

 ecision making is defined as the ability 
to choose between different alternatives 
[1]. Regardless of how much the decision 
situation is complex, each decision mak-
ing process includes three stages of form-
ing preferences, selecting and executing 

actions, and evaluating the outcomes [2]. 

Today, functional magnetic resonance imaging (fMRI) 
technique is the most popular method used for the in-
vestigation of cognitive brain functions [3, 4, 5]. For 
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Human beings can determine optimal behaviors, which depends on the ability to make planned 
and adaptive decisions. Decision making is defined as the ability to choose between different 
alternatives.

Purpose:  this study, we have addressed the prediction aspect of human decision making from 
neurological, experimental and modeling points of view. 

Methods: We used a predictive reinforcement learning framework to simulate the human 
decision making behavior, concentrating on the role of frontal brain regions which are 
responsible for predictive control of human behavior. The model was tested in a maze task and 
the human subjects were asked to do the same task. A group of six volunteers including three 
men and three women at the age of 23-26 participated in this experiment.  

Results: The similarity between responses of the model and the human behavior was observed 
after varying the prediction horizons. We found that subjects with less risky choices usually 
decide based on considering long term advantages of their action selections, which is equal 
to the longer prediction horizon. However, they are more susceptible to reach suboptimal 
solutions if their predictions become wrong due to some reasons like changing environment 
or inaccurate models.  

Conclusion: The concept of prediction result in faster learning and minimizing future losses 
in decision making problems. Since the problem solving in human beings is very faster than a 
trial and error system, considering this ability will help to describe the human behavior more 
desirably. This observation is compatible to the recent findings about the role of Dorsolateral 
Prefrontal Cortex in prediction and its relations to Anterior Cingulate Cortex with the ability of 
conflict monitoring and action selection. 
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D
this purpose, some cognitive tasks should be designed, 
under which the behavior of the subjects and their brain 
activity is being observed. 

There are a huge number of studies which have used 
these tasks together with statistical methods to define 
the involvement of the specific brain areas in various 
cognitive tasks [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. These 
studies have reported some patterns of brain activity, 
based on which there are many hypotheses about the 
function of various brain regions in higher order tasks 
like decision making.
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 Moreover, some attempts of the recent years are 
dedicated to the application of theoretical methods for 
modeling, explanation and prediction of biological 
mechanisms. In this regard, it has become very useful 
to explore the ideas from reinforcement learning theory 
to the psychology of reward-based cognitive functions 
because of the established evidences on existing many 
common aspects between them [15-26]. The develop-
ment of biologically inspired models could have many 
advantages in studying cognitive functions of the brain 
as they do not have the same limitations as the study of 
real subjects do. 

One of the important aspects of human decision mak-
ing refers to the prediction and anticipatory capabilities 
[27]. Although there have been many studies focusing 
on the role of prediction in decision making, most of 
which are limited to the neural level of only predicting 
the reward signal, for example a few seconds before its 
delivery [11, 13, 14, 28, 29]. 

In this study, we have addressed the prediction aspect 
of human decision making from neurological, experi-
mental and modeling points of view. Although our study 
is not limited to the neural level, we have considered the 
brain regions involved in prediction as modules with a 
defined function and investigated the overall effect of 
interaction between these regions on human decision 
making behavior.

For this purpose, we first introduced the most im-
portant brain regions involved in prediction and, then, 
proposed the appropriate reinforcement learning (RL) 
architecture to model this process. Finally, we applied 
a maze task to simulate the introduced model, and de-
signed the same environment for human participants to 
have an index to evaluate the model’s function.

2. Methods

2.1. Neurological Aspect

Today, it is revealed that human beings employ a rein-
forcement learning process to decide between alterna-
tive options [14, 28]. Several cortical and sub-cortical 
regions are involved in a decision making process, most 
of which have a reward related activity [13]. 

Although a great number of brain regions may be in-
volved in reward processing, the activity of Amygdala, 
Striatum and the Prefrontal, Orbitofrontal and Anterior 
Cingulate Cortexes are reported in most of the recent stud-
ies [2, 3, 5-7, 10, 12, 30-38]. 

Coricelli and his colleagues have distinguished two 
levels of reward processing in the brain [31]. First-level 
processing is based on signaling within dopaminergic 
neurons in which the brain is not able to discriminate 
between different rewards (alternatives). Reward pro-
cessing in the second level is related to the neuronal ac-
tivity in regions such as the Orbitofrontal Cortex (OFC), 
Anterior Cingulate Cortex (ACC), and, perhaps, the 
Amygdale [31]. 

In the present study, we will focus on the second level 
and the way it could provide us with proper predictions 
of future events. 

2.1.1 Amygdale and Reward Production  

Amygdale is a neural substrate involved in the moti-
vational aspect of decisions [3, 39]. This region encodes 
external or internal desirability of actions in terms of re-
wards. External reward is given by the environment as a 
result of doing actions while internal reward refers to the 
self-satisfaction of doing a special action which is related 
to the emotional content of that action. Amygdale also 
involves in emotional processing of events [2, 31]. 

2.1.2. DorsoLateral PreFrontal Cortex and future 
Prediction 

DorsoLateral PreFrontal Cortex (DLPFC) is known 
as a neural substrate for working memory, activation of 
which have been reported in most of decision making 
tasks [1, 2, 13, 29, 35]. Working memory refers to the 
ability of DLPFC for transient representing, maintaining 
and manipulating of task-relevant information which is 
not immediately present in the environment [40, 41]. 

Based on this ability, DLPFC is a substrate for model-
based processes and is able to predict future state and 
reward expectancy in a predictable environment [4, 29]. 
In other words, a temporal model of the current deci-
sion state will be formed in the working memory, using 
which the DLPFC is able to predict future states and 
plan a sequence of future actions. 

2.1.3. Anterior Cingulate Cortex and Action Selection

The Anterior Cingulate Cortex has a central role in the 
action selection and making voluntary choices [6, 10, 
33, 35, 36]. ACC is closely connected to the motor sys-
tem and its lesions impair reinforcement-guided action 
selection [24, 29]. 

The randomness in action selection, which should be 
controlled during the learning process, is called explora-
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tion-exploitation problem. It is suggested that ACC can 
generate these exploratory actions in order to control the 
exploration in a novel or changed environment [33]. 

  ACC has also been suggested as a monitoring center 
for detecting and managing response conflicts which 
could arise between mappings of stimuli-response in the 
working memory [35]. 

Cohen and his colleagues have confirmed that ACC 
engages in behavioral control, error monitoring, and re-
ward calculations [6]. 

A recent review has suggested that dorsal anterior 
cingulate cortex (dACC) specifies control signals that 
maximizes estimated expected value of control which, 
then, will be implemented to make changes in informa-
tion processing in other regions of the brain to perform 
a specified task [42]. 

2.1.4. OrbitoFrontal Cortex and Action Evaluation

OrbitoFrontal Cortex (OFC) plays a critical role in de-
cision making process [6, 11, 31, 33]. Correlations have 
been found between the magnitude of outcomes and the 
OFC’s activity [11]. 

Patients with lesions to OFC incline to prefer risky de-
cision strategies regardless of the long-term outcomes 
of those strategies. OFC removal in rats disables them 
to guide their behavior based on the reward evaluation 
[33]. OFC can also integrate cognitive and emotional 
information due to its interactions with Amygdale [31].

ACC and OFC receive similar reward information 
through connections with the Ventral Striatum and 
Amygdale. However, OFC has relatively greater links to 
the stimuli information while the ACC is more bounded 
to the spatial and motor systems [33]. The probable role 
of the OFC is, then, to update representation of values 
and bias responses according to their relative reward 
value [6]. 

2.1.5. Striatum and Error Prediction

It is well demonstrated that Dopaminergic (DA) 
neurons (especially in Ventral Striatum) engage in 
processing reward stimuli [3, 31, 33, 34, 36]. DA 
neurons are activated by the stimuli associated with 
reward prediction, and it is suggested that these neu-
rons represent error in the prediction of future reward 
[1, 2, 13, 38]. 

Tanaka and his colleagues suggest that the OFC-ven-
tral striatum loop is involved in action learning based on 
the present state, while the DLPFC-dorsal striatum loop 
acts based on the predictable future states [13].  

2.1.6. Functional Relationships

According to the mentioned findings, we can extract 
the following functional relationships between various 
brain regions during a predictable decision making task:

• Sensory information together with other informa-
tion about the current decision state are recalled from 
related brain areas into the DLPFC where a temporal 
model of environment will be formed.

• DLPFC provides proper predictions about the future 
states and rewards based on this model. Because of 
the limited space of working memory, a limited num-
ber of states could be processed simultaneously at 
each decision step. We have interpreted these limited 
states as prediction horizon which will be updated af-
ter transition to the next step.

• The desirability of each action selection is defined 
by means of rewards. Amygdale is a substrate which 
provides us with reward signals in accordance with 
the external or internal emotional content of actions.

• In the Ventral Striatum, Dopaminergic (DA) neu-
rons provide prediction error which occurs during the 
processing of reward signal. OFC has access to the 
information about reward, prediction error and the 
predicted future states, enabling it to evaluate the pre-
dicted future states [33]. 

• Finally, ACC will select the appropriate actions 
based on OFC evaluations to be sent to the motor 
units of the brain. At the same time, adjustments to the 
model will be done in DLPFC if conflict information 
is reported from ACC. This conflict can be detected 
by comparing the acquired accumulated rewards with 
those expected according to the model. 

After several times of successful selection of a se-
quence of actions which have always guided us to the 
maximum reward, those actions will be considered as 
a unique option. It means that when exposed to the first 
state of a sequence, all of the actions of that sequence 
will be selected automatically one after another without 
any need to search for other optimal actions. This is the 
concept of hierarchy in our decisions which is fully de-
scribed by Botvinick et al. [15, 26]. Options are valid as 
long as they provide us with the maximum expected re-
ward.  The benefit of forming options is to speed up the 
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decision making process through avoiding redundant 
repeats. Performing of options will be done by a lower 
cognitive level of the brain hierarchy. Basal ganglia is 
suggested as a neural substrate where options will be 
formed and controlled [22]. 

Although this hierarchy has a critical role in our re-
sponses , we have only concentrated on the first (con-
scious) level of decision making in the present study, 
emphasizing the role of predictions in a decision mak-
ing process. Therefore, we will not insert any option 
learning in the model. Figure 1 is a schematic diagram 
of the above described interactions.

Figure 1. The relationship between different brain areas in a predictable decision making task. Arrows represent the informa-
tion flow. Sensory information is received in the midbrain which results in producing reward and reward prediction error 
signals in Amygdale and Striatum, respectively (1). Based on the information recalled from related brain regions (2), a model 
of the current decision step will be formed in DLPFC using which DLPFC provides prediction about future states (3). The OFC 
has access to the information about the reward, prediction error (4) and the predicted future states (3). It can evaluate predic-
tions by means of error information. Finally, ACC will select appropriate actions based on OFC evaluations (5) to be sent to 
the motor units of the brain (6). At the same time, adjustments to the model will be done in the DLPFC if conflict information 
is reported through ACC (7). 

2.2. Modeling of the Relationships

  Reinforcement learning theory is known as a power-
ful method to explain reward-based activity of the brain. 
Many similarities have been suggested between the ele-
ments of this method and the related neural mechanisms 
[15, 16, 21, 25]. 

RL addresses the interaction between an agent and the 
environment. RL schemes are formulated in terms of 
Markov decision process (MDP) as an optimal control 
problem [43]. 

The main elements of MDP are state (s), action (a), 
reward (r), transition probability P(s’|s,a), and policy (π) 
[43]. Reward is a scalar value which indicates instanta-
neous goodness of an action. The objective of the agent 
is to maximize accumulated rewards toward the future, 
which is done by improving its strategy. Such strategy 
is called a policy which is a mapping from each state 
and action to the probability of choosing that action. Es-
timation of the reward accumulation is called the value 
function V(s).

P(s’|s,a) is the probability of reaching state (s’) by se-
lecting an action (a) at state (s), which is usually un-
known. Temporal-deference (TD) learning methods are 
the reinforcement learning solution algorithms which 
try to approximate the value function based on the 
agent’s experience without any requirement to know the 
transition probabilities. We have used an Actor-Critic 
architecture for solving the RL problem. 

Actor-Critic is a TD method with a separate memo-
ry structure to represent the policy independent of the 
value function [43]. The Actor selects actions accord-
ing to the policy based on a set of weighted associa-
tions from states to actions called action strengths. The 
Critic maintains a value function associating each state 
with an estimate of an accumulated reward expected 
from that state. Both the action strength and the value 
function must be learned empirically. At the beginning 
of training, action strengths and state values are initial-
ized to zero. In our task, actions are deterministic which 
means the transition probability for each state and cho-
sen action is one, but it does not impose any limitation 
to the model.
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Actor-Critic implementation is done according to Botv-
inick et al. formulation [15]. The Actor includes a matrix 
of real-valued strengths (W) for each action in each state. 
The Critic maintained a vector V of values, attaching a 
real number to each state. Action strengths (W) and value 
function (V) will be updated using temporal-difference 
(TD) prediction error as shown in Equation (1):

                                          (1)

TD- prediction error (δ) is computed according to 
Equation (2):

                                                                                           (2)
 

Where γ is a discount factor and αC, αA are the learn-
ing rate parameters. St+1 is the next state and rt+1 is the 
acquired reward related to the next state.

A positive prediction error will increase the value of 
the previous state and the tendency of reselecting the 
chosen action at that state. 

Action selection is according to the Softmax equation 
(Equation (3)):

                                                                                          (3)

Where P(a) is the probability of selecting action (a) at step 
(t); W(st,a) is the weight for action (a) in the current state; τ 
is a temperature parameter which controls the exploration- 
exploitation tendency; and A is a set of all actions [15]. 

We have added a prediction part to the Actor-Critic 
structure to address a model of human decision mak-
ing process which includes working memory. For this 
purpose, it is necessary to have an internal model of the 
external environment like all other predictive structures. 
Given the current state and action, this model will return 
next state and corresponding reward [43]. 

Agent begins from a start state, and recalls a part of the 
model which is related to the current state before choos-
ing any action. Then, agent estimates the value of going 
to each of the neighboring states using an available part 
of the model and updates the value function of the related 
neighbors. How far from the current state one can evalu-
ate, depends on the prediction horizon. We have consid-
ered one and two steps ahead prediction horizons. Figure 
2 shows the algorithm used to predict future states.

Figure 2. The prediction algorithm.

Considering the neural mechanisms introduced in sec-
tion 2.1 and the introduced RL structure, we can extract 
the following similarities between them: 

ACC involves in the action selection so it could be 
modeled as Actor which includes a matrix of strength 

weights. The goodness of the transition to each state is 
evaluated by the Critic which has the same role as OFC 
does in neural system.

Both state value and action strength are updated by 
means of prediction (TD) error which is produced by 
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Dopamine neurons. Moreover, serotonergic system 
controls the time scale of evaluation (γ) and Acetyl cho-
linergic system controls the learning rate (α) [16]. 

Working memory (DLPFC) has a limited capacity in 
number of states recalling simultaneously which is equal 
to the prediction horizon in the RL structure. Therefore, 
the proposed algorithm for prediction is similar to that of 
working memory. In simulations, we have assumed that 
a model of environment is available, which corresponds 
to the internal model in working memory, but agent could 
have access to only a part of it at each decision step. 

Amygdale involves in representation of rewards. Here, 
we have considered only the external rewards. This region 
is modeled using a matrix of scalar values which repre-
sents the reward amount for each state of the environment.

The proposed model for decision making process to-
gether with its RL realization is shown in Fig. 3.
     

  

           
   
  

 
  

Figure 3. The RL realization of the functional model of Figure 1.

2.3. Simulation Task

To examine the model, we have chosen two maze 
tasks shown in Fig. 4 (a and b), in which RL agent 
has to go from the start state to the goal state taking a 
minimum number of steps. There are four actions, up, 
down, right and left in each state which take the agent 
deterministically to the corresponding neighboring 
states, except when movement is blocked by an ob-
stacle or the edge of the maze in which case the agent 
remains where it is and receives the reward of  -1. Re-
ward is zero on other transitions except into the goal, 
on which it is +1. We have run the simulations under 
three conditions: when there is no prediction horizon, 
one step ahead prediction horizon and two steps ahead 
prediction horizon (Fig. 4 (c and d)). The two steps 
ahead prediction horizon includes those states which 
could be achieved by performing two consequent al-
lowed actions. Therefore, this horizon does not have 
the shape of a complete square. The location of start 
and goal states and the pattern of the mazes are similar 
for both horizons.

The results of the simulations are shown in Fig. 5. It 
shows the learning curves of the three mentioned con-
ditions. These curves are the number of steps to goal 
per episode which are averaged over 10 runs for each 
condition.

2.4. Experimental Task

We put the same mazes of the simulation task into an 
experiment to evaluate the behavior of human subjects. 
The environment is designed utilizing Matlab (GUI) 
software as shown in Fig. 6.

Figure 4. a, b) the environments of the simulation and the experimental tasks. S and G refer to the start and goal states, 
respectively. c) One step ahead prediction horizon considering that the dark state is the current state d) two steps ahead 
prediction horizon.
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Figure 5. Number of steps per episode for three different conditions of a task in the small (a) and big (b) mazes: when there is 
no prediction horizon, one step ahead prediction horizon and two steps ahead prediction horizon.   

Figure 6. The designed environment for experimental task. In this environment, multiplication sign refers to current state. The 
goal state is shown in green, the walls are brown and the paths are light blue. The dark blue states are hidden states which 
cannot be seen. In each decision state, a limited space of the maze is visible which represents the prediction horizon. This view 
gets updated after going to the new state by clicking on it. Newly selected state could be one of the four adjacent states in north, 
east, south and west of the current state, provided that these states are not walls. No transition will take place by clicking on the 
walls, hidden states or states which are not adjacent to the current state. For the purpose of this experiment two horizons are 
available: one step ahead (a) and two steps ahead (b), which can be chosen from the view menu. 

In this environment, the current state is defined by 
multiplication sign. The goal state, walls and paths are 
shown in green, brown and light blue, respectively. 
The states shown in dark blue are hidden states. Tran-

sition to the next chosen state is done by clicking on 
it. Player is allowed to go to the four adjacent states in 
north, south, east and west of the current state. Other 
states are inactive so that no transition will take place 
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by clicking on them. A limited view around the current 
location is visible which is called prediction horizon. 
This horizon gets updated after going to the new state. 
For the purpose of this experiment, two horizons are 
available: one step ahead horizon and two steps ahead 
horizon which can be selected before the beginning of 
the task from the view menu. 

Before beginning the experiment, subjects are asked 
to move through the environment to get familiar with 
the moving procedures. When it is confirmed that they 
have learned how to move, the task starts.

At the beginning, subjects are placed in the start state 
and try to reach the goal in a trial and error manner. 
They are not aware of the location of the start and goal 
states and the shape of the maze. They are only in-
formed about the number of minimum steps from start 
to the goal. After reaching the goal, all of their visited 
states will be saved in an excel file, and they begin the 
next episode with the same start and goal positions.  
After a few repeats, they can estimate the goal location 
in relatation to themselves and, then, with respect to 
the visible horizon, they can predict how close they 
are to the goal which helps them to choose the correct 
direction.

Subjects will repeat the same episode until they reach 
the goal in minimum steps. The number of repeats de-
pends on the learning and prediction ability of the sub-
jects. After finding the optimum path, they are asked to 
repeat it for two more times, which ensure us that the 
optimum solution is not achieved by accident.

3.  Results

A group of six volunteers including three men and 
three women at the age of 23-26 participated in this 
experiment. Participants were recruited via announce-
ments on the Amirkabir University of Technology 
campus. Each of the subjects did four tasks including 
two mazes with two different horizons. Since the po-
sitions of the start and goal states remain unchanged 
as the horizon increases, the tests were taken in two 
days. In the first day, they found the goal in two maz-
es with one step ahead horizon and in the second day 
with two steps ahead horizon. Meanwhile, they are 
not told that they are experimenting the same mazes 
as the previous tasks. This will ensure us that the only 
parameter which affects the behavior of the subjects 
is the changing of the prediction horizon.

Figure 7. The visited states 
and acquired paths in four 
consequent episodes for one 
of the participants. Gray 
background represents maze 
environment and blue dots 
and lines refer to the visited 
states and paths, respective-
ly. Figures in the left column 
relate to the big maze while 
figures in the right column 
are those for the small maze. 
Panels from top to bottom of 
each column represent the 
visited states and acquired 
paths in the first, second, 
third and last episodes, re-
spectively. The paths of the 
bottom panels are optimal 
paths with minimum num-
ber of visited steps. 
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Figure 8. The number of steps per episode for experimental tasks. Column (a) is for the small maze and column (b) is 
for the big maze. The panels in the same row are related to the same subject. Each panel includes two graphs which 
are the learning curves of the same subject with one and two steps ahead prediction horizons.  

Fig. 7 shows visited states and acquired paths in 
four consequent episodes for one of the participants. 
Figures in left column relate to the big maze and fig-
ures in right column are those for the small maze. 
Panels from top to bottom represent the acquired 
paths in the first, second, third and last episodes, re-
spectively. It can be seen that the number of visited 
states are reduced from top to bottom panel, and the 
shape of paths get closed to the optimal path which 
shows the learning process. The paths of the bottom 
panels are optimal paths with a minimum number of 
visited steps. 

Learning curves (number of steps per episode) of the 
sixth participants are shown in Fig. 8. Left and right 
columns relate to the small and big mazes, respectively. 
Panels depicted in each row relate to the same subject. 
Each panel includes two graphs which are the learning 
curves of the same subject with one step ahead (distin-
guished with circles) and two steps ahead (simple line) 
prediction horizons.

4. Discussion 

With respect to the results shown in Fig. 8, it is evi-
dent that the more the prediction horizon increases, the 

faster the convergence rate of the responses becomes. It 
means that with a bigger horizon, the optimum path is 
found more quickly. That is because of the fact that with 
a bigger horizon, we can process more information in our 
working memory so that we will have a better estimation 
of where we are and what the possible position of the goal 
in relation to our current place would be. This result was 
also confirmed in our simulations (Fig. 5).

Moreover, by comparing three top graphs of Figure 
8 with three bottom ones for each maze, two decision 
making strategies are detectable. For the sake of a better 
comparison, we have depicted the learning curves of all 
of the subjects for the small maze in Figure 9.

   According to the experimental results, some of the sub-
jects have a slope response while others have a flat one. 
Subjects with the slope response are those who persist 
on exploiting their previous experiences. Therefore, 
their decisions are less risky. They could better remem-
ber their previously passed states so that they can con-
struct a better internal model of the environment in their 
working memory, and have a longer prediction horizon. 
Due to this bigger prediction horizon, they can better 
estimate the approximate location of the goal in relation 
to themselves after one or two episodes.  In the next re-
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peats, they only try to shorten their previous path using 
their predictions.

Although the mentioned group can act faster than the 
group with a flat response, they are more susceptible 
to reach the suboptimal solutions. In this task, if their 
selected states in the first episodes do not include the 
shortest path, their internal model will be incomplete. 
They will never find the shortest path since they choose 
actions more based on this model and less randomly. 
An example of this sub-optimality is seen in Fig. 10 
which shows the chosen paths of one of the mentioned 
subjects in the small maze.

The shortest path of this maze includes 17 states. 
This subject has reached the goal from the right side 
of the maze for the first time (as shown in panel (a) 
of Fig. 10) while the shortest path is through the left 
side. He has tried to optimize the same path in his 
next attempts (panel (b, c) of Fig. 10) so he could not 
find the shortest path at the end of his trials (panel d 
of Fig. 10). 

On the other hand, the second group of participants 
are those who like to take riskier actions. They have a 
smaller prediction horizon but they are still less prone 
to reach sub-optimal solutions. 

Figure 9. The learning curves of all of the sixth subjects for the small maze and one step ahead prediction horizon.

Figure 10.  The chosen paths by one of the subjects in the small maze. Gray background represents maze environment. In each 
panel, blue dots are visited states while blue line shows acquired path. Panels (a, b, c, d) represent passed states in the first, 
second, and third episodes, respectively. Panel (d) relates to the last episode (fourth) which is a sub optimal solution.
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Some of the previous studies have modeled these two 
kinds of decision strategies using different probabilities 
in action selection [17, 18, 19]. However, in a predict-
able environment (which means that people have learnt 
it before), human subjects always rely on their previous 
knowledge of that environment (internal model) unless 
they understand that their knowledge is no more valid. 
Therefore, we believe that this observation could be 
modeled more efficiently using various prediction hori-
zon concepts because it is more compatible to the recent 
findings about the role of DLPFC in prediction and its 
relations to ACC with the ability of conflict monitoring.

In conclusion, the concept of prediction will result in 
faster learning and minimizing future losses in decision 
making problems. Since the problem solving in human 
beings is very faster than a trial and error system, con-
sidering this ability will help to describe the human be-
havior more desirably.

Although our model acted like the human subjects 
qualitatively, it is not still a complete one because of 
the quantitative differences between the results. We 
believe that another important ability which has to be 
considered for a more complete modeling is the concept 
of hierarchy in decision making process because it will 
help us to do well learned tasks automatically and con-
centrate on solving the new problems which results in 
very fast responses. 

In the future works, we can design some experiments 
to show the importance of hierarchy and ,then, add it 
to the model. Also, we can investigate the adaptation 
ability in decision makings which is more related to 
the function of ACC in conflict detection and updat-
ing of the internal model. This is especially important 
when we have a dynamic environment. 

Moreover, the tasks can be done on patients who suf-
fer from decision making deficits. Then, we can try 
to simulate their results by varying the parameters of 
the proposed model. This will help us to follow which 
region is more susceptible to damage in each case. A 
good candidate of patients for this could be those with 
ventromedial prefrontal cortex lesions who suffer from 
myopia in decision making [44]. 

Finally, it is remarked that the proposed model and 
experiments design in this study are new and due to 
limited number of the participants (similar to [7, 8, 17, 
23]), the results show primarily founding; further ex-
periments with larger number of subjects are required 
for better results validation.
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