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Purpose: Intra-operative ultrasound imaging as a non-ionized and being real time has been 
found very applicable as an intra-operative update of patient data in image guided neurosurgery 
system. The main point is the accurate registration of intra-operative with pre-operative images. 
Due to speckle noise in ultrasound images, scale differentiation between MR and ultrasound 
images and their different resolution, an accurate registration of ultrasound images with pre-
operative MR images is a challenging problem.

Methods: In this paper the effect of different steps of the Iterative Closest Point is considered 
and, then, the best modified version of ICP is introduced for this type of data. To perform this 
study, a Poly Vinyl Alcohol-Cryogel brain phantom is used which allows simulating brain 
deformation. The performance of the best version of ICP is compared to a well-known point 
based algorithm, Coherent Point Drift in terms of accuracy and speed. 

Results: The results proved CPD algorithm was more robust than ICP algorithms in the presence 
of noise, although with a more computational cost. Changing different steps in conventional ICP 
has led to improve the performance of the ICP. As the results of our phantom study confirm the 
best version of ICP has not only achieved an accuracy close to CPD method, but also in a much 
faster approach.

Conclusion: According to a trade off between the speed and accuracy of nine implemented  
versions of ICP algorithms, using some modified version of ICP is preferred to CPD method. 
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1. Introduction

n recent years image guided surgery (IGS) 
system has become a must for conducting 
surgeries from simple to complex surgical 
procedures. One of the main areas for using 
IGS systems is neurosurgery. Image guided 

neurosurgery systems (IGNS) update 3D patient infor-
mation using computer-tracked tool and project pre-
operative Computer Tomography (CT) or Magnetic 
Resonance Image (MRI) data into the operative field 
to an accurate localization of important anatomic struc-
tures such as carotid artery or cranial nerves (especially 
if they are deep in the tumor such as medial peritoneal 

I
wing Meningioma or Transsphenoidal pituitary surgery) 
as well as defining tumor margins for a safe maximal re-
section of the tumor during the surgery. The key point 
is the accuracy of intra-operative and pre-operative im-
age registration which has a direct impact on the final 
target registration error over anatomical point. A major 
source of error in IGNS system is Brain movement and 
deformation which invalidates the pre-operative image 
coordinates. This deformation in the brain is a conse-
quence of various combined factors: gravity, leakage of 
cerebro-spinal fluid (CSF), retraction and resection of 
tissue, edema, swelling of brain structures, and admin-
istration of drugs [1-5]. A cure to this problem would 
be to obtain the new deformed coordination of patient 
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using an intra-operative imaging system such as MRI, 
CT and ultrasound. These new data, if correlated to the 
pre-operative data, can be used directly to measure and 
correct brain shift. Intra-operative MRI, as a most com-
mon modality, can provide the surgeon with updated 
anatomical images several times during a surgery pro-
cedure. It can produce excellent images of the brain’s 
anatomical structures and is being used to study brain 
deformation but it has its limitations. A dedicated intra-
operative MRI system requires a substantial investment 
for the scanner and equipping the operating room (OR) 
with MR-compatible instruments, nevertheless intra-
operative MRI has been used as gold standard for intra-
operative and pre-operative registration accuracy during 
neurosurgery [6-8].

CT images, as one of the primary modalities which 
were used intra-operatively, suffer from lower soft tis-
sue contrast compared to MRI; therefore, intra-oper-
ative CT images are less functional for brain surgery. 
Although new approaches for reducing the exposure to 
the patient and OR staff were proposed, the radiation 
dose to the patient is one of the most important limita-
tions of the using CT scans in OR. Besides, the physical 
space occupied by the CT scanner in the OR is another 
problem [3, 9, 10]. 

Ultrasound, the alternative imaging system, has a long 
history of intra-operative using in neurosurgery. Intra-
operative ultrasound in neurosurgery for the first time 
was published by using one-dimensional A-mode im-
ages in 1950. [11, 12]. Afterwards, in the early eighties, 
the first work using 2D real-time B-mode  ultrasound 
imaging was published for brain surgery [13]. They re-
ported that ultrasound may be advantageous for surgical 
planning and biopsy procedures because of its reliable 
information of intracranial anatomy. In recent years, in-
tra-operative ultrasound was used for tumor localization 
and determining the tumor margin in many patients who 
underwent neurosurgery because of its advantages such 
as being non-ionized, costless, real time and portable, 
having little distortion and OR equipment compatibility 
. It was used for the first time in 1994 by Trobaugh for 
correlating with preoperative images in Neuro-naviga-
tion systems [14-21]. The registration of real time US 
with pre-operative MR images will allow the surgeon 
to accurately localize their instruments in the opera-
tive field, resulting in MIS procedures. Unfortunately, 
the limited field of view of ultrasound compared to the 
pre-operative images (MR or CT) as well as its image 
quality are two main problems in intra-operative ul-
trasound image registration. The quality of ultrasound 
images is highly affected by speckle noises. However, 

recently special processing modules were added to the 
image acquisition system in order to suppress the speck-
les and also to enhance the information content in the 
ultrasound image but the ultrasound images suffered 
from the speckles. 

On the other hand, brain deformation is a non-rigid 
problem. Although many algorithms are in place for this 
non-linear and multimodal registration, finding registra-
tion algorithm to cope with the problems in the ultra-
sound images is a challenge. As an example, intensity 
based registration algorithms which are using similarity 
measures such as mutual information, correlation ratio 
or sum square differences are used extensively in mul-
timodal registration, however, due to speckle noise in 
US images, scale differentiation between MR and ultra-
sound images and their different resolution, this type of 
similarity measures are not suitable for ultrasound-MR 
image registration. In this study, we have concentrated 
on feature-based approaches leading to point based reg-
istration of multimodal images that are suitable for non-
rigid registration [22].

Extraction of features, transforms our gray scale image 
into dense sets of discrete points. A demanded point set 
can be extracted from an image based on the locations 
or the orientation of the corners, boundary points, edge 
points or salient regions. These points can represent 
geometric and intensity properties of an image. How-
ever, it should be noted that the point based matching al-
most as well as intensity based registration dealing with 
speckles. Because of the feature extraction in ultrasound 
images affected by noise, speckle reduction becomes a 
must before ultrasound image registration. In our previ-
ous works, it was proposed to apply a de-noising fil-
ter before feature extraction followed by segmentation 
which could be useful for reducing outliers, missing 
points and speckles [23]. At the other end of the prob-
lem, point based registration methods iteratively find 
correspondences between points and, then, estimate the 
transformation parameters based on these correspon-
dences. Therefore, high dimensionality of point sets is a 
problem which is also taken into account [24-26].

There are many algorithms in the literature which have 
been used for point based registration [24, 27]. One of 
the most common algorithms is the conventional Itera-
tive Closet Point (ICP) algorithm. ICP is the most popu-
lar amongst others due to its simplicity and low compu-
tational complexity. The ICP algorithm which is used 
for the alignment of two clouds of points iteratively 
assigns  correspondences based on the closest distance 
criterion and finds the least-squares transformation  re-
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lating the two point sets [28]. Despite the high speed 
convergence of the ICP algorithm, it maybe converged 
towards   local  minima instead of the global minimum. 
Also, The ICP algorithm requires that the initial phase 
of the  two point sets is adequately close to each other 
and its performance is highly sensitive to the initial 
relative. To overcome such limitations of conventional 
ICP, some modified versions of ICP have been intro-
duced based on the first concept of ICP algorithm. 
These modified versions seek to improve robustness 
to noises and outliers, speed of convergence and ac-
curacy of conventional ICP [29, 30].

In intra-operative image registration, the algorithm’s 
computational time is of great importance. Therefore, 
despite the mentioned limitations of ICP, this algo-
rithm cannot be completely discarded due to its time 
efficiency.

We have undertaken a comprehensive study and 
comparison of the performance of ICP and its ap-
plicable versions to brain shift calculation applied 
on the brain phantom data. Then, the results of the 
best modified version of ICP were compared with the 
well-known and accurate probabilistic registration 
method called as Coherent Point Drift (CPD) [31] 
in terms of registration accuracy and computational 
time. Besides, the effect of pre-filtering on the per-
formance of the best versions of the ICP and CPD is 
studied.

The paper is organized as follows. Sections B.1, B.2 
and B.3 describe a summary of pervious works about 
the designed phantom and its data acquisition, de-nois-
ing method and segmentation of Ultrasound images. 
Section B.4 describes the modified versions of ICP 
and CPD methods are studied in part B.5.. Section C is 
dedicated to experimental results and conclusions are 
written in Section D.

2. Method and Material

A schematic overview of the proposed method is given 
in Fig. 1.

2.1. PVA-C Phantom of the Brain 

To evaluate and validate the image registration algo-
rithms in a condition close to a real clinical setting, a 
Brain phantom which was carried out in our previous 
work is used [23]. 

Figure1. A schematic overview of the proposed method

The PVA-C phantom was made of three layers. The 
first layer, PVA-C 10%, for brain tissue and the second 
layer, PVA-C 15%, for ventricle simulation were used. 
The third layer was designed in order to be able to apply 
the deformation more conveniently. Some tubes with 
3mm diameter to mimic vessels and 3 Foley catheters 
were inserted in different depth and direction. Then, 
the phantom was deformed by filling balloons of Foley 
catheters once with 10 ml water and again with 20 ml 
water. Then, Ultrasound and MR images were acquired 
before and after deformation respectively (Fig. 2). 

Figure 2. (a) PVA-C phantom of the Brain. (b) MRI image be-
fore deformation in axial view. (c), (d) Corresponding MRI 
images and Ultrasound images after deformation. 
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2.2. Ultrasound Image De-Noising 

Despite the advantages of diagnosis ultrasound, it 
suffers from speckle noise which restricts the quality 
of its images. There have been a variety of techniques 
to speckle reduction in literature. In our previous 
work in 2012, we focused on common single scale 
methods such as Median, wiener and Lee which are 
mainly based on the intensity of the images and diffu-
sion filters. These  are based on the gradients of inten-
sity of the images because single scale methods have 
a reasonable computational time [23]. As shown pre-
viously, SRAD filters had significant differences with 
median, wiener and Lee filters in terms of the value 
of signal to noise ratio and with other diffusion fil-
ters such as Weickert, PM, Catte-PM in terms of Root 
Mean Square Error (RMSE), correlation coefficient 
and edge preserving index. Consequently, it had the 
best performance to de-noise our phantom ultrasound 
images (Fig. 3). 

 

 

Figure 2. (a) original US image. (b) Ultrasound images after 
applying SRAD filter.

2.3. US Image Segmentation

After selecting a suitable de-noising method to correct 
extraction of features, an efficient segmentation method 
is necessary. In our last work, we concentrated on Chan-
Vese (CV) method as a non-parametric active contour 
based on the level set function concept which has been 
used extensively for image segmentation. Level sets do 
not require any parameterization of the evolving contour 
and also do not need initial boundary which includes 
objects. This model could detect more than one object 
and boundaries in an image which is very important for 
this type of data. Previously, we optimized the param-
eters of CV for ultrasound images of our phantom and, 
then, a canny edge detector was used to edge detection 
of ultrasound  images [23]. 

2.4. Modified Versions of ICP 

The key concept of the conventional ICP algorithm 
can be summarized in two steps:

1) Compute correspondences between the two cloud 
points.

2) Compute a transformation which minimizes dis-
tance between corresponding points.

Iteratively repeating these two steps typically results 
in a convergence to the desired transformation as shown 
in equation1. 

       

                                                                                      (1)    

                    
Where pi , q i denote data points and model points re-

spectively. Also matrix R and T are rotation and transla-
tion matrix respectively which are defined transforma-
tion. The wi is weight correspond to i th pair point.

The ICP algorithm was considered with more detail 
and its steps could be classified into six steps: Selecting 
points, matching points, weighting pair points, rejecting 
points, computing error metric and minimizing the er-
ror metric. To overcome such limitations of ICP, some 
modified versions of it have been proposed by changing 
various stages of the algorithm, from selecting points to 
minimization strategy. 

We have performed extensive experiments to consider 
the performance of these modified versions from stand-
points speed and the accuracy of the registration algo-
rithm. We continue to describe all of these six steps and 
introduce our selected phases in each step.

2.4.1. Selecting Points

Considering only selected points instead of all the 
points before applying the ICP algorithm was proposed 
to reduce computational complexity and it may also 
help to reject outliers. This stage speeds up computa-
tions of the algorithm for the next step. Uniform sub 
sampling, random sampling, selecting points with high 
intensity gradient and many other methods were pro-
posed for this step of ICP algorithm. Random sampling 
of ultrasound data had not a good effect on the ICP re-
sults, perhaps due to the properties of the ultrasound im-
ages of phantom. The uniform down sampling with rate 
¼ was chosen experimentally for sampling the points of 
ultrasound image.
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2.4.3. Weighting Pair Points

Allocating different weights to the corresponding pair 
could be useful to reduce the effect of outliers. These 
weights can be defined based on distance, color, curva-
ture and tangent normal. In this step, we use the identi-
cal weight (equal to one) for all point pairs in the dataset 
once and another one linear fuzzy weight according to 
the pair points’ distances are assigned to them. It seems 
that this weighting may be useful to reduce the effect of 
outliers in RMS errors.

2.4.4. Rejecting Points

Rejecting points are similar to assigning weights to 
corresponding pair points. The purpose of this concept 
is to eliminate outliers to reduce the root mean square 
error. Various strategies can be used for rejecting the 
pairs Such as:

• Rejection of pairs with greater point-to-point dis-
tance compared to predefined threshold.

• Rejection of the worst n% of pairs based on certain 
metric, usually rejecting based on point-to-point dis-
tance.

• Rejection of pairs whose point-to-point distance is 
larger than some multiple of the standard deviation 
of the distances. We tested both the conventional ICP 
algorithm with no point rejection as well as rejecting 
10% of the points with maximum distance. 

2.4.5. Error Metric

One of the most important parts of the ICP algorithm 
is the error measurement which is minimized in the each 
iteration of the algorithm. Point to point and point to 
plane errors are used as a common error metric. Point 
to point criteria minimizes the sum square differences 
between distances of corresponding points in the da-
taset. Whereas point to the plane minimizes the sum 
of differences between source points and the tangent 
Plane which contains corresponding target points. This 
is done by minimizing the dot products of the vectors 

 and normal , where p and q are source and 

2. 4.2. Matching Pair Points

The second stage of ICP that we will describe is find-
ing the corresponding points in two point sets. Many al-
gorithms have been proposed for matching point pairs. 
Finding the closest points in the other mesh is most com-
mon in the matching stage. Instead of using brute force 
in the conventional ICP which is calculating the simple 
Euclidean distance to all neighbor candidates and pick-
ing the closest point, nearest neighbor searching meth-
ods such as KD trees and Delaunay triangulations and 
Projecting the source point onto the destination mesh 
could be used to increase the accuracy of the algorithm. 

Considering the type of our data in this study, Delaunay 
triangulations, Brute force and KD-Tree matching are 
compared in terms of speed and accuracy. 

It should be noted that in a 2-D point set, Delaunay 
matching is performed as follows: Three points form a 
valid triangle if an important point is that the circum 
circle of the triangle must not contain any other points 
from the point set. The Delaunay triangulation is not 
necessarily defined uniquely and might not be defined 
at all. Also, in the KD-Tree matching a tentative back-
tracking search to identify nearest neighbors is used.

Table 1. Nine modified versions of the ICP that were proposed

Method Sampling Matching Rejecting Weighting Error Metric

ICP Non Brute force Non Constant Weight Point to point

ICP-1 Down sampling Brute force Non Constant Weight Point to point

ICP-2 Down sampling Brute force 10% Constant Weight Point to point

ICP-3 Down sampling Brute force 10% Constant Weight Point to plane

ICP-4 Down sampling Delaunay Non Constant Weight Point to point

ICP-5 Down sampling Delaunay 10% Constant Weight Point to point

ICP-6 Down sampling Delaunay 10% Fuzzy weight Point to point

ICP-7 Down sampling Delaunay 10% Fuzzy weight Point to plane

ICP-8 Down sampling KD-Tree 10% Fuzzy weight Point to point

ICP-9 Down sampling KD-Tree 10% Fuzzy weight Point to plane
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target points. Besides, the number of points to make plane 
is an effective parameter on the registration error. These er-
rors can be expressed as 2, 3 equation respectively.

                                                                                   (2)

                              (3)

In the point to plane error metric    denotes the esti-
mated tangent normals at the i th model point.

2.4.6. Minimizing Error Metric

Many solutions have been proposed for minimizing 
error metric. Many closed form solutions, such as SVD, 
are also used for minimization point to point error met-
ric. The SVD is commonly used in linear minimization 
problems. The point to plane problem must be solved 
by generic non-linear methods such as Levenberg-Mar-
quardt, or by linearization of the rotation matrix. This 
problem does not have any closed form solution. SVD 
and Levenberg-Marquardt methods were used for point 
to point and point to plane minimization respectively. 

Based on all the above mentioned steps we obtained 
nine useful modified versions of ICP for this applica-
tion. These versions are named from ICP1 to ICP9 con-
sidering their properties in Table.1. 

2. 5. Coherent Point Drift Method

The CPD method which was introduced as a robust 
probabilistic multidimensional method for non-rigid 
point set registration and considered the alignment of 
two point sets as probability density estimation, with 
motion coherence constraint for the first time was used 
for ultrasound-MR image registration in 2011[32]. In 
this method one point set represents the Gaussian Mix-
ture Model (GMM) centroids and the other represents 
the data points. This algorithm iteratively fits the GMM 
centroids by maximizing the likelihood and finds the 
posterior probabilities of centroids and has been show-
ing good registration accuracy. 

3. Result

For point-based registration, we used the RMSE be-
tween the corresponding points after the registration 
as an error measure in all of the algorithms. The nine 
modified versions of the ICP and the conventional ICP 
are compared to each other and with the CPD method. 

The algorithms were tested on 20 two dimensional 
data containing a mean and a maximum deformation 
of about 17 mm and 21.2 mm respectively. The mean 
and variance of RMS error, mean and variance of con-
vergence time and number of iterations are shown in 
Table.2. A comparison between conventional ICP and 
its modified versions indicates the role of each step in 
ICP algorithm. As expected, down sampling of the ul-
trasound image points speed up the algorithm (Fig.4). 
In spite of the increade in the accuracy of registration 
algorithm in this case, we cannot comment about the ef-
fect of it on the accuracy decisively. Besides, processes 
of rejecting the points have led to increase the speed and 
accuracy of the algorithms (Fig.5).

Table 2. Modified versions of ICP and the conventional ICP 
are compared in RMS error and convergence time with a 
fixed number of iterations. These results are also compared 
to CPD method

Method RMS Error Total (mm) Time (s) Iteration

ICP 2.77±0.03 45± 2 10

ICP-1 2.67±0.07 37± 1 10

ICP-2 2.34±0.03 34± 1 10

ICP-3 2.14±0.02 39± 1 10

ICP-4 2.30±0.07 40 ± 2 10

ICP-5 2.16±0.05 37± 1 10

ICP-6 1.93±0.05 37± 2 10

ICP-7 1.71±0.06 41± 2 10

ICP-8 1.69±0.04 43± 1 10

ICP-9 1.63±0.03 44± 2 10

CPD 1.28±0.06 95± 2 75

Modified versions of ICP and the conventional ICP are 
compared in RMS error and convergence time with a 
fixed number of iterations. These results are also com-
pared to CPD method

Using linear fuzzy weight according to the distances 
of points instead of using constant weight lead to an in-
creased registration accuracy and it does not have any 
impressive effect on the computational time (Fig.6). De-
launay matching has also improved the accuracy of ICP 
algorithm, but it has a negative effect on the speed of 
algorithm for this data set. KD-Tree matching have the 
best result compared to Brute force and Delaunay for 
point matching in accuracy and it is performing slower 
than two others (Fig.7).
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Using point to plane error metric strategy instead of 
point to point error metric, in spite of decreasing com-
putation time of the algorithm, improves the accuracy of 
registration. In point to plane error metric, the number 
of points to make plane is one of the important param-
eters. As shown in Fig.8, when the numbers of points 
are increased the accuracy of ICP is increased, however, 
due to high computational time the number of points 4 
is selected to make a plane.

 Our experiment showed ICP-9 has performed the best 
results in terms of accuracy. Its speed was acceptable 
and was about conventional ICP. The selected, as the 
best configuration among modified versions of the ICP 
uses down sampling of rate ¼, 10% rejection of points, 
using linear fuzzy weights , KD-Tree matching and 
point to plane error metric. 

Figure 4. Effect of down sampling on the speed of the algo-
rithm. 

Figure 6. Effect of weighting on the accuracy of the algorithm.

Figure 8. Effect of number of points in point-plane error metric.

Figure 5. Effect of rejecting on the accuracy of the algorithm.

Figure 7 .Effect of matching on the accuracy of the algorithm.

For the comparison of registration error, the non-rig-
id registration procedure was repeated using only MR 
data set as gold standard. RMS error was calculated 
in MR-MR and US-MR registration for the best ver-
sion of the ICP is compared to CPD results. To evalu-
ate the effect of noise reduction on the performance of 
ICP and CPD, we applied the registration algorithm on 
noisy images (table. 3). By comparing the results in 
table 3, it can be found that de-noising filters are more 
effective on the accuracy of ICP than CPD. After using 
suitable de-noising and segmentation methods such as 
SRAD and CV, the result in ICP-9 was found close to 
CPD result in the accuracy of registration, while the 
execution time of ICP is about half of the CPD time. It 
should be noted that 25 runs were conducted for regis-
tration algorithms. The algorithms are implemented in 
Matlab, and tested on a Pentium4 CPU 2.4GHz  with 
4GB RAM. 
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4. Conclusion 

The utilization of intra-operative ultrasound imaging 
has become very applicable in neurosurgeries for the 
calculation of brain shift. The SRAD filter was imple-
mented and, then the de-noised image was segment-
ed by Chan-Vese method as a non-parametric active 
contour. Consequently, images that contain discrete 
points were achieved. In this paper the effect of pre-
filtering on the accuracy of registration algorithms are 
considered. 

Some modified versions of ICP were compared to each 
other as a well-known method for point based registra-
tion in terms of speed and accuracy registration.

In the ICPs KD-Tree matching performed more ac-
curate than a simple Euclidean distance and Delaunay 
matching. Also point to plane error metric was found 
effective to increase the accuracy of algorithm. To 
reduce the effect of noises rejecting, down sampling 
and weighting of points were used. This version of the 
ICP clearly outperforms the conventional ICP in terms 
of precision. At the other end the accurate and well-
known CPD method requires that each data point rep-
resented by a GMM model. Therefore, it takes more 
time than ICP methods. The uniform distribution is 
also used to account noise and outliers which led CPD 
to be more robust than ICPs in the presence of noise 
and outliers.

Therefore, de-noising filters on the ultrasound images 
have more impacts on ICP performance.

According to a trade off between the speed of the 
best version of ICP algorithm and its accuracy, it is 
recommended to use the best version of ICP as com-
pared to CPD method for de-noised Ultrasound im-
ages.

Table 3. Result of RMS error for ICP-8 and CPD in MR-MR 
and US-MR.

RMSE (mm) With using de-noising 
filters on US images

Without using de-
noising filters on US 
images

ICP-8 CPD ICP-8 CPD

MR-MR 0.91            0.83 0.91 0.83

Ultrasound-
MR 1.63         1.28 2.22        1.39
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