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A B S T R A C T
Purpose- Inter-frame and intra-frame motion can adversely impact the performance 
of dynamic brain PET imaging. Only correcting the former can still result in degraded 
qualitative and quantitative performance. Meanwhile, patient motion introduces 
mismatches between transmission and emission data which may lead to incorrect 
attenuation and scatter compensation in the reconstruction process. As a result, 
the reconstructed dynamic images may carry erroneous estimates of radioactivity 
distribution. We seek a solution to this problem.

Methods- We investigated the use of  iterative deconvolution coupled with a proposed 
use of  time-weighted averaging of  motion-transformed transmission images to correct 
the transmission-emission mismatch artifacts in dynamic brain PET images. We 
performed simulations using real-patient motion profile acquired by the infrared Polaris 
Vicra motion tracking device which estimates 3-D motion transformations during PET 
acquisition. This was followed by frame-based motion correction employing three 
different transmission-emission alignment strategies: transmission image transformed 
by (1) mean motion transformation, (2) median motion transformation, and (3) the 
proposed time-weighted average of motion-transformed transmission images.

Results- The results demonstrate that the proposed approach of using time-weighted 
averaging of motion transformed transmission images outperforms conventional 
methods by substantially reducing the transmission-emission mismatch artifacts in 
the reconstructed images. Coupled with an alignment of the reconstructed frames for 
inter-frame motion correction and a subsequent iterative deconvolution approach for 
intra-frame motion correction, the resulting motion compensated images showed superior 
quality, considerable reduction in error norm and enhanced noise-bias performance 
compared to conventional methods of  transmission-emission mismatch compensation. 
The performance was consistent across different levels of intra-frame motion, and the 
algorithm was amenable to different framing schemes.

Conclusion- In frame-based motion correction of dynamic PET images, it is feasible 
to achieve intra-frame motion compensation using time-weighted averaging of 
motion transformed transmission images coupled with a post-reconstruction iterative 
deconvolution procedure to compensate for intra-frame motion. 
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1. Introduction

P ositron Emission Tomography is a powerful 
imaging technique enabling in vivo 
measurements of neurochemistry and 

neuropathology [1, 2]. High-resolution brain PET 
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imaging allows image acquisitions with a spatial 
resolution of 2–5 mm FWHM range [3]. Despite 
enhanced spatial resolution, PET images can be 
severely degraded by patient motion, thereby 
undermining the high-resolution capability of a 
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given scanner. 

Dynamic brain PET imaging sessions (e.g. for 
applications such as neuroreceptor mapping and 
quantification) are typically very long (~60–120 
min), making it unreasonable to assume that even 
very cooperative patients remain still for the entire 
acquisition duration [4]. There is a greater likelihood 
of motion in patients who have neurological or 
psychological disorders resulting in involuntary 
motion e.g. restless leg syndrome and epilepsy [5, 
6], or Tourette’s syndrome [7]. In addition, voluntary 
head movements due to coughing, leg crossing, etc. 
are commonly observed in PET scans [8]. If not 
accounted for, they can result in significant motion 
artifacts in the reconstructed images.

Motion artifacts degrade the qualitative and 
quantitative analysis of  PET data in the following 
ways: (1) Patient motion introduces transmission-
emission mismatches between transmission and 
emission acquired data leading to incorrect attenuation 
and scatter correction in the reconstruction process. 
As a result, the reconstructed dynamic images may 
carry erroneous estimates of  radioactivity distribution 
[9, 10]. (2) Patient motion can contaminate the 
time activity curves (TACs) at a voxel or ROI 
level resulting in inaccurate estimates of kinetic 
parameters [11]. (3) It can also cause a loss of  contrast 
due to motion-blurring artifacts leading to a poor 
discernibility of  small structures such as lesions 
[12] or small brain structures of neurochemical 
interests such as the ventral striatum.

A solution to motion compensation in dynamic 
PET imaging has been the method of Multiple 
Acquisition Frames (MAF) [13]. MAF re-frames 
the dataset in accordance with motion thresholds, 
followed by inter-frame motion correction. There 
are three drawbacks to this: (1) the introduction of 
a low motion threshold may result in acquisition 
of low-statistic frames, thereby degrading image 
quality and increasing the number of frames to be 
reconstructed [14]. (2) By contrast, the use of a high 
motion threshold will result in considerable intra-
frame motion. (3) Finally and importantly, in common 
practice, dynamic PET studies are reconstructed 
using a tracer-specific framing sequence and this 
consistency is much preferred over a motion-dependent 
framing sequence which may be different even for 
the same subject scanned multiple times.

Another solution is to correct the individual lines of 
response (LORs) for motion [6, 15]. This approach 

requires access to and processing of the original 
list-mode data. More importantly, it has been shown 
that mere motion-compensation of LORs can lead 
to artifacts, and must be accompanied by modifying 
probabilities of detection due to motion [16-20], 
posing additional algorithmic and computational 
complexity to the problem. As a result of these, 
there has been a preference in routine practice by 
the dynamic brain PET imaging community to focus 
on inter-frame motion compensation only [21, 22]. 

Such inter-frame motion compensation has been 
achieved by (a) algorithms (e.g. automated image 
registration (AIR) software) that re-align PET 
frames to a reference frame [10, 12, 22, 23]; or 
(b) algorithms that employ motion information 
acquired from optical tracking apparatus [6, 13, 
24, 25]. In any case, we note that these approaches 
neglect the intra-frame motion compensation, which 
are studied by the present work. 

We focus on the use of external motion tracking 
(e.g. Polaris Vicra tracking as commonly used in a 
number of brain PET imaging centers). In the context 
of single-frame static brain PET imaging, an approach 
investigated by Faber et al. [24] was to employ 
Richardson-Lucy (R-L) iterative deconvolution on 
motion-contaminated PET images to estimate the 
original non-corrupted image. We extend this work 
in three ways: (1) by focusing on the multi-frame 
PET imaging context, wherein inter-frame and (post-
reconstruction) intra-frame motion compensation 
are both performed. (2) An issue not quantified 
by Faber et al. [24] that we carefully study is the 
occurrence of  attenuation artifacts that arise from 
transmission-emission mismatches. We study this issue 
elaborately and show that these mismatch artifacts 
can become significant with increasing levels of 
intra-frame motion. (3) To alleviate this issue, this 
work proposes an employment of time-weighted 
averaging of motion transformed transmission 
images for more accurate attenuation correction 
in image reconstruction [26, 27].

2. Methodology
2.1. Transmission-Emission Alignment 
Strategies

Subject motion results in spatial misalignment 
between transmission and emission scans, leading 
to inaccurate attenuation and scatter correction in 
the reconstruction process. A common solution 
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to this is to align the transmission image to some 
‘average’ position of the emission object within 
the particular frame of interest. An example of 
this ‘average’ position includes either the mean 
or the median motion transform (items 1 and 2 
below). However, we have observed in the present 
work that in the case of  considerable intra-frame 
motion, these approaches are sub-optimal, and 
that an alternative approach is considerably more 
rewarding. There is a difference between mappings 
by an average motion transform, versus averaging of 
images mapped by different motion transforms. We 
propose the latter which turns out to be particularly 
advantageous in producing motion compensated 
images with higher qualitative and quantitative 
accuracy compared to conventional approaches. 
Thus, we investigate three transmission-emission 
alignment strategies to tackle mismatch artifacts 
in reconstructed images: 

Conventional Approaches
1. Transmission Image Transformed by Median 

Motion Transformation: For each dynamic frame 
J, the transmission image is transformed by the 
middle motion transformation that occurs in the 
Jth frame, and is then forward projected to generate 
attenuation correction factors (ACFs). However, the 
more common conventional approach is as follows.

2. Transmission Image Transformed by Mean Motion 
Transformation: For each dynamic frame J, the 
transmission image is transformed by the mean 
motion transformation 

_____
JM , and is then forward 

projected to generate ACFs [11].

Proposed Approach
3. Time-weighted Average of Motion Transformed 

Transmission Images: For each dynamic frame J, the 
transmission image is first transformed by each of  the 
NJ significant motion transformations to generate NJ 
copies of  motion transformed transmission images. 
This is followed by computing a time-weighted 
average of the motion transformed transmission 
images, which is then forward projected to generate 
ACFs.

To see this better, we note that for an object  fMi 
at a time/ position with motion transformation Mi 
(i =1…N), the expected value of projected data Y 
(prior to adding accidental coincidences), is given by:

1
i i

N

i M M
i

Y w A Pf
=

=∑ 		             	           (1)

where T is the frame duration, ΔTi is the duration 
of the ith motion state in the concerned frame, 
wi= ΔTi /T is the time weight for each motion 
transformation and 1i

i

w =∑ , P denotes the projection 
matrix including everything (e.g. image-space 
blurring, geometric projection and normalization) 
except for the effect of attenuation which is modified 
with each motion because of the fact that the 
transmission image is itself also moving, and is 
given by 

iMA . (note that technically, for better 
accuracy, the effect of radioactive decay can/
should also be incorporated in the weights iw ; 
see discussion section). For a given frame with 
mean motion 

___
M , conventional methods assume 

the following approximation:

__ __

1 1
i i
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M Mi i

Y w A Pf A P w f
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thus arriving at a single sinogram __
M

A  for attenuation 
correction of the motion-degraded frame. By 
contrast, the proposed method effectively assumes 
the following:

(3)
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where 
____

MA  denotes the overall attenuation sinogram 
obtained by time-weighted averaging. A fast method to 
approximate 

____

MA  is to actually perform time-weighted 
averaging of the transmission images, followed by 
forward-projection to obtain mean attenuation sinogram, 
as opposed to the computationally intense approach 
of  performing individual forward-projections of 
motion-transformed transmission images, followed 
by averaging. In fact, we observed both approaches 
to produce images of  very comparable quantitative 
performance, and hence pursued the computationally 
faster approach in what follows.

2.2. Inter-frame and Intra-frame Motion 
Correction

Following transmission-emission alignment using 
the above-mentioned methods and reconstruction of 

1i
i

w =∑
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the frames, we performed an inter-frame alignment of 
the emission images. Specifically, each independently 
reconstructed image at a given frame J, with a time-
weighted mean motion 

_____
JM , was transformed by 

1( )JM −  to provide a correctly registered set of 
dynamic images.

To compensate for intra-frame motion, we first 
computed the net residual motion in each independently 
reconstructed frame by ‘removing’ the mean motion 
transformation from the motion transformations

J
iM at each significant motion state i in each frame 

J; i.e. 𝑀𝑀𝑖𝑖
𝐽𝐽,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝑀𝑀𝐽𝐽̅̅ ̅̅  )−1. 𝑀𝑀𝑖𝑖

𝐽𝐽 . This was followed 
by iteratively removing the residual motion from 
each reconstructed image via Richardson-Lucy 
deconvolution [28, 29]:

(4)
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where JQ  is the inter-frame motion corrected 
emission image (i.e. ( ) { }

1

JQ   J recon
JM I

−

= recon
JI is the 

reconstructed emission image for frame J), NJ is 
the number of significant motion transformations 
(i =1,…, NJ), wi

J  denotes the corresponding time 
weights for frame J, and ( ) { }
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,
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 is the intra-frame 
motion corrected emission image at iteration. We 
also performed inter-iteration smoothing with a 
Gaussian filter (FWHM 2 mm) to control noise 
propagation in iterative deconvolution.

3. Experimental Design
3.1. Tomograph

PET data was acquired on the second generation 
High Resolution Research Tomograph (HRRT) 

[30]. The detector heads in the octagonal design 
consist of a double 10 mm layer of LSO/LYSO 
for a total of 119, 808 detector crystals (crystal 
size 2.1 x 2.1 x 10 mm3). The total number of 
possible LORs is 4.486 x 109. The dimensions of 
the reconstructed image are 256×256×207 and the 
voxel volume is 1.219×1.219×1.219 mm3. The 
images were reconstructed using the Ordered Subsets 
Expected Maximization (OSEM) algorithm (10 
iterations, 16 subsets).

3.2. Phantom
We used a mathematical brain phantom [31] to 

conduct simulation studies based on a real patient 
motion profile. The phantom is constructed using 
subdivision surfaces enabling efficient modeling 
of  arbitrary topological structures like brain, skull, 
muscle tissue, and vasculature [31]. The details 
on surface modeling are contained in [31] and the 
references therein. Figure 1 shows the transaxial, 
coronal and sagittal slices of the phantom. The 
activity numbers in the phantom were derived 
from a human FDG PET study. 

3.3. Polaris Motion Tracking and Calibration
We used the Polaris Vicra [8, 32] to track typical 

head movements in a human subject. The Polaris 
Vicra is a high-resolution (< 0.1mm) infrared (IR) 
optoelectronic system that uses 4 IR retro-reflective 
spheres in a known geometry. It is fixed to the head 
via an elastic swimming cap. The 4 spheres face 
the Polaris inside the gantry which in turn acquires 
motion-transformations at 30 ms time resolution. 
Polaris motion tracking is insensitive to lighting 
conditions, uses significantly less disk space for data 
storage (in comparison to optical image sequences) 
and is commercially available and economical [14].

Figure 1. (a) Mathematical Brain Phantom, (b) – (d) Transaxial, Coronal, and Saggital slices of the phantom.
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Polaris-to-Tomograph transformation, [P2T]4x4, was 
computed via a series of  calibration experiments 
performed simultaneously with Polaris tracking 
and transmission scan measurements [19, 31]. 
The Polaris tool was placed in a static position in 
the scanner and the coordinates of  its center along 
with its orientation (quaternion and translation 
vectors) were determined. Given the knowledge 
of the relative positions of the 4 spheres, the 3-D 
positions of the spheres were extracted. During this 
time, a 10 min transmission scan of the tracking 
tool was also obtained. From the reconstructed 
transmission image, the coordinates of the 4 spheres 
were determined by first isolating the 4 spheres from 
the clamp-plate and then fitting a 3-D Gaussian to 
the center of each sphere. This entire process was 
repeated 10 times to increase the accuracy of the 
calibration. [P2T]4x4 was obtained by employing 
a least squares fit to the Polaris and tomograph 
measurements [33]. [P2T]4x4 is later applied during the 
post-reconstruction motion compensation procedure.

The motion file generated by Polaris Vicra consists 
of motion transformations in the form of a quaternion 
vector, [q0 q1 q2 q3], and a translation vector, [tx 
ty tz] i.e. 7 numbers. We first averaged the motion 
transformations accumulated over a series of 1 
second intervals to reduce Polaris measurement 
noise. This gave us motion transformations at each 
second of time interval. Subsequently, we applied 
a combination of motion threshold (0.3 – 1 mm) 
and a time threshold of 15 seconds duration to get 
significant motion transformations. The motion 
threshold (of 1 mm) was set to be one-third of  the 
PET system resolution at the center of the field 
of view [34]. A time threshold of 15 seconds was 
empirically chosen to eliminate impulsive motion; 
i.e. movements that last for very short durations.

3.4. Subject Study
A human subject was recruited to be scanned on the 

HRRT scanner following a clinical (non-research) FDG 
PET scan. The patient was consented and enrolled 
under a JHU IRB approved research protocol and 
monitored for safety by a study physician during 
participation. No adverse events were observed or 
reported. The Polaris Vicra and PET acquisition system 
were synchronized with a master clock using TCL 
scripts. The tracking tool was fixed to the patient’s 
head via an elastic swimming cap. Before scanning, 

appropriate measures were taken to minimize relative 
motion between the tracker and the patient’s head 
and to ensure that the tracker did not slip away 
during scanning. The patient was injected with 20 
mCi of FDG 1.75 hrs prior to scanning.

A transmission scan was performed for the first 6 
minutes followed by a 25 minutes emission scan. 
The patient was asked to remain very still during 
the transmission scan and the first 5 minutes of  the 
emission scan to acquire a reference image with 
minimal motion. The patient was then asked to 
make a number of specific movements and finally 
to move freely for the rest of the study. The Polaris 
Vicra generated a motion file from which significant 
motion-transformations for individual frames were 
extracted. 

3.5. Quantitative Metrics
This section elaborates upon the quantitative metrics 

used to analyze the motion compensated images. 
The reference image used in these computations 
corresponded to the first five minutes of  emission 
scan that contained minimal motion. We preferred 
it over the original true phantom as the latter does 
not contain partial volume effects [31].

1. Error Norm: The error norm (units of  activity) 
is a voxel-wise comparison between the reference 
image, R, and the motion-compensated PET image, 
I. It is defined as follows:

[ ] [ ]
1

,
V

i

I R I i R i
=

= −∑ 		           (5)

2. Mean Displacement: We use the time-weighted 
mean displacement, 

_______
Disp , to quantify motion in 

a dynamic PET image. For each dynamic frame, _______
Disp  is calculated with respect to the mean motion 
transformation in that frame (

___
M):

( ) ( )
_______ ____

1 1

1 | i| ||
V N

j
j

i j

Disp w M i M
V = =

= −∑∑        (6)

 where  V is the total number of voxels in the 
masked image, N  is the total number of  significant 
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Figure 2. Motion profile acquired during the first 25 minutes of emission scan. Row 1 shows the translation profiles and Row 
2 shows the rotation profiles in the three axial directions (x, y, and z). We see a significant translational motion in the x axial 
direction and a significant rotational motion in the z axial direction as expected. Green solid markers show the frame time points 
for the first 9 frames (1 x 300 seconds, 8 x 150 seconds).

motion transformations in each frame, jw    is the 
time-weight for the thj  motion transformation, and 

( )M i  denotes the spatial coordinates of voxel ( )M i  
under the motion transformation ( )M i.

3. Noise and Bias: We quantitatively analyzed 
different regions of  interest (ROIs): white matter, 
caudate, putamen, cingulate, thalamus, globus pallidus, 
frontal-orbital gyrus, and occipitotemporal gyrus. 
For noise-bias analysis, we computed regional bias, 
RB, and regional normalized standard deviation, 
RNSD, for each ROI:

r r
r

rRB
λ µ

µ

−
= 		           (7)

( )21
1

r
r rr

r
LRNSD

β
β

λ λ

λ
∈

−
−=
∑        (8)

where r indexes the ROIs, r r
r

rRB
λ µ

µ

−
=

 denotes mean 
reconstructed activity of ROI r in the motion 
compensated image, 

r r
r

rRB
λ µ

µ

−
=

 denotes mean activity of 
ROI in the reference image, 

( )21
1

r
r rr

r
LRNSD

β
β

λ λ

λ
∈

−
−=
∑ is the total number 

of voxels in ROI r and ( )21
1

r
r rr

r
LRNSD

β
β

λ λ

λ
∈

−
−=
∑  indexes them.

4. Results
4.1 Real Subject Motion Profile

Figure 2 shows motion profile from the subject 
motion tracking study. The markers show the frame 
time points for 9 frames (1 x 300 seconds, 8 x 150 
seconds). The first 5 minutes frames clearly show 
minimal motion and, hence, is used as a reference 
frame for qualitative and quantitative analysis. 
Figure 3 shows motion-trajectory of  a reference 
point located in the brain for 150 seconds frame 
duration. The magnitude of  intra-frame motion, 
quantified by, is 5.92 mm.



|Hassan Mohy-ud-Din et al. | Intra-frame Motion Compensation in Multi-frame Brain PET Imaging

66

August 2015, Volume 2, Issue 2

Figure 3. Motion trajectory of a reference point located in the brain during a 150 seconds frame. The origin is at the center 
of the scanner’s FoV. The magnitude of intra-frame motion is 5.92 mm.

4.2. Comparison of  Transmission-Emission 
Alignment Strategies

Qualitative and quantitative comparisons of  various 
motion compensated reconstructed images are 
depicted in Figures 4 and 5, respectively (Frame 8 
with 

_______
Disp=4.83 mm and Frame 5 with   

_______
Disp=9.08 

mm). It is observed that the proposed approach 
of transmission-emission alignment considerably 
reduced mismatch artifacts and produced images 
with superior quality compared to conventional 
methods. Small regions of interest such as the caudate 
and putamen were clearly distinguishable, and the 
functional morphology was preserved for different 
magnitudes of intra-frame motion. On the contrary, 
the images from the conventional approach were 
visibly degraded by transmission-emission mismatch 
artifacts that degraded the uptake distribution in 
the caudate and putamen. With increased intra-
frame motion (higher 

_______
Disp), transmission-emission 

mismatch becomes increasingly significant, and the 
motion compensated images from conventional 
methods degraded severely. The proposed approach 
showed a substantial improvement even for motion 
magnitude of ~9 mm. From here on, the results 
from simulations and subject study will focus only 
on using the transmission image transformed by the 
mean (not median) motion 

_____
JM , for each frame J, 

for conventional approach and using time-weighted 
average of motion transformed transmission images 

for the proposed approach. 

4.3. Qualitative and Quantitative Analysis 
of Phantom Simulations

Figure 6 depicts motion compensated images 
obtained from phantom simulations. We depict 
results from Frame 5 and Frame 8 with  

_______
Disp=4.83 

mm and  
_______
Disp =9.08 mm respectively. We show 

motion compensated images with inter-frame motion 
correction only, as well as additional intra-frame 
motion correction (with deconvolution iterations 
8 and 15 respectively), employing conventional 
and proposed approaches of  transmission-emission 
alignment. 

Figure 4. (Rows 1 and 2: L-to-R) (a) reference image, motion 
compensated image using the transmission image transformed 
by (b) median and (c) mean motion transformation, and (d) the 
proposed approach of  using time-weighted motion transformed 
transmission images respectively. White ellipses highlight the 
artifacts in motion compensated images using conventional 
approach of transmission-emission alignment.
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Figure 5. Error norm curves from simulations using different transmission-emission alignment strategies. The proposed 
approach of using time-weighted motion transformed transmission images clearly outperforms conventional methods for 
minimizing mismatch artifacts in motion compensated images. 

Figure 6. (L-to-R) inter-frame motion compensated images, 
inter-frame and intra-frame motion compensated images 
with conventional and proposed approaches of transmission-
emission alignment, and deconvolution iterations 8 and 15 
respectively. White ellipses highlight artifacts. Proposed 
approach outperforms conventional methods in producing 
motion compensated images with superior quality.

Our proposed approach is seen to considerably 
remove inter-frame and intra-frame motion artifacts. 
The results are consistent across different levels 

of intra-frame motion. The conventional approach 
produced images that are visibly degraded by 
transmission-emission mismatch artifacts, even with 
small movements. These artifacts are amplified with 
increased deconvolution iterations and motion levels. 
We concluded from this qualitative analysis that the 
proposed approach produced motion compensated 
images with superior quality. We now substantiate 
this assessment through quantitative analysis of 
motion compensated dynamic images.

Figure 7 shows the error norm curves for the 
proposed and conventional approaches with varying 
deconvolution iterations. 0th deconvolution iteration 
implies inter-frame only motion correction. We 
omitted frames with negligible intra-frame motion. 
The proposed approach showed a larger error drop 
compared to the conventional approach. In fact, for 
the conventional approach, the error norm increases 
with deconvolution iterations and intra-frame motion. 
This is again attributed to transmission-emission 
mismatch which starts to dominate with a higher 
intra-frame motion. 

Figure 8 shows the Error Norm vs. 
_______
Disp   plots 

for the proposed and conventional approaches 
with inter-frame and intra-frame motion correction 
(10 deconvolution iterations). We obtained a 
proportional relationship between error norm and 
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Figure 7. Error norm plot for different frames against deconvolution iterations (10 OSEM iterations, 16 subsets). 0th iteration 
implies intra-frame only motion correction. Proposed approach outperformed conventional approach exhibiting a larger 
error drop. Conventional approach showed an increase in error norm because the transmission-emission mismatch starts to 
dominate with increased deconvolution iterations. 

Figure 8. 
_______

1 .L vs Disp   
_______

1 .L vs Disp  plot shows increased discrepancy with higher intra-frame motion (higher 
_______
Disp ). Proposed approach 

outperforms conventional approach by significantly reducing the transmission-emission mismatch artifacts (as shown by a 
better error performance). 

_______
Disp . Conventional approach showed a significant 
discrepancy with increasing intra-frame motion 
(quantified by 

_______
Disp ). Even at higher levels of intra-

frame motion (higher 
_______
Disp), the proposed approach 

showed a significantly better error performance 
compared to the conventional approach.

Figure 9 shows overall noise vs. bias plots for 
deconvolution iterations 1, 2, 3, 5, 8, 10, 15, 
and 20 (across 8 ROIs). The proposed approach 
outperformed the conventional approach in noise 
vs. bias trade-off at different magnitudes of intra-
frame motion. With increasing deconvolution 

iterations, we saw a greater reduction in bias at 
a cost of smaller increase in noise levels. For 
conventional approach, the noise-bias performance 
worsened with increasing deconvolution iterations, 
which is attributed to the transmission-emission 
mismatch artifacts.

_______

1 .L vs Disp
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Figure 9. Overall noise-bias plots across deconvolution iterations 1, 2, 3, 5, 8, 10, 15, 20 respectively for 8 ROIs. Proposed 
approach shows a better noise-bias performance over conventional approach with a greater reduction in bias at a cost of 
smaller increase in noise levels.

5. Discussion
In the context of multi-frame PET images, incorporating 

the proposed transmission-emission alignment 
strategy, qualitative and quantitative analysis from 
simulations showed that our approach of intra-frame 
motion compensation produced images with superior 
quality (Figure 6), improved accuracy (Figure 7), 
and enhanced noise-bias performance (Figure 9). 
Error norm increased with intra-frame motion 
(Figure 8), which was attributed to the significant 
transmission-emission mismatch artifacts. However, 
even for high intra-frame motion, the proposed 
methodology of transmission-emission alignment 
and intra-frame motion compensation resulted in 
considerably less error norm (discrepancy) compared 
to the conventional approach and inter-frame only 
motion compensated images. 

We note that our intra-frame motion correction 
approach relies on an accurate tracking of patient 
motion over time. The Polaris Vicra optical tracking 
system is utilized by a number of users and has 
resulted in enhanced reconstructions for different 
algorithms [8, 17, 21, 32]. Nonetheless, the use of 
this device has the potential to suffer from drifts 
of the cap on which the retro-reflective spheres 
are mounted or of the scalp with respect to the 
skull (e.g. due to rubbing of head against the bed). 
Tracking solutions that seek to minimize such issues 
are clearly preferred, an example of which has 
been the promising use of structured light motion 
tracking of the face [35], which can be utilized in 

the context of our proposed methodology.

We also note that for increasingly greater movements 
(i.e. larger 

_______
Disp; not shown), which are considerably 

less common (e.g. see [36], Figure 1), mismatch 
artifacts, though visually and quantitatively reduced 
with respect to conventional methods, can still be 
very significant even when using the proposed 
framework. For such motion levels, an alternative 
approach, which is a topic of future investigation, 
is to subdivide the frames into smaller sub-frames 
such that the mean motion, gauged by 

_______
Disp , falls 

below 6 mm. This approach, however, can degrade 
signal-to-noise for a given frame, and ultimately, a 
task-based optimization of motion-threshold may 
need to be achieved for optimal trade-off between 
the ability to compensate for motion and noise 
levels in individual sub-frames.

We also wish to point out that our method of 
allocating weights wi purely by duration can be 
refined to incorporate the effect of decay into 
consideration. Consider the following simplistic 
scenario of a constant distribution within a frame: 
if we imagine two kinds of movements in a given 
frame, both of equal extent and duration, then a 
greater weight must actually be assigned to the 
earlier movement, since more disintegrations occur 
then than later due to the radioactive decay of the 
tracer. In many studies, however, frame durations 
are quite smaller than the half-life of the radiotracer; 
however, this is not always the case, and it is best 
if the weights are modified accordingly.
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Two major drawbacks of deconvolution are 
noise propagation and the appearance of Gibbs 
artifacts. General approaches to this problem include 
early stopping of the algorithm, and/or the use 
of regularization. We performed inter-iteration 
regularization [37] using a Gaussian filter (2 mm 
FWHM). This approach was quite effective and was 
included in the entire study. Further improvements 
in image qualities may be obtained via the use 
of edge-preserving filtering [38-41]; this merits 
additional focus and systematic assessment, which 
is a topic of future work. Noise amplification and 
Gibbs artifacts can also be limited by an early 
stopping of deconvolution. Figure 7 shows that 
the optimal number of deconvolution iterations 
is less than five. This allows early stopping and, 
thereby, implicitly controls noise amplification 
and Gibbs overshoots in motion compensated 
images. Another potential approach to the general 
problem of Gibbs artifacts, which also appear in 
reconstruction-based resolution modeling [42] is 
to utilize specific post-reconstruction filters that 
suppress mid-frequencies [43]. Individual and 
or combined use of these methods remain to be 
systematically assessed for motion de-blurring.

Finally, we note that it is possible to explore the 
inclusion of motion-compensated iterative recovery 
within the EM reconstruction. An example has been 
to model motion blurring within the system matrix 
of the reconstruction algorithm [44], or to utilize 
optimization transfer to arrive at a nested framework 
for iterative, coupled image reconstruction and 
motion deblurring [45], as has also been explored in 
the context of resolution modeling [46]. It remains 
to be thoroughly evaluated in future work how 
these methods compare to one another.

We have demonstrated that reconstructing emission 
images with time-weighted average of motion 
transformed transmission images greatly reduces 
transmission-emission mismatches. Furthermore, 
coupled with a Richardson-Lucy deconvolution 
procedure to compensate for intra-frame motion, our 
proposed approach produces motion compensated 
images with superior quality compared to the 
conventional approach which is prone to noticeable 
transmission-emission mismatch artifacts. 
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