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A B S T R A C T
Purpose- In external beam radiotherapy of dynamic tumors, several errors raise due 
to inter- and intra-fractional motions. In order to compensate these errors, signals 
obtained from different surrogates are used to infer with tumor motion as real time. 
Therefore, a comparative assessment may be worthwhile on the effect of different 
surrogates in tumor motion tracking.

Methods- The performance accuracy of three internal-external surrogates entitled: 
external markers, diaphragm movement and lung volume was done using 4 Dimensional 
Extended Cardiac-Torso (4D-XCAT) phantoms. Adaptive Neuro Fuzzy Inference 
System (ANFIS) model was implemented to correlate the motion of surrogates with 
several tumors located in liver and lung, separately. Finally, the Root Mean Square 
Error (RMSE) of ANFIS model outputs in tumor motion prediction of different 
surrogates was compared as metric tool.

Results- The average value of RMSE of lung and liver tumors were 0.4 mm, 0.6 mm 
and 0.8 mm for external markers, lung volume and diaphragm motion, respectively.

Conclusion- Among three investigated surrogates, the best performance belonged to 
external markers strategy, while optimum location of these markers determined using 
an input selection algorithm in this method.
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1. Introduction

I n radiotherapy with external beam, the main 
challenging issue is delivering 3D uniform dose 
into tumor volume while minimizing high dose 

received by healthy surrounding tissues at the same 
time. The treatment quality of radiotherapy strongly 
depends on the accuracy of tumor localization during 
treatment planning process. However, in thorax region 
semi-regular motions of Heartbeat, gastrointestinal 
and especially breathing phenomena known as 
intra-fraction organs motion are problematic during 
treatment planning. These errors cause a significant 
positional uncertainty of target localization and can 
therefore reduce radiation treatment quality [1-4]. 
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Several strategies have been proposed in order to 
minimize the tumor motion error. These strategies 
which are used clinically or are under developing 
include: breath holding, respiratory gating and 
real-time tumor tracking techniques [5-11]. In two 
latter cases, the patient can breathe freely during 
irradiation while the breathing motion is being 
monitored continuously to extract tumor position 
information. For this purpose, additional monitoring 
hardware such as fluoroscopy and optical tracking 
system (OTS) in combination with stereotactic X-ray 
imaging is required to track tumor motion in real 
time. Some of  these motion monitoring devices 
include: continuous X-ray imaging (i.e. fluoroscopy) 
[12], electromagnetic [13], ultrasound [14], live 
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MRI [15] and external surrogates [16-18]. Among 
them, the latter case is now clinically applied due 
to its feasibility and reliability in tumor motion 
estimation with less side effects and expenses. 
Several surrogates are currently available to be 
inferred with tumor motion such as: spirometer 
[18,19], strain gauge [18], Time-of-Flight Cameras 
[20] and external markers [16]. In radiotherapy with 
external markers, the tumor motion is predicted by 
means of motion data of external markers located 
on chest and abdomen surface of patient body. 
Moreover, an external signal can also be achieved 
from diaphragm motion as an alternative. A third 
suggestion, external motion signal may be obtained 
by measuring air volume released during inhalation-
exhalation phenomena. In all given methods using 
external markers, lung volume and diaphragm 
based motions, a consistent correlation model is 
required to predict the tumor motion by means 
of extracted external signals. This correlation 
model must be firstly configured using training 
dataset at pre-treatment step. While the model was 
built, it was ready to infer tumor motion only by 
means of eternal signals. Comprehensive studies 
were done taking into account different aspects 
of available correlation models in our previous 
reports [21-23]. The aim of  the present study is to 
investigate the accuracy of three different breathing 
surrogates entitled external markers, lung volume 
and diaphragm motion in tumor motion tracking 
taking into account the robustness and weakness 
of each method. 

2. Methods
2.1. 4DXCAT Phantom

A simulation study was done using NURBS 
based 4D XCAT anthropomorphic computational 

phantom developed by W. P. Segars. This phantom 
is commercially available to simulate dynamic organ 
motion mainly caused by breathing phenomena [24]. 
As XCAT phantom is a hybrid between the realism 
of  pixel-based and the flexibility of  geometry-based 
phantoms, it can model dynamic process better 
than other available cases [25]. In this study, for 
simulating a real breathing pattern, six different 
respiratory cycles were considered with reasonable 
breathing amplitude and frequency using motion 
dataset of real patients (Table 1). In order to do 
this, a maximum Anterior-Posterior expansion of 
chest wall and the time of  respiratory period were 
determined based on respiratory motion parameters 
of  real patients treated with Cyberknife Synchrony 
System at Georgetown University medical center 
(Washington DC).

It should be noted that in the simulation process, 
the time interval between two data acquisition steps 
was assumed to be 25 ms.

We defined nine tumors in lung and liver using 
XCAT phantom. 3 tumors in the right lung and 3 
tumors in the left lung were considered in upper, 
middle and lower lobes of lungs. Moreover, 3 
tumors assumed to be located at lower, middle 
and upper lobes of liver (Figure 1, right side). 
Three internal-external surrogates consist of: 1) 
diaphragm, 2) lung volume, and 3) external markers 
were investigated in tumor motion prediction using 
available motion dataset. Diaphragm motion and lung 
volume values were extracted from XCAT phantom 
directly. However, for external markers strategy, 49 
points were assumed to be uniformly distributed 
onto the surface of the chest and abdominal regions 
while each point represents an external marker. 
The distribution of assumed points started from 
abdominal region with 5 cm distance in vertical 
and horizontal directions (Figure 1, left side).

Table 1. Characteristics of six different respiratory cycles created by XCAT Phantom.

Maximum Anterior-Posterior 
expansion of chest wall (cm)

Maximum diaphragm 
motion (cm)

Time of respiratory 
period (sec.)

Breathing cycle 
number

1.2251
0.71.752
0.51.243
1.32.264
11.85.55

0.513.56
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  Figure 1. Left panel) external markers simulation. Right panel) 
internal tumors in lung as: RUT = Right Upper Tumor, LUT = 
Left Upper Tumor, RMT = Right Middle Tumor, LMT = Left 
Middle Tumor, RLT = Right Lower Tumor, LLT = Left Lower 
Tumor, and in liver as  UT_liver = Upper.

2.2. Input Selection Algorithms
In radiotherapy with external markers as surrogates, 

the main challenging issue is using the external 
markers data points that have the most effective role 
at correlation with internal tumor motion. Therefore, 
it is worthwhile to mention a strategy to select the 
best signals form given external markers appropriate 
for tumor motion tracking. For this purpose, we 
proposed input selection algorithm.

This algorithm was first introduced by Zhang et al. 
as a strategy based on dimensionality reduction in data 
mining procedure [26]. Implementing this technique, the 
number of inputs, is reduced by removing irrelevant, 
redundant, or noisy data at external markers strategy. 
Therefore, most effective and remarkable makers data 
extracted from the whole dataset can improve predictive 
accuracy. In order to find the best location of the external 
markers, an input selection algorithm was employed 
using Weka software package [27]. Input selection 
algorithms are composed of two parts: 1) feature 
evaluation method and 2) searching method. In this 
work, Relief feature evaluation method [28] was used 
in combination with Ranker search procedure. Relief 
Attribute Evaluation evaluates the worth of an input 
by repeatedly sampling an instance and considering 
the value of  the given input for the nearest instance 
of the same and different class [29]. Ranker search 
method Ranks features by their individual evaluations. It 
should be noted that because Relief Attribute Evaluation 
method is a single attribute evaluator, which evaluates 
the attributes individually, it should be used with the 
Ranker search method to generate a ranked list from 
which Ranker discards a given number [30].

2.3. ANFIS Correlation Model
As mentioned above, at radiotherapy with external 

surrogates, correlation model is a main component 
that infers tumor motion using motion data of external 
surrogates obtained from external markers, lung 
volume and diaphragm. Selecting a proper correlation 
model yields an accurate tumor tracking with less 
uncertainty error. 

2.3.1. ANFIS Structure
In this work, we developed an adaptive neuro-fuzzy 

correlation model by implementing embedded fuzzy 
logic and neural network toolbox of MATLAB 
(The Math Works Inc., Natick, MA) [31]. ANFIS 
combines fuzzy rules set with the numeric power 
of neural network systems. Moreover, since the 
utilized motion dataset is highly variable with large 
uncertainty, ANFIS may be optimal to trace tumor 
motion as well in comparison with other available 
models based on our former studies [21-23]. Fuzzy 
inference system of ANFIS is based on Sugeno 
type and membership functions are generated by 
FCM data clustering algorithm. This clustering 
strategy has been proven to be proper among current 
available data clustering algorithms [31-33] and the 
membership functions derived by this strategy are 
in Gaussian shape. “If-then” rules are connected 
with AND operator representing minimum selection 
criteria in antecedent and consequent parts of fuzzy 
inference system. 

2.3.2. Model Configuration and Performance
Firstly, the proposed ANFIS correlation model 

must be configured using synchronized external-
internal motion data in training step before treatment. 
After model configuration, it is able to infer tumor 
motion as a function of time using only external 
motion data as input. In this work, the model was 
configured by the motion information of first five 
cycles and the last breathing phase was used as 
model test (Table 1). Nine tumors located in lung 
and liver were predicted using each of the three 
internal-external surrogates, separately and RMSE 
between benchmarked and a model output was 
calculated according to the following metric tool:

	         (1)

Where, N is the number of predicted samples, Ai is 
ith output in the dataset as real position information 
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Figure 3. Result of Duncan statistical test for lung and liver tumors prediction using internal-external surrogates. Each of 
the “a” and “b” words shows a separate group for average value of prediction error of each internal-external surrogate for all 
nine tumors. Each group has a significant difference with others in average value of prediction error.

and Pi is the ith predicted output by the model.

As the next step, the results of ANFIS model for 
each surrogate were compared with each other to 
find the best one.

3. Results
Figure 2 shows the prediction RMSE of all tumors 

in lung and liver using ANFIS correlation model 
fed by each of the proposed surrogates.

In order to measure the difference between the 
accuracy of different surrogates, F-test was also 
applied as statistical test. Furthermore, Duncan 
test was implemented to evaluate the mean error 
of these algorithms. The results of two statistical 
tests were shown in Figure 3.

Figure 2. Prediction error of each of the tumors shown in Figure 1 right panel, using each of the surrogates.

In Figure 3, each of a and b words shows a separate 
group which has a significant difference with others 
in an average value of prediction error. This means 

that if two surrogates are placed in a same group, 
there is no significant difference between them. Based 
on Duncan test as seen in this Figure, diaphragm 
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motion has the worst performance between 3 proposed 
surrogates for tumor motion tracking in lung and 
liver. Furthermore, the best performance is resulted 
by external markers based method. The ratios of 
RMSE of tumor motion prediction by external 
markers to that of lung volume and diaphragm 
motion were 0.7 and 0.5, respectively.

The effect of using different surrogates on the 
run-time of the ANFIS prediction model is shown in 

Figure 4. The graph indicates that the run times of 
models fed by diaphragm motion and lung volume 
signals are almost the same, but this value is higher 
for model fed by external markers signal. This is 
due to existing a large amount of external data 
achieved by markers and also further computational 
complexity considering input selection algorithm. 
However, all of these run times are low enough to 
predict the tumor motion in real time mode.

Figure 4. Comparison of run time of ANFIS model fed by different surrogates consisting: external markers, diaphragm and lung 
volume. 

4. Discussion
Simulation is a powerful tool for studying different 

properties of human body. An important aspect 
of simulation is to have a realistic computerized 
phantom or model of the human like 4DXCAT 
phantom.

In the present study, three different surrogates 
including diaphragm motion, lung volume and external 
markers were comparatively investigated in real time 
tumor motion prediction. ANFIS correlation model 
was implemented as a correlation model to predict 
tumor motion using signals obtained from internal-
external surrogates. Nine tumors in upper, middle 
and lower parts of lung and liver organs were taken 
into account to cover all possible dynamic tumors 
in these two organs. Based on the results between 
three investigated surrogates, the best performance 
accuracy was achieved using external markers. It 

should be noted that the optimum location of external 
markers were initially determined using an input 
selection algorithm. As illustrated from the result 
section, the location of external markers play an 
important role at success degree of a correlation 
model during tumor motion prediction [34-36]. In 
this study, 5 external markers were considered as 
the optimum number to have best correlation with 
tumors motion through trial method. It should be 
noted that the number of external markers located 
on thorax and abdomen regions of patients ranges 
from 3 to 5. These values are validated at different 
literatures since markers less than 3 cannot provide 
enough dataset for model configuring at pre-treatment 
and feeding during treatment. While markers more 
than 5 makes problems in practical during patient 
setup and also a large amount of dataset are not 
necessary and may causes over-parameterization 
issue in model performance. 
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It’s worth mentioning that each proposed strategy 
has its unique robustness and drawback as feasibility, 
simplicity and accuracy of each method as most 
important issues. Using diaphragm motion as surrogate 
may be simple regarding with two other strategies. 
Since its motion may be traced fluoroscopically, 
additional imaging dose received by patients is 
much more than other techniques and this issue 
must be taken into account according to ALARA 
principal. Although motion information achieved 
by diaphragm as surrogate may not be perfect to 
increase targeting accuracy. In external surrogates 
technique both imaging dose and tumor motion 
inaccuracy is addressed as well. But the complexity 
of this method is more than the rest methods while 
using several external markers on patient surface. 
Concerning lung volume strategy, it should be noted 
that there is still lacking enough information to be 
inferred with tumor motion with high accuracy.

Finally based on our dataset and motion prediction 
model used here in this study diaphragm surrogate 
has highest RMSE regarding with lung volume 
and external markers.

In this study, we investigated three external-internal 
surrogates to predict tumor motion in external 
beam radiotherapy as comparative study. Final 
analyzed results showed that optimum located 
external markers have the most predictive power 
in comparison with lung volume and diaphragm 
motion. Though the study here focuses on finding 
optimum external-internal surrogates using XCAT 
phantom, the proposed idea can be implemented 
on real patient data as our future studies.
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