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Abstract 

Purpose: Brain-Computer Interface (BCI) systems are a new channel of communication between human thoughts 

and machines without the aid of neuromuscular systems. Although BCI systems exhibit several advantages, they 

yet have a long road ahead to reach a flawless state. For example, error occurrence is one of the problems in these 

systems, leading to Error-Related Potentials (ErRP) in the brain signal. In this study, Electroencephalogram 

(EEG) signals in the condition of system error occurrence are investigated. Since local information on the EEG 

signal channels alone cannot reveal the secrets of the brain, functional connectivity was used as a feature in this 

research. 

Materials and Methods: In this research, 32 channel EEG signals with a sampling frequency of 256 Hz were 

recorded from 18 participants while interacting with a BCI system which has an interaction error. Two types of 

stimulus were used, including visual and tactile ones. Moreover, the Inter-Stimulus-Interval (ISI) was changed 

during the task. After pre -processing, brain functional connectivity was calculated between all channel pairs in four 

groups (visual, tactile, combined visual-tactile (ISI=3.5), and combined visual-tactile (ISI=2)) using Magnitude-

Squared Coherence (MSC) measure.  

Results: The results showed a significant difference in frontal-right temporal connectivity between correct and error 

classes in tactile stimulation, in visual stimulation significant differences in frontal-occipital connectivity, in visual-

tactile (ISI=3.5) stimulation significant differences in left temporal-occipital connectivity (P-value< 0.001), and in 

visual-tactile (ISI=2) stimulation significant differences in central-occipital connectivity were seen (P-value< 0.01).  

Conclusion: This study shows that using brain functional connectivity features along with local features can 

improve the performance of BCI systems. 

Keywords: Electroencephalogram; Brain-Computer Interface; Error-Related Potentials; Brain Functional Connectivity; 

Statistical Analysis. 
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1. Introduction  

The Brain-computer Interface (BCI) system is regarded 

as a connective bridge between human thoughts and 

computers [1, 2]. Electroencephalogram (EEG) signals 

are commonly used in BCI systems, due to their high 

temporal resolution, simple accessibility and low cost 

[3]. EEG electrodes are mounted on the surface of the 

participant’s head and the electrical activity of the neurons 

is recorded. Subsequently, the signal processing is carried 

out to identify the participant’s command. Today, EEG-

based BCI systems can be categorized in three main 

paradigms, including Event-Related Potentials (ERPs)-

based BCI, Steady-State Visually Evoked Potential 

(SSVEP)-based BCI, and Motor Imagery (MI)-based BCI 

systems [4]. In Motor Imagery-based BCI Systems (MI-

BCI), the participant has to imagine a movement of his\her 

body limb in a specific direction and then in the BCI 

system, depending on the type of motor imagery, a specific 

command will be executed. This command can cover 

a wide range of tasks such as moving a robotic arm, 

controlling a wheelchair, moving a computer mouse 

pointer, and moving a prosthetic limb attached to a 

disabled person [5, 6]. 

Although a lot of brain information can be obtained 

via local brain analysis, this information alone cannot 

reveal all the secrets of the brain. Thus, in addition to 

exploring functional segregation (activation of specific 

brain areas or local brain regions), functional integration 

(Coordinated activation of a large number of neural 

assemblies in various regions of the cerebral cortex on 

a large scale) must also be considered [7].  

In 2009, Grosse-Wentrup used brain connectivity to 

investigate signal transmission across the skull during 

the left-hand and right-hand motor imagery. Observed 

connectivity patterns show that functional connectivity 

during MI in the gamma band (above 35 Hz) is the strongest 

brain connectivity in all frequency bands. In addition, 

there was a significant difference in brain connectivity 

between MI and rest (p-value <0.01). However, there 

was no significant statistical difference between 

functional connectivity during MI in the right-hand 

and left-hand groups [8]. In [9], it was found that 

functional connectivity correlates with MI-based BCI 

learning. According to their findings, there was a 

significant and positive relationship between regional 

connectivity and learning rate (p-value <0.035). 

In many BCI systems, EEG signal power changes in 

different frequency bands (Band-Power) are used to detect 

differences between various motor imagery patterns. 

Martin Blinger et al. proposed a method to derive single-

trial connectivity from Vector Autoregressive (VAR) 

models of EEG independent components in a BCI system. 

Based on their findings, it has been shown that full-

frequency normalized  Directed Transfer Function (DTF) 

and direct DTF give classification results comparable 

to Band-Power, whereas other methods, such as partial 

directed coherence, work significantly weaker [10]. 

One major problem in BCI systems is the erroneous 

functionality of the system, user, or operator, which can 

cause the whole system to malfunction. If the user is 

concentrated on the outcome of an action and the outcome 

is contradictory to one’s expectations, a cognitive state 

of error occurs in the brain that produces an error-related 

potential. In general, the error potentials are divided into 

four groups according to their cause, including response 

error-related potential, feedback error-related potential, 

observation error-related potential, and interaction error-

related potential [3]; the latter is the main focus of this 

research. If an error occurs in the system function in an 

interactive task, the resulting error is called an interactive 

error. 

Ahkami et al. [11,12] investigated the effect of variation 

in the intervals of the stimulation presentation on error-

related potentials (ErRPs). To demonstrate the error 

potential, a BCI-based protocol was used to get the right 

and left commands and act in the opposite direction 30% 

of the time to show the error potential. To this end, the 

participant was asked to move the red rectangle to the 

green one by imagining the left-hand movement, or right-

foot movement, which triggered the move toward the 

left and right directions, respectively. Considering that 

the user always imagines the movement correctly, 30% 

of the commands were executed with errors. In this study, 

two types of stimuli, such as visual and tactile, were used 

in the BCI system. Then, the effect of change in the intervals 

between stimuli presentation was investigated. According 

the results of to this study, the components related to tactile 

stimulation occurred significantly (p-value <0.05) 

later than the components related to visual stimulation. 

Moreover, by increasing the distance between stimulus 

presentations, the individual’s response to error was 

somewhat faster. Furthermore, by performing 

independent component analysis and source 

localization, activity in the Anterior Cingulate Cortex 
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(ACC) region was detected in the brain of individuals 

when observing an error [13]. This region had been 

previously founded as an error processing center in 

other studies [14, 15], although there is still 

controversy about the exact role of the ACC. 

Zhang et al. first introduced brain connectivity features 

to detect error-related signals in a BCI system. 16 subjects 

participated in this study to record the signal while 

observing the moving stimulus in both directions for correct 

or error. Then, the combination of waveform features and 

brain connectivity features was extracted from FCz, 

Cz, Cpz, Fz channel signals. Moreover, the brain 

connectivity and waveform features have been extracted. 

Linear Discriminant Analysis (LDA) classification was 

then used to identify the correct experiments and the 

error ones. Based on their results, the combined 

features lead to the highest classification accuracy 

(85%). The results also showed that brain connectivity 

within the theta band (7-9 Hz) contains more 

information for distinguishing error than other 

frequency bands. Zhang et al. provided evidence that 

using brain connectivity features detection improves BCI 

systems’ performance [16]. The relationships between 

dorsal Anterior Cingulate Cortex (dACC) functional 

connectivity and Error-Related Negativity (ERN) amplitude 

were investigated in [17]. Their findings imply that the  

 

level of dACC seeded functional connectivity with 

the supplementary motor region is associated with the 

ΔERN (incorrect – correct responses) amplitude, with 

higher ΔERN amplitude characterized by more 

functional connectivity between these regions. In 

addition to the dACC, additional analysis revealed 

that functional connectivity in the caudate, 

cerebellum, and a variety of areas in the error-

monitoring network was associated with variation in 

ΔERN amplitude. In this research brain functional 

connectivity during a BCI task with 30% of interaction 

error is investigated. In order to study the effects of 

stimulus type and Inter-Stimulus-Interval (ISI), the 

stimuli are presented to the participants in four groups of 

visual, tactile, visual-tactile with ISI=3.5, and visual-

tactile with ISI=2. 

2. Materials and Methods  

The block diagram of this research approach is presented 

schematically in Figure 1. The methodology followed in 

this work can be generally divided into three main steps 

of preprocessing, brain functional connectivity calculation 

by Magnitude-Squared Coherence (MSC) measure, and 

the statistical analysis. The details of these steps are studied 

in this section.  

 

Figure 1. The block diagram of this research’s methodology 



 Studying BCI Systems with Interaction Error  

130  FBT, Vol. 9, No. 2 (Spring 2022) 127-133 

2.1. Dataset 

The dataset used in this research is supplied from [11, 

12]. 32-Channel EEG signals with a sampling frequency 

of 256 Hz were recorded from 18 healthy participants. 

The participants were in the age range of 24 to 25 years 

old. The BCI task was with an interaction error (System 

does not respond as expected) 30% of the time. During 

the task, there were two rectangles (red and green) on the 

screen with one step distance and the participants were 

asked to move the red rectangle toward the green one by 

imagining a movement in the intended direction (whether 

right-leg motor imagery if the green rectangle is on the 

right side of the red one or left-hand motor imagery for the 

counter wise condition). Assuming that the user does 

his/her work without any error, the system moves the red 

rectangle in the opposite direction from the green one 30% 

of the time, leading to the system’s interaction error. In 

this study, the participants are informed of the final direction 

of the red rectangle via three types of stimulation: 1) visual: 

rectangle motion on the screen; 2) tactile: vibration on 

his/her wrists via vibrators affixed on them; and 3) dual 

stimulation mixed with these two stimuli. 

In some researches, the effect of attention on EEG 

signals has been studied especially in Attention Deficit 

Hyperactivity Disorder (ADHD) individuals [18, 19]. It 

has been shown that one of the issues that must be 

taken into account during data recording is the 

participants’ "attention" during the experiment. In 10 

experimental recordings, all participants reported that 

more than 5 seconds were too much for motor imagery, 

causing fatigue and inattention. People also reported that 

they could work with the system for about 45 minutes, after 

which it would cause fatigue and inattention. According 

to these results, two values of ISI (tISI1) and (tISI2) were 

selected for this study. The details of the stimuli are provided 

in the following: 

Visual stimulation: In each test with this kind of 

stimulation, after presenting the rectangles on the screen, 

the individual is given time, tISI1, for his/her motor 

imagery. Afterward, the red rectangle moves along the 

target direction. No vibration is applied to the vibrators 

in this stimulation. The trial is completed in 1.2 seconds. 

Tactile stimulation: In each test with this kind of 

stimulation, after presenting the rectangles on the screen, 

the individual is given time, tISI1, for his/her motor 

imagery. The direction, which the rectangle is supposed 

to move to, will be conveyed to the participant via a 

vibration feedback system, although no movement will 

be seen on the screen. After 1.2 seconds, a message which 

indicates whether the movement was correct or incorrect 

is shown to the user. 

Dual stimulation: In each test with this kind of 

stimulation, after the displaying of the rectangles on the 

screen, the individual is given time, tISI1or tISI2 for his/her 

motor imagery. The direction, which the rectangle is 

supposed to move to, will be conveyed to the participant 

via a vibration feedback system, although no movement 

will be seen on the screen. After 1.2 seconds, the red 

rectangle moves toward the desired direction (to apply 

the visual stimulus as well as tactile one).  

2.2. Magnitude Squared Coherence  

In this research, MSC was used as a criterion of brain 

functional connectivity. MSC is a type of criterion that uses 

a linear model to estimate a signal with a real or complex 

value from another signal that has a real or complex value. 

The MSC is defined between the two signals x(t) and y(t), 

which is shown in Equation 1.  

𝐶𝑥𝑦(𝑓) =  
|𝐺𝑥𝑦(𝑓)|

2

𝐺𝑥𝑥(𝑓)𝐺𝑦𝑦(𝑓)
 (1) 

Where 𝐺𝑥𝑦(𝑓) is the cross-spectral density and 𝐺𝑥𝑥(𝑓) 

and 𝐺𝑦𝑦(𝑓) are  the auto spectral density. The values 

measured using MSC are the real numbers ranging from 

0 to 1 at each frequency. If the MSC for all frequencies is 0, 

the two signals are not linearly dependent. If MSC is 1 

for all frequencies, it means that these two signals are 

linearly dependent [20]. 

2.3. Statistical Analysis 

Statistical analysis is used to interpret and analyze the 

findings of this study. 

2.3.1. Normality of Data Distribution 

The data distribution was first evaluated using the 

Kolmogorov-Smirnov test to select the appropriate statistical 

test. Due to the non-normal distribution of data in any 

group, a non-parametric Wilcoxon test was considered 

for further analysis. 

2.3.2. The Wilcoxon Signed-Rank Test 

The Wilcoxon signed-rank test is a non-parametric 

statistical test. The Wilcoxon Signed-Rank Test is used 
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to examine two dependent samples or to match two samples. 

In this study, comparisons of brain connectivity were 

conducted in four groups as follows. 

1. Tactile stimulation (when the direction of the 

movement was correct) with tactile stimulation (when 

the direction of the movement was wrong). 

2. Visual stimulation (when the direction of the 

movement was correct) with visual stimulation (when 

the direction of the movement was wrong). 

3. Visual-tactile stimulation (when the direction of 

the movement was correct) with visual-tactile stimulation 

(when the direction of the movement was wrong) when 

ISI is 3.5. 

4. Visual-tactile stimulation (when the direction of 

the movement was correct) with visual-tactile stimulation 

(when the direction of the movement was wrong) when 

ISI is 2. 

3. Results  

EEG signals were segmented according to correct and 

error cases in all four stimulus conditions (visual, tactile, 

and visual-tactile (ISI=3.5), and visual-tactile (ISI=2). 

Then the brain connectivity for visual, tactile, visual-tactile 

(ISI=3.5), and visual-tactile (ISI=2) conditions was 

calculated for all possible channel pairs of 18 participants, 

and compared in both correct and error cases. Since a large 

number of brain connectivity between channel pairs was 

significantly different in the statistical analysis, its  

representation on the head may lead to a fully connected 

graph without much useful information. So just the 

strongest (top ten percent) connectivity was considered 

in this research. Some considerable results are as follows: 

 

In tactile stimulation, the brain connectivity of 26 

pairs of electrodes between correct and error cases is 

significantly different (p-value < 0.001). As shown in 

Figure 2 part A, the frontal-right temporal brain connectivity 

showed the most significant differences (accounting 

for 23.07% of all brain connectivity). Moreover, a bar graph 

of error and correct groups connectivity median in the 

condition of tactile stimulation is shown in Figure 3 part A.  

In visual stimulation, the brain connectivity of 30 pairs 

of electrodes between correct and error cases is significantly 

different (P-Value< 0.001). As shown in Figure 2 part B, 

the frontal-occipital brain connectivity showed the most 

significant differences (accounting for 33.33% of all brain 

connectivity). Moreover, a bar graph of error and correct 

groups connectivity median in the condition of tactile 

stimulation is shown in Figure 3 part B. 

In visual-tactile (ISI= 3.5) stimulation, the brain 

connectivity of 35 pairs of electrodes between correct 

and error cases is significantly different (P-Value< 

0.001). As shown in Figure 2 part C, the brain 

connectivity of an occipital-left temporal showed the 

most significant differences (accounting for 11.42% of 

all brain connectivity). Moreover, a bar graph of error 

and correct groups connectivity median in the 

condition of tactile stimulation is shown in Figure 3 

part C.  In visual-tactile (ISI=2) stimulation, the brain 

connectivity of 25 pairs of electrodes between correct and 

error cases is significantly different (P-Value< 0.01). As 

shown in Figure 2 part D, the central-occipital the 

brain connectivity showed the most significant differences 

(accounting for 16% of all brain connectivity). 

Moreover, a bar graph of error and correct groups 

connectivity median in the condition of tactile 

stimulation is shown in Figure 3 part D.  

 

 

Figure 2. The significantly different brain connectivity between two groups of (A) tactile stimulation- correct case and 

tactile stimulation- error case; (B) visual stimulation- correct case and visual stimulation- error case; (C) visual-tactile 

(ISI=3.5) stimulation- correct case and visual-tactile (ISI=3.5) stimulation- error case; and (D) visual-tactile (ISI=2) 

stimulation-correct case and visual-tactile (ISI=2) stimulation- error case 

B A C D 
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4. Conclusion 

In this research, during a BCI task with interaction 

error, the brain functional connectivity was studied. To 

this end, the dataset related to a motor MI-BCI  was used 

[11, 12]. Brain connectivity based on MS-Coherence 

in two conditions was investigated; the first was when 

there was an error in the system (error case) and the second 

was when there was no error in the system (correct case). 

Subsequently, the existence of significant differences 

in these two cases was investigated using appropriate 

statistical tests. After detecting the non-normal distribution 

of the data, the Wilcoxon signed-rank test was used for 

statistical analysis of MS-Coherence between error and 

correct classes in the four groups (visual, tactile, tactile-

visual (ISI= 3.5), and tactile-visual (ISI = 2). 

Based on the results of this research, in tactile 

stimulation, there is a significant difference between correct 

and error classes in frontal-right-temporal connectivity, 

and also in visual-tactile (ISI= 3.5) stimulation, there is a 

significant difference between left-temporal with occipital 

regions and it is in line with the previous study because 

of involving the temporal lobe [13, 17, 20-23]. Previous 

studies have shown that the visual cortex is located in 

occipital regions and this part of the brain is mostly 

activated in response to a visual stimulus [24]. In the visual 

stimulation of the current research, the most significant 

differences were seen in frontal-occipital connectivity. 

Also in visual-tactile (ISI=2) stimulation, there is a 

significant difference between central with occipital 

regions, which is in line with the effect of visual stimulation 

[23 -25]. In visual, tactile and visual-tactile (ISI=2) activated 

frontal and central regions of the brain and this was in line 

with the previous study because of error-related potentials, 

[13, 23, 25]. This study showed that examining functional 

integration, in addition to examining functional segregation, 

could help improve brain-computer interface systems. 
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