
36

|Masood Yarmahmoodi et al. | IOL Power Formula Selection Using SVM March 2015, Volume 2, Issue 1

Intraocular Lens Power Formula Selection Using Support Vector 
Machines

Masood Yarmahmoodi1, 2, Hossein Arabalibeik1, 2, *, Mehrshad Mokhtaran3,  and Ahmad Shojaei4, 5

1- Department of Biomedical Engineering and Medical Physics, Tehran University of Medical Sciences, Tehran, Iran.
2- Research Centre of Biomedical Technology and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran.
3- Medical Informatics Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
4- Department of Ophthalmology, Baqiyatallah University of Medical Sciences, Tehran, Iran.
5- Basir Eye Center, Tehran, Iran

Keywords:

Intraocular lens (IOL),

Cataract surgery,

Support vector machine (SVM), 

Axial length,

Corneal power.

A B S T R A C T
Purpose- In cataract surgery, the defected lens is replaced with an artificial intraocular 
lens (IOL). The refraction power of this lens is specified by ophthalmologists before 
the surgery. There are different formulas that propose the IOL power based on corneal 
power and axial length. Six common formulas is used in this study and the one 
which minimizes the postoperative error for a specific patient have to be selected. 

Methods- Refraction is measured three times at most, during six month after surgery 
and the best result is considered as postoperative refraction for each patient. A 
Support Vector Machine (SVM) is used to classify the data to two groups based on 
axial length and corneal power. Each class needs a formula with a specific tendency 
toward stronger or weaker IOL lenses according to the feature vector.

Results- Experimental tests lead to a nearly diagonal confusion matrix which 
supports the performance of the proposed method strongly. Mean Absolute Error 
(MAE) is 0.47 which shows 6% decrease in postoperative refraction error compared 
to the best reported result.

Conclusions- In calculating IOL power, we expect stronger IOL powers for eyes 
having shorter axial length or weaker corneal power. In the contrary, a weaker 
IOL power is expected for longer axial length and stronger corneal power. But 
experimental results show that for the first group, formulas proposing weaker powers 
win the race for decreased postoperative refraction error while for the second group, 
formulas leading to stronger powers perform better. This shows that these formulas 
overestimate and underestimate for marginal cases.
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1. Introduction

Cataract is a disease in which the lens inside 
the eye becomes cloudy, so it leads to a 
decrease in vision. The most important 

factor that increases the risk of cataract disease is 
aging. Genetic composition, exposure to ultraviolet 
light, and diabetes are the second rank factors [1]. 
In old days, the defected lens was removed and a 

strong mal-refraction was resulted due to the lack 
of spectacles. When spectacles came up there were 
no alternative options for refraction correction 
until sir ridley developed the intraocular lens 
implant. Nowadays, an artificial (intraocular) lens 
is being calculated preoperatively and implanted 
through a small incision after the cloudy natural 
lens has been removed using phacoemulsification 
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or femtosecond-laser technology [2, 3].
The power of intraocular lens is specified by 

ophthalmologists according to existing formulas. 
First, the ophthalmologist defines target refraction 
for each eye. Then a formula is used to propose the 
needed IOL power. The resulting postoperative error 
is calculated by subtracting the target refraction 
and the actual refraction after surgery. Since there 
are several formulas recommending different IOL 
powers, it is difficult to select the right formula 
for each patient. Normally an ophthalmologist 
selects one formula according to his/her experience. 
Whereas postoperative refraction error is directly 
depended on the selected IOL power and repeated 
cataract surgery is rarely performed, IOL power 
selection is critical for the patient to have the 
minimum refraction error after surgery.

Axial length and corneal power have been the 
most important factors from early days of IOL 
power formulation up until now [2]. The distance 
between anterior surface of cornea and fovea is 
called axial length. Cornea is the transparent outer 
layer of the eye which covers up the iris, pupil 
and anterior chamber. However two-thirds of the 
refraction power in eye is provided by cornea.

Normally, a-scan ultrasound was utilized to obtain 
axial length, but this technology has a low resolution 
for this measurement. Recently optical biometry, 
also called Partial Coherence Interferometry (PCI), 
is used to determine the axial length [4, 5]. However 
in dense cataracts, where optical biometry fails, 
a-scan ultrasound is still used to calculate axial 
length. Corneal power is measured by keratometry 
or corneal topography.

Intraocular lens power formulas are divided to 
theoretical and regression formulas. Formerly, 
theoretical formulas were used to calculate the 
needed IOL power. The following formula was 
introduced by Fyodorov in 1975.
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Where P is the IOL power for emmetropia, n1 is 
the refractive index in the anterior segment, n2 is 
the refractive index in the posterior segment, AL 
is the axial length of the eye in meters, ACD is the 
effective anterior chamber depth in meters and K 
is the corneal power [6].

The first regression formula was presented by 
sanders-retzlaff-kraff (SRK I, SRK II) in 1981 [7]. 
SRK I determines IOL power with linear regression 
using three parameters

0.9 2.5P A K AL= - -                                    (2)

where P is the IOL power for emmetropia, K 
is the corneal power and AL is the axial length 
[2]. It can be seen that 1 millimeter difference in 
axial length, yields an error of  2.5 diopters in IOL 
power, while 1 diopter of error in corneal power 
measurement introduces 0.9 diopter deviation into 
the IOL power. 

Modern theoretical formulas consider other 
important factors which affect IOL power.  Estimated 
Lens Place (ELP) is defined as the distance between 
cornea and IOL and needs to be estimated before 
implementation. SRK/T, Holladay1, Holladay2, 
HofferQ and Haigis are the best known modern 
formulas which use ELP for calculating IOL power.

Based on the literature, difference between selected 
and desired IOL power in eyes with normal axial 
length is lower than eyes that have either short or long 
axial lengths [8]. Figure 1 depicts variation of IOL 
power between three formulas with constant corneal 
power [8]. Where axial length is too short or too long, 
improper selection of  IOL power produces high 
postoperative errors. Besides, none of the formulas can 
propose IOL power with minimum error, compared 
to other formulas, in the entire range of axial length. 
So most previous studies have focused on using 
different formulas for diverse ranges of axial length.

Figure 1. IOL power calculated by three formulas [8].
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In 2008, Wang et al. calculated IOL power error 
in eyes with long axial length (>25 mm) and 
realized that Haigis formula generates minimum 
error compared to other formulas [9]. Gavin et al. 
in 2007 and Day et al. in 2012 concluded that IOL 
power error for eyes with short axial lengths (<22 
mm) is minimized using HofferQ formula [10, 11]. 
In a study conducted on 8108 eyes in 2011, each 
formula performed best in one segment of the axial 
length range. Postoperative error was minimum for 
axial lengths between 20 mm and 20.99 mm using 
HofferQ formula, for axial lengths between 21 mm 
and 21.49 mm with HofferQ and Holladay1, for 
axial lengths between 23.50 mm and 25.99 mm 
with Holladay1, and for axial lengths longer than 
27 mm with SRK/T [12]. Similarly in 2014 Joshi 
et al. used SRK II, SRK T, Holladay1 and HofferQ 
formulas and demonstrated that in children which 
had congenital cataract with axial length less than 
20 mm SRK II was the best predicting formula [13]. 

Although axial length is critical and plays an 
important role in choosing a formula, it is not the 
only contributing factor. None of these studies 
consider corneal power (the second important 
parameter). This study attempted to decrease IOL 
selection error by considering both axial length 
and corneal power in the formula selection task. 
We utilize a Support Vector Machine (SVM) [14]
to predict IOL power according to six formulas 
(SRK II, SRK/T, Holladay1, HofferQ, Haigis 
and Binkhorst) used for IOL power calculation in 
cataract surgery [15].

The next section introduces the data and 
classification method. Results are presented in 
section 3 and are discussed in section 4.

2. Materials and Methods
2.1. Data

The data set consists of 781 eyes that have 
undergone cataract surgery at Basireye center 
(Tehran, Iran). Axial lengths and corneal refraction 
powers were measured using Zeiss IOL master (Carl 
Zeiss Meditec, Jena, Germany) [5]. Table 1 shows 
the distribution of the data. The ophthalmologist 
has suggested applied IOLs by selecting formulas 
for each patient according to his/her experience. 
Refraction is measured at most three times during 
six month after surgery and the best result is 
considered as postoperative refraction.

Table 1. Distribution of the data for 781 cataract surgeries.

Axial Length 
(mm)

Corneal Refraction 
Power (D)

Mean (± SD) 23.97 (±2.06) 44.43 (±1.76)

Range 19.93-34.18 34.5-51.88

Desired IOL powers are calculated based on the 
postoperative refraction power. So we have the error 
for all formulas. The mean absolute of these errors 
(MAE) are shown in Table 2 for each formula.

Table 2. Mean Absolute Error (MAE) of IOL powers.

Formula SRK II SRK/T Holladay1 HofferQ Haigis Binkhorst

MAE 0.64 0.52 0.54 0.62 1.01 0.72

2.2. SVM
SVMs are supervised learning models used for 
classification and regression analysis. SVM 
constructs a hyperplane in J dimensional input 
space to classify data while maintaining maximum 
classification margin for both classes. Greater 
margins lead to higher robustness and lower 
generalization error. A linear hyperplane in the 
input space is represented as follows.

( ) 0Tf x w x b= + =				          	          (3)

Maximum margin is obtained by minimizing 
‖w‖2⁄ 2 subject to ( ) 1T

i iy w x b+ ³ , where { }1,1iy -  
indicates the class of ith input data. Using lagrange 
multipliers  a, this constrained optimization problem 
can be expressed as
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where kx  is any of the support vectors, inputs 
having minimum distance from the hyperplane, 
and ky is its associated class.

Sometimes, soft margin classification is employed 
in SVM learning process. This allows a certain 
amount of misclassification for data sets that a linear 
hyperplane cannot separate them to two classes. 
In this case 2

2 i
i

w C ξ+ ∑  has to be minimized subject 
to ( ) 1T

i i iy w x b ξ+ ≥ − , where 1 i N≤ ≤ , 0C ≥  is a 
trade-off coefficient, and 0iξ ≥  is the slack variable, 
which is the distance between the ith misclassified 
input and the classifying hyperplane. By applying 
lagrange multipliers again, w is calculated as before 
by equation 5, and b is obtained as follows for any 
k with 0kα > .
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When facing a nonlinear classification, we can 
transform data to a higher dimensional space using 
an appropriate nonlinear function φ, hoping that a 
linear classification would be possible in the new 
space. The dual lagrange problem then would be
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Where ( ) ( )T
i jx xϕ ϕ  can be rewritten as ( ),i jK x x  

which is called a kernel function. In the present 
study, we use radial basis kernel function given by
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Where Σ is the standard deviation of the Gaussian 
function.

2.3. Data Classification 
Assume the two dimensional feature vector consists 

of axial length and corneal power. If we assign the 
best formula to each eye based on postoperative 
error, a complicated partition of the input space to 
six classes is obtained. Even if the data is divided 
to two categories (e.g. based on conformity with 
SRK/T which has the minimum MAE according to 
Table 2) as shown in Figure 2, we could not arrive 
at a reasonable classification task. In this case, 531 
out of 781 eyes have nonzero postoperative error 
and are distributed all around the input space. The 
same scenario goes for nearly all other formulas. 
It is obvious that this approach for classification 
is impractical here.

Figure 2. Division of the data to two classes according to 
SRK/T formula. Class 1: zero postoperative error (250 cases). 
Class 2: nonzero postoperative error (531 cases).

Let us assume Pf  being a vector containing the 
IOL powers for a patient suggested by SRK II, 
SRK/T, Holladay1, HofferQ, Haigis and Binkhorst 
formulas respectively. Further, let pfl and pfu represent 
the minimum and maximum within Pf elements. 
For 228 eyes, none of the formulas led to zero 
postoperative error, of which 110 eyes need IOL 
powers out of [pf l, pfu] closed interval. We call 
these, out of range data. If either pf l or pfu would 
produce zero postoperative error, we call that case 
a marginal data. These two groups (out of range 
and marginal data) are called distant data together. 
Other cases, which we call regular, must have IOL 
powers within [pfl, pfu] open interval.

To train the nonlinear soft margin SVM, we just 
use the distant data which we will divide to two 
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classes. If the desired IOL power for an eye is equal 
to or more than pfu (equal to or less than pf1), we 
put it in the C1 class (C2 Class). A two dimensional 
plot shows the separability of the distant data to 
these two classes (Figure 3). Based on this strategy, 
C1  and C2  would contain 130 and 241 members 
respectively.

It is obvious, and Equation 2 corroborates it as 
well, that for an eye having stronger corneal power 
or longer axial length, the needed IOL power would 
be weaker. Comparison of the desired IOL powers 
of  C1  class (which have bigger and stronger axial 
length and corneal powers) with that of C2, shows 
that in general  C1’s desired IOL powers are lower 
than the other class as we expected. Notice the 
superficial conflict: C1  cases need lower IOL powers 
compared to C2 cases while they require powers 
greater than pfu at the same time and vice versa 
for C2 cases. In fact, we can conclude that these 
six formulas underestimate the needed power for 
C1 cases and overestimate for C2 class members.

Figure 3. Classification of the distant training data for one 
fold using a soft margin nonlinear SVM.

One formula has to be selected for every eye. 
We can infer overestimation or underestimation 
tendency of formulas for each case by classifying 
it using the trained SVM. For each case, we sort Pf 
in ascending order and call the resulted permuted 
power vector Pfp. Then we classify all of the training 
data by SVM and calculate power estimation MAE 
for every member index in Pfp within each class. 

Based on the results for training data (or by running 
a simple optimization technique e.g. Least Absolute 
Errors, LAE), we choose one member index of Pfp 
having minimum postoperative refraction error 
for that class.

2.4. Validation
Five-fold cross validation is applied for SVM 

learning and evaluation. First, the data is divided 
to five equally sized subsets. Then in each fold, 
four subsets are used for training and the remaining 
subset is used for test. The process is repeated 
five times, so that each data has a chance of being 
tested against.

3. Results
The suggested algorithm was used to divide the 

training data to two classes. Figure 4 depicts the 
histograms of desired IOL powers which eliminate 
MAE for these two classes. As we expected, it is 
clear that C1 cases need weaker IOL powers. In the 
previous section we mentioned that using pfu and  pf l, 
within elements of Pf for each eye in distant cases, 
minimize the MAE in C1 and C2 classes respectively. 
But we should remind that for a newly introduced 
case, we do not have any evidences about the data 
being distant or regular. Considering regular cases 
as well, we probably need to select powers other 
than these two extreme values. 

(a)
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(b)

Figure 4. Histograms of desired IOL powers that eliminate 
MAE for training data classified by the SVM as (a)  C1 and (b) C2 .

Tables 3 and 4 show MAE of all training data for 
Pf and Pfp  elements in each class. we can see that 
for the data in C1 (C2) class, The 5th (4th) element 
of Pfp generates minimum error.

The proposed method is applied to three out of 
six formulas in order to compare the results with 
the previous method [8]. The confusion matrices 
are depicted in Tables 5 and 6 for previous and 
proposed methods respectively. In these matrices, 
numbers in each row sum up to 100 and show the 
percentages of different formulas proposed by the 
method for each case instead of the actual best 
formula for that case.

Comparison results are also shown in Tables 7 and 
8 for previous and proposed methods respectively 
using six formulas.

Overall selection rate of each formula for these 
two strategies is depicted in Table 9. 

Table 3. Mean Absolute Error (MAE) of IOL powers for  Pf  elements.

Formula SRK II SRK/T Holladay1 HofferQ Haigis Binkhorst

MAE For C1 0.78 0.64 0.69 0.90 0.63 1.01

MAE For C2 0.57 0.469 0.464 0.466 1.23 0.58

Table 4. Mean Absolute Error (MAE) of IOL powers for Pfp elements.

Formula 1 2 3 4 5 6

MAE for C1 1.12 0.87 0.68 0.60 0.55 0.82

MAE for C2 0.60 0.50 0.47 0.44 0.54 1.23

Table 5. Confusion matrix for the method presented in [8] using three formulas.

Suggested Formula (%)

SRK/T Holladay1 HofferQ

Best Formula

SRK/T 77.2 8.5 14.3

Holladay1 10.9 80 9.1

HofferQ 13.7 6.8 79.5
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Table 6. Confusion matrix for the proposed method using three formulas.

Suggested Formula (%)
SRK/T Holladay1 HofferQ

Best Formula
SRK/T 90.4 3.9 5.7

Holladay1 8.5 87.1 4.4
HofferQ 14.2 5.1 80.7

Table 7. Confusion matrix for the method presented in [8] using six formulas.

Suggested Formula (%)

SRK II SRK/T Holladay1 HofferQ Haigis Binkhorst

Best Formula

SRK II 59.7 5.6 6.5 7.6 10.1 10.5

SRK/T 7.6 69.4 3.9 5.5 6.2 7.4

Holladay1 5.3 5.1 75.4 2.9 7.2 4.1

HofferQ 0 5.9 6.3 79.8 3.4 4.6

Haigis 0 10.5 5.5 8.6 66.2 9.2

Binkhorst 0 0 0 16.6 16.6 66.8

Table 8. Confusion matrix for the proposed method using six formulas.

Suggested Formula (%)

SRK II SRK/T Holladay1 HofferQ Haigis Binkhorst

Best 

Formula

SRK II 68.6 8.7 7.9 7.6 2.7 4.5

SRK/T 3.4 83.1 4 5.8 1 2.7

Holladay1 4.6 6.8 77.9 4.4 2.7 3.6

HofferQ 6.8 10.7 4.2 73.1 1.9 3.3

Haigis 9.4 13.6 9 7.3 57.8 2.9

Binkhorst 8.6 13.2 9.9 7.8 3.2 57.3

Table 9. Selection rate for each formula (%).

SRK II SRK/T Holladay1 HofferQ Haigis Binkhorst

Previous 
Method [8] 30.5 23.8 15.5 8.3 18.5 3.4

Proposed 
Method 18.6 20.2 18.2 16.9 11.1 15

While the Self-Organizing Map (SOM) neural 
network, as presented in [8], have a Mean Absolute 
Error (MAE) of 0.50 at best, the proposed technique 

ends up with an MAE of 0.47. This improvement 
means 23.43 diopters decrease in errors for all 
patients. Histogram of errors is depicted in Figure 5.
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Figure 5. Histogram of error for proposed method and SOM 
method [8].

4. Discussion
As mentioned previously, the classification task in 

this study is difficult since no formula is suitable for 
all cases. Besides, the data is highly nonlinear and 
lacks many variables that have little effect on the 
results individually while introduce considerable 
deviation together. Ophthalmologists usually 
select the appropriate model based on axial length, 
but Figure 3 shows that corneal power is also an 
important factor in selecting the formula for IOL 
power calculation. So we used this influencing 
parameter as well.

Although the bigger the axial length or the stronger 
the corneal power is, the weaker the IOL lens should 
be (and vice versa), Figure 4 shows that best IOL 
powers for class C1 eyes are lower than powers 
for class C2 eyes. So we can infer that known 
formulas show too much propensity to this fact. 
It means that they underestimate for C1 cases and 
overestimate for C2 cases. Putting it another way, 
the formulas have a tendency toward the normal 
cases even for the extreme cases. The classification 
task is accomplished by dividing the input space 
to two subspaces, namely C1 and C2, based on the 
distant (extreme) data.

Although for distant data always maximum or 
minimum is the best power within Pf members, 
but this is not the case for all data. Members of Pf 
have been sorted into ascending order. Then the 

MAE is calculated for each permuted member. 
The results (Table 4) show that the fifth and forth 
formula have the minimum postoperative error 
for C1 and C2 classes respectively. In C1 class, the 
desired IOL powers are weaker compared to class 
two. But we should select a strong IOL power 
within six available suggestions (the fifth element 
in this case) to overcome the underestimate caused 
by the previously mentioned tendency toward the 
normal cases. For class C2 the normal tendency 
is toward stronger powers while we should select 
a somewhat weaker power (the forth element in 
this case) to overcome the mentioned overestimate 
embedded in formulas.

Tables 5 and 6 show the confusion matrices and 
could be used to compare the proposed method 
and previous method for SRK/T, Holladay1 and 
HofferQ formulas. Larger diagonal elements and 
smaller off-diagonal elements in Table 6 compared 
to Table 5 show superiority of suggested strategy 
for all formulas. Table 9 shows that the previous 
method uses Haigis formula more frequently 
compared to the proposed algorithm. Combined 
with Tables 7 and 8, it means that this method uses 
Haigis formula for 18.5% of inputs with 66.2% 
successful formula suggestion rate among them, 
whereas the proposed method uses this formula 
11.1% of times, where 57.8% of them lead to 
optimal power calculation. But conducting the same 
comparison for other formulas, reveals superiority 
of the proposed method.

Table 9 shows the selection rate of each formula 
in the proposed method. SRK/T formula is selected 
more than other formulas which are in accordance 
with the errors reported in Table 2.

Figure 5 depicts the histogram of MAE for previous 
and proposed methods. It is obvious that the number 
of patients with zero postoperative error is increased 
in the proposed method. Zero postoperative error 
means that refraction after surgery meets target 
refraction. Therefore, power of needed spectacles 
for these cases will be reduced.  

Postoperative refraction error for the proposed method 
is 0.47 which is 6% better than previous methods for 
our data. Number of cases with zero postoperative 
error is also increased by 2.7%. These results are 
promising and encourage clinicians to consider using 
this method for lens power selection instead of just 
relying on experience of ophthalmologists. 



44

|Masood Yarmahmoodi et al. | IOL Power Formula Selection Using SVM March 2015, Volume 2, Issue 1

13-	P. Joshi, R. Mehta, And S. Ganesh, “Accuracy Of 
Intraocular Lens Power Calculation In Pediatric 
Cataracts With Less Than A 20 Mm Axial Length 
Of The Eye,” Nepalese Journal Of Ophthalmology, 
vol. 6, pp. 56-64, 2014.

14-	C. Cortes and V. Vapnik, “Support-Vector Networks,” 
Machine Learning, vol. 20, pp. 273-297, 1995.

15-	M. Yanoff And J. S. Duker, Ophthalmology: Expert 
Consult: Online And Print: Elsevier Health Sciences, 
2013.

References
1-	P. A. Asbell, I. Dualan, J. Mindel, D. Brocks, M. 

Ahmad, And S. Epstein, “Age-Related Cataract,” 
The Lancet, vol. 365, pp. 599-609, 2005.

2-	T. Olsen, “Calculation Of Intraocular Lens Power: 
A Review,” Acta Ophthalmologica Scandinavica, 
vol. 85, pp. 472-485, 2007.

3-	H. Miyajima, “Phacoemulsification And Spuration,” 
ES NOW Updated No. 1, Medical View Co., 2009.

4-	W. Drexler, O. Findl, R. Menapace, G. Rainer, C. 
Vass, C. K. Hitzenberger, et al., “Partial Coherence 
Interferometry: A Novel Approach To Biometry 
In Cataract Surgery,” American Journal Of 
Ophthalmology, vol. 126, pp. 524-534, 1998.

5-	E. Verhulst And J. Vrijghem, “Accuracy Of Intraocular 
Lens Power Calculations Using The Zeiss IOL Master. 
A Prospective Study,” Bull Soc Belge Ophtalmol, 
vol. 281, pp. 61-65, 2001.

6-	S. N. Fyodorov, M. A. Galin, And A. Linksz, 
“Calculation Of The Optical Power Of Intraocular 
Lenses,” Investigative Ophthalmology & Visual 
Science, vol. 14, pp. 625-628, 1975.

7-	J. Retzlaff, D. R. Sanders, And M. C. Kraff, A Manual 
Of Implant Power Calculation: SRK Formula, 1981.

8-	N. Kamiura, N. Takehara, A. Saitoh, T. Isokawa, N. 
Matsui, And H. Tabuchi, “On Selection Of Intraocular 
Power Formula Based On Data Classification 
Using Self-Organizing Maps,” In Systems Man 
And Cybernetics (SMC), 2010 IEEE International 
Conference On, pp. 1147-1152, 2010.

9-	J.-K. Wang, C.-Y. Hu, And S.-W. Chang, “Intraocular 
Lens Power Calculation Using The IOL master And 
Various Formulas In Eyes With Long Axial Length,” 
Journal Of Cataract & Refractive Surgery, vol. 34, 
pp. 262-267, 2008.

10-	A. C. Day, P. J. Foster, And J. D. Stevens, “Accuracy 
Of Intraocular Lens Power Calculations In Eyes With 
Axial Length< 22.00 Mm,” Clinical & Experimental 
Ophthalmology, vol. 40, pp. 855-862, 2012.

11-	E. Gavin And C. Hammond, “Intraocular Lens 
Power Calculation In Short Eyes,” Eye, vol. 22, 
pp. 935-938, 2007.

12-	P. Aristodemou, N. E. Knox Cartwright, J. M. 
Sparrow, And R. L. Johnston, “Formula Choice: 
Hoffer Q, Holladay 1, Or SRK/T And Refractive 
Outcomes In 8108 Eyes After Cataract Surgery With 
Biometry By Partial Coherence Interferometry,” 
Journal Of Cataract & Refractive Surgery, vol. 37, 
pp. 63-71, 2011.


