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Abstract 

Purpose: Sleep is a subconscious state, and the brain is active during it. Automatic classification of sleep stages can 

help identify various diseases. In recent years, automatic sleep monitoring using deep learning networks has attracted 

the attention of researchers.  

Materials and Methods: In this paper, a deep learning type neural network  called Stacked Autoencoders (SAEs) is 

used for automatically classifying sleep stages. SAEs are a kind of neural network with encoder and decoder blocks. 

The function of these networks is similar to the human brain and is capable of automatically processing signals; also 

SAEs are robust to noise. To prove the efficiency of this network, in addition to examining the effect of various 

biological signals such as Electrocardiogram (ECG) and Electroencephalogram (EEG) on the performance of sleep 

stage classification, Sleep Heart Health Study (SHHS) and ISRUC standard databases have been used, which 

include night recordings of 30 and 10 healthy humans, respectively.   

Results: The accuracy of classifying 2 to 6 classes by SHHS database are 0.995, 0.983, 0.9780, 0.9688, 0.961, 

and on ISRUC database accuracies are 0.996, 0.994, 0.9511, and 0.9431. Moreover, the proposed network can 

classify wake, deep sleep, and light sleep using the ECG signal (acc = 0.75, kappa = 0.69). 

Conclusion: In the review of the results, it is concluded that sleep stages classification based on EEG signal has 

better results, still acquisition of ECG signal and its acceptable results can be a good alternative to use. In addition 

to its high ability of the proposed method to detect sleep stages, this network is robust to noise, which is very 

necessary and important for the clinical processing of sleep signals. 

Keywords: Sleep Stages; Stacked Autoencoder; Single Channel Electroencephalogram; Deep Learning; 

Electrocardiogram. 
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1. Introduction 

Sleep is a natural state in the humans and all creatures 

in which the brain can be stimulated and respond to internal 

stimuli. Because of this, sleep status is one of the most 

important pieces of evidence for the diagnosis of mental 

illness [1]. An abnormal state at the frequency of each stage 

of sleep represents a particular condition. For this reason, 

recognizing the stages of sleep, abundant therapeutic and 

research uses such as examining types of sleep disorders 

[2], diagnosis of various diseases such as epilepsy [3], 

depression [4], sleep apnea [5-9], and sleep scoring [10-

12]. In recent years, considering the high cost of using a 

human expert in the study of high-volume sleep signals 

and their error in sleep investigation, many studies have 

recently used Deep Learning (DL) based methods, 

including autoencoders for sleep scoring [4, 10-16]. Sleep 

is already a known process, in which the human brain is 

active during sleep time [13]. 

In a healthy human brain, several psychological states 

and different frequencies occur during sleep, which are 

referred to as sleep stages. These stages can be classified 

according to two global standards, named Rechtschaffen 

and Kale (R&K) [14], and the American Academy of Sleep 

Medicine (AASM) [15]. According to the R&K scoring 

standard, a sleep cycle involves six stages. These stages 

include wake, first sleep stage (S1), second sleep stage 

(S2), third sleep stage (S3), fourth sleep stage (S4), and 

Rapid Eye Movement (REM) [16]. The AASM manual 

for scoring the sleep presented in 2007 and it is a newer 

standard than R&K. According to the AASM sleep scoring 

manual, a whole night sleep includes five stages, which are 

wake, S1, S2, SWS (S3 + S4), and REM. In all clinical 

applications, it is not necessary to identify all six or five 

stages of sleep, but depending on the type of application, 

it may be essential to locate fewer stages of sleep, so there 

are five different categories to classify the stages of sleep, 

which are: 2-classes, 3-classes, 4-classes, 5-classes, and 

6-classes. Table 1 shows the various classification methods 

for different stages of sleep. In all medical applications, 

it is not necessary to distinguish 6 classes of sleep, and 

sometimes, depending on the need, it may be required 

to classify them into fewer stages of sleep and more 

quickly. But most previous research has only analyzed 

the results of 6 or 5 classes of sleep [17, 18]. 

In this study, we classified all sleep classes for 

Electroencephalogram (EEG) and Electrocardiogram 

(ECG) signals that are examined separately to be suitable 

for all medical uses. The best type of signal recording for 

sleep monitoring is Polysomnography (PSG) recording 

[19]. PSG type of sleep study is a multi-parameter study 

of sleep that is a procedure that utilizes EEG, Electro-

oculogram (EOG), Electromyogram (EMG), ECG, and 

pulse oximetry. In fact, PSG recording has been considered 

by researchers because it is comprehensive and completes 

all the bio signals during sleep, so that all sleep-related 

databases are polysomnographic recordings [4-7, 20], 

which include EEG, EOG, and EMG recordings. PSG 

is a non-invasive bio-signal captures during whole night 

sleep. This recording is usually done in sleep clinics or 

hospitals. Before going to record the signal, the person 

should refrain from consuming chocolate, coffee, or 

caffeine and go to the clinic with appropriate clothing 

and equipment that makes sleep easier. The technician 

will be with the patient during the night. In addition to 

the signals mentioned, in PSG recording, vital parameters 

such as blood oxygen, body temperature, respiration rate, 

and heart rate are recorded. PSG usually has a large 

amount of information because it involves about 6-8 

hours of sleep a night [21]. Figure 1 shows PSG signals 

record leads. 

Some previous research has used a combination of 

all PSG signals [22]. But the patient cannot use PSG 

effectively at home because of a large number of leads 

and problems with recording simultaneous signals.  

Table 1. Various classification methods of different stages 

of sleep by EEG signal 

Number of class Stages 

6 class (R&K) Wake, REM, S1, S2, S3, S4 

5 class (AASM) Wake, REM, S1, S2, SWS (S3+ S4) 

4 class Wake, REM, (S1+ S2), (S3+ S4) 

3 class 
Wake, REM (deep sleep), NREM (S1-S4) 

(light sleep) 

2 class Wake, sleep (REM-NREM) 

 

 

Figure 1. PSG signals record leads [1] 
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This is why recent sleep research has led to the 

introduction of intelligent algorithms for signals other 

than PSG [23-25]. Among the recorded PSG signals, 

the single-channel EEG signal is the best signal, which 

has useful information and can meet the needs of sleep 

monitoring alone. In addition to the EEG signal [10, 26], 

the ECG signal is another valuable signal for sleep 

monitoring that has attracted the attention of sleep 

researchers in recent years [27-30]. The ECG signal is 

recorded bipolar during sleep and can provide the 

information needed to monitor sleep. The ECG and EEG 

signals are very efficient and useful for sleep monitoring. 

However, there is no comparison and comprehensive 

research on the effects of these signals in sleep stages 

classification simultaneously in the literature.  

Observing the EEG and ECG signals manually to study 

the sleep process may not be the right option due to human 

errors and high costs.  Moreover, we need an automated 

and robust noise network to monitor sleep, given the high 

volume of data and the possibility of noise contamination. 

Research on the automatic classification of sleep stages 

based on the type of used features can be divided into 

three categories. Applying statistics and wavelet transform 

features [17, 31], using chaotic and entropy-based features 

[16, 19], and automatic feature selection by deep learning 

neural networks [32, 33]. 

Statistical and frequency features such as mean, 

variance, and wavelets are the most common features used 

in classic signal processing methods. Hassan et al. [34] 

used the statistical and wavelet transform features and 

used different classifiers and bagged  them to classify five 

sleep stages with 93.6% accuracy. Saifpour et al. [35], 

by presenting an algorithm based on the local statistical 

features of the EEG signal, were able to classify five stages 

of sleep with 91.8% accuracy. In our previous study [1], 

we were able to classify 2-6 classes of sleep by single-

channel EEG using statistical, frequency, and entropy 

features and the Laplacian feature selector. Despite the 

applicability of the method using EEG signals, it could 

not work with ECG signals, while the goal is to use 

algorithms that are efficient and useful for all biological 

signals.  Sheykhivand et al. [18] used statistical features 

and composition of the genetic algorithm and neural 

networks to select the best features and use the single-

layer perceptron network to the classification of sleep 

stages. Dursun et al. [17], used correlation and wavelet 

transform algorithms to remove the EOG from sleep 

EEG. In this category, considering the use of statistical 

and frequency features alone, we will not have acceptable 

accuracy. Use of statistical and frequency features is very 

sensitive to noise, even if they are reasonably accurate in 

classifying sleep stages. Besides, using statistical features, 

even if metaheuristic feature selectors are used to perform 

classification operations using the best features [36], 

still do not provide acceptable accuracy. 

Using chaotic features such as fractal, Poincare, and 

entropy is an excellent option to process the EEG signal 

due to its chaotic behavior. Pejman Memar et al. [19] 

used chaotic features and a random forest classifier for 

the sleep study, and they were able to classify five stages 

of sleep. Shivani et al. [37] classify sleep stages by using 

Wigner–Ville Transform and entropy features. Rajeev 

Sharma et al. [16], to study the sleep stages, designed an 

iterative filter to decompose the EEG into the essential 

component. Afterward, using domain measurements and 

calculating instantaneous frequency functions, draw 

the Poincare plot, and the result of the Poincare plot is 

considered a feature for the different classifiers to classify 

different sleep stages. The use of chaotic features in the 

processing of the signal in a classical way, despite the 

high accuracy in the classification of the sleep stages, is 

very complicated, and due to the high volume of sleep 

data, the computational speed is deficient. It is also very 

sensitive to noise, as the first category method. In addition, 

in manual signal processing, which includes feature 

extraction and feature selection, part of the signal 

information may be lost due to human error in selecting 

these operators. 

The third category of research is deep learning-based. 

Deep learning neural networks, including Convolutional 

Neural Networks (CNN), Long Short Time Memory 

(LSTM), and Stacked Auto Encoders (SAEs) promote 

perceptron networks with a high number of hidden layers . 

CNN networks can provide a classified output using a 

kind of filter on input data and a much more regular 

network than perceptron [38]. SAEs networks provide 

classified results using a more straightforward method 

than CNN by input encoding and decoding. Michielli 

et al. [39] classified five sleep stages by using a Cascaded 

LSTM network. Akara Supratak et al. [32] designed a 

CNN which consists of 12 sub-layers for automatic 

classification of  sleep stages. Zhang et al. [40] proposed 

a rapid recognition Convolution Neural Network with 

integral value to extract the features and classification of 

sleep stages. Wei et al. use ECG signals and autoencoders 

to classify three sleep stages [41]. Sors et al. [42] design 
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a deep convolution neural network with 14 hidden layers 

to classify five stages of sleep. Yuan et al. [43] introduced 

a Variable-Wise weighted Stacked Autoencoder network 

(VW-SAE) which is very useful for practical processing 

applications in sensors. Also, Yuan et al. [44], in another 

study, presented a more advanced model than VW-SAE. 

Its name is Layer-Wise Data Augmentation SAE (LWDA-

SAE) which has less learning error than other deep learning 

methods and can therefore converge at a higher processing 

speed. The automatic classification of sleep stages requires 

computational speed and high accuracy. CNN, due to their 

complexity, have deficient computational speed and cannot 

be suitable for clinical use. Given the high volume of sleep 

data, the sleep survey requires an algorithm that gives 

us the best possible result in the shortest possible time. 

Moreover, due to the long recording time of sleep signals, 

the signal is much more likely to be contaminated with 

noise. Given this, for the sleep study, we need robust 

networks that are not noise sensitive. Deep learning 

networks are not noise-sensitive and can accurately 

classify even noisy signals, but contrary to both anti-

noise capabilities and fully automatic signal processing, 

not much research has been done on these networks 

regarding sleep. 

SAEs are a kind of artificial neural network with two 

block encoders and decoders and several sub-layers per 

block. These networks also pre-train a hidden layer at a 

time, making network learning more accurate [45]. SAEs 

automatically perform all operations related to sleep signal 

processing and the accuracy and computational speed of 

sleep data upgrade with SAEs. The advantage of these 

networks over other deep learning networks is that in 

addition to high accuracy, they have a relatively low 

computational complexity, and therefore the computational 

time of these networks. Computation time includes two 

parts: training and testing. Training time in SAEs for five 

classes of sleep is about 90 minutes, and test time is 

about 2 minutes (computer CPU Intel core i7 (7700HQ) 

280GHz and 16.0 GB). In clinical applications, the 

network is trained once, and then only new data is tested 

with the network, so this network can be beneficial. In 

clinical applications, the network is trained once and 

then only new data is tested with the network, so this 

network can be very useful. Because the purpose of this 

type of simulation research is to be used for clinical 

purposes, and in our applied applications, we do not 

encounter a large number of patients per day or week 

to check their sleep with high speed and accuracy can 

make them superior to CNN. 

SAEs networks consist of two parts of an encoder 

and an automatic decoder, which will process the input 

information in two steps. In the first step, the original 

complex and high-dimensional data are encoded 

nonlinearly on a space with lower dimensions, and in the 

second step, after processing and extracting the hidden 

features, the signal is reconstructed [46]. This ability of 

the network leads to the identification of the true pattern 

of the signal and provides the possibility of automatic 

noise removal. Such nonlinear dimensionality reduction 

is not possible in classical machine learning methods [47].  

In this paper, a new method for sleep stages scoring 

is proposed based on Stacked Autoencoders networks 

called AS3-SAE. AS3-SAE method includes ten hidden 

layers in each encoder and decoder block. Due to the high 

volume of sleep information, we need high-speed and 

high-accuracy networks that have resolved this problem 

by SAEs. SAEs networks have been used to classify sleep 

stages into different classes (2-6 classes of sleep) so that 

the results are suitable for all processing and clinical use. 

Also, for the investigation of various biological signals 

in sleep studies, two EEG and ECG signals have been 

used separately on one deep learning network so that the 

results of the classification of sleep stages by these two 

essential signals can be easily compared and analyzed. 

Furthermore, Sleep Heart Health Study (SHHS) and 

ISRUC standard database have to prove the capabilities 

of the proposed method. 

The structure of the remainder of the paper is as 

follows. First, we will examine the deep learning network 

and required databases in section 2. Afterward, in Section 

3, the results of the simulation and evaluation criteria 

with noisy and preprocess signals are mentioned. Finally, 

in the fourth part, we will examine the conclusions 

obtained from the simulation of the paper. 

2. Materials and Methods 

2.1.  Database 

In this section, the databases used for the automatic 

classification of sleep stages in the proposed method 

are reviewed. 

2.1.1.  SHHS Database 

The SHHS includes recording vital signals from 6,441 

men and women aged 40 years and older during sleep 

that can perform various sleep research on this database 
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[48]. The recording of this database lasted from 1995 to 

2003, and it was presented in two SHHS1 and SHHS2 

groups. Initially, SHHS1 was introduced, which records 

the vital signals from 3,146 people, and then SHHS2 

was introduced, which includes sleep recording signals 

from 3,295 people. The sleep signals provided in this 

database are: C3/A2 and C4/A1 EEGs, sampled at 125 Hz, 

right and left EOG has been sampled at 50 Hz, EMG 

sampled at 125 Hz, airflow, ECG from a bipolar lead, 

sampled at 125 Hz for most SHHS-1 studies and 250 Hz 

for SHHS-2 studies, heart rate, and body position. Every 

30 seconds of this signal is considered a window, and it 

was labeled by skilled technicians [49]. In the proposed 

method, we have used EEG (channel C3-A2) and ECG 

for 30 people from the SHHS-1 group, and the number 

of epochs related to each stage for these 30 people has 

been shown in Table 2. Sleep database labels are known 

as hypnograms. Figure 2 shows the hypnogram of the 

first person in the SHHS database. 

2.1.2.  ISRUC Sleep Database 

This database has been presented in 2016 for various 

sleep research [50]. The people in the database are healthy 

adults and several people who took sleeping pills. The 

ISRUC database is labeled according to the AASM 

standard for five sleep classes. Every 30 seconds of this 

signal was labeled as an epoch, and the last 30 available 

labels are invalid from the available vector label. This 

dataset includes PSG records from 3 subcategories [50]:  

Sleep information was recorded from 100 healthy 

human beings; one signal was recorded from each person. 

Recorded PSG from 8 healthy people, 2 of which 

were recorded each time, and is useful for monitoring PSG 

signal changes over time. 

PSG recording of 10 healthy people to check the 

sleep of healthy people and people who have insomnia. 

The recording of each PSG has been reviewed and 

tagged by two skilled technicians with a sampling 

frequency of 200 Hz. The proposed method uses the 

EEG subgroup 3 of this database, including the PSG 

recordings of 10 healthy humans. Table 3 shows the 

number of epochs associated with each step in the ISRUC 

database. Figure 3 shows the hypnogram of the first 

person in the ISRUC database. 

2.2.  Autoencoders Deep Learning Network 

Autoencoders (AEs) are a kind of advanced artificial 

neural network with deep learning training that in the first 

layer of this network, data is automatically converted 

to a code [51] and introduced by Pascal Vincent et al. 

[52]. AEs are used for unlabeled data, and they have 

unsupervised training [53]. In AEs, it operates on the 

signal in one layer and prepares the output as the next 

layer input [45]. These networks use useful data features 

and prioritize various aspects of data after data entry. 

Initially, AE networks are used to reduce the dimensions 

of the feature and data classification and included three 

layers: encoder, hidden layers, and decoder. Figure 4 

shows the structure of AEs networks [53]. At present, 

improved AEs networks can perform all signal processing 

operations by recognizing the pattern from the input data 

[51]. 

Table 2. The number of epochs associated with each 

step in the SHHS1 database (30 people) 

Stage Wake REM S1 S2 S3 S4 

Epoch 11399 3445 932 10666 3986 370 

 

 

Figure 2. Hypnogram of the first person in the SHHS 

database 

Table 3. The number of epochs associated with each step 

in the ISRUC database 

Stage Wake REM S1 S2 S3 

Epoch 1674 1066 1217 2616 2016 

 

 

Figure 3. hypnogram of the first person in the ISRUC 

database 
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2.3.  Stacked Autoencoder Deep Learning Network 

Stacked Autoencoders (SAEs) are a kind of improved 

AEs containing several hidden layers in each block 

encoder and decoder [53], unlike AEs that have no 

hidden layer in the encoder and decoder blocks. SAEs 

are a deep neural network with semi-supervised learning 

and introduction for the first time by Bengio [54]. SAEs 

are able to learn complicated and non-linear patterns 

[45]. The production of the decoder block is entered into 

the Softmax layer for the final classification and the final 

output is obtained from the Softmax layer. Figure 5 shows 

the structure of SAEs.  

If the SAEs network has one encoder layer and one 

decode layer, inputs and outputs are calculated according 

to Equations 1 and 2. Equation 1 calculated the activation 

of neurons [55]. 

ℎ(𝑥) = 𝑡𝑎𝑛ℎ( 𝑊1𝑥 + 𝑏1) (1) 

h(x) refers to a vector of neuron activation function, 

𝑊1refers to the weight matrix, and 𝑏1is a bias vector. 

Equation 2 calculated the output of the SAEs.  

�̂� = 𝑡𝑎𝑛ℎ( 𝑊2ℎ(𝑥) + 𝑏2) (2) 

x is the output value, 𝑊2refers to the weight matrix, and 

𝑏2is a bias vector.  𝑊1  and 𝑊2are calculated according to 

Equation 3 (backpropagation) [56, 57]. Backpropagation 

acts on the gradient descent and is used to train neural 

networks [51]. 

𝑊 = ∑‖𝑥(𝑖) − �̂�(𝑖)‖
2

𝑝

𝑖=1

 (3) 

𝑥(𝑖) refers to input patterns. 

The network used in this paper is SAEs with ten 

hidden layers in the decode and encode blocks. In SAEs 

networks, at first, it is necessary to set a threshold for 

each hidden unit and the neuron response to the threshold 

is specified. In neurons, electrical stimulation can activate 

the cell when it reaches the threshold, as in artificial neural 

network nodes . Equation 4 shows a state in that neuron 

reacts to the input and the threshold. Otherwise, it will 

be zero [55]. 

𝑓𝑖(𝑥) = 1{𝑠𝑖ℎ𝑖(𝑥) ≥ 𝑡𝑖} (4) 

𝑡𝑖 is a unit threshold, h is the activation measure and 

s refers to the unit sign function. 

In a nerve cell, electrical stimulation by an axon to 

the cell membrane causes the valves to open, and the 

cell's potential to change. In neural networks, we are 

justified by the large number of artificial cells on which 

all normal nerve cell operations must be performed. In 

artificial neural networks, the transfer function plays the 

role of electrical stimulation of the cell. In each hidden 

layer, procedures such as transfer function, computation 

of superior input features, etc., were performed. In the 

first step, we need a transfer function that prepares the 

output of the hidden layer to enter the next layer. 

According to the latest research on SAEs networks, the 

best transfer functions for this network encoder are Logsig 

and Satlin and the best transfer functions that yield the 

highest network efficiency are Logsig, Satlin and Purelin 

functions [58]. We select Satlin transfer function for 

encoder block [58, 59] and purelin function as the decoder 

activation function by reviewing recent research and 

trial and error, and it has obtained favorable results in 

many recent types of research [60-62]. 

The L2 coefficient is created to control the learning 

of the network (avoid overfitting) and maintain the 

generalization of the network [63]. The training rate of 

the network depends on the correct selection of this 

parameter. The best value for L2 weight optimization 

is between 0-0.1. The value of the L2 weight regulator is 

also different according to the application of the network 

and the selection of this value is determined according 

 

Figure 4. Structure of AEs networks 
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to recent research and the type of network efficiency. For 

example, Luo et al. [63] have chosen 0.014 for the L2 

weight regulator. Omer et al. [64] chose 0.001 for L2 

weight. And in the same way, in other researches, 

different values have been chosen according to the type 

of network [65-67]. For the automatic classification of 

sleep stages, in this method, we chose the value of 0.01 

for the L2 weight adjuster, which brought the most 

efficiency of the network. 

2.3.1.  Softmax Layer 

After passing the raw data through different SAEs, 

the final data is entered into the Softmax layer to be 

assigned a weight for each value and optimally classified. 

The Softmax layer is used to estimate classes and train the 

SAEs with standard backpropagation [68]. Cross entropy 

is based on hypothesis Kullback–Leibler divergence [69]. 

Cross entropy for discrete-time series between p and q 

time series are calculated according to Equation 5. 

𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑥) 𝑙𝑜𝑔 𝑞 (𝑥)

𝑥∈𝑋

 (5) 

𝑝(𝑥) and 𝑞(𝑥)are time series. 

2.4.  Proposed  AS3-SAE Method in Sleep Stages 

Scoring 

In this paper, we use SAEs with ten hidden layers in 

the encoder block and ten hidden layers in the decoder 

block and each hidden layer has many neurons instead 

of features of data. In the proposed method, using the 

above relations, a network of SAEs is designed that can 

perform sleep signal processing operations well. In the 

proposed method, L2 weight regulator with a coefficient 

of 0.01 has been used to update the weights and also 

Satlin transfer function is used for the encoder part and 

Purelin transfer function is used for the decoder. Satlin 

and Purelin transfer functions are calculated according 

to Equations 6, 7. 

𝑓(𝑧) = {

0, 𝑖𝑓(𝑧 ≤ 0)
𝑧, 𝑖𝑓(0 < 𝑧 < 1)

1, 𝑖𝑓(𝑧 ≥ 1)
 (6) 

𝑓(𝑧) = 𝑧 (7) 

Z activated h(x) and it arrives as an input . 

In the proposed method, the AS3-SAEs use cross-

entropy as a Softmax function. Regarding the full 

description of the proposed method, it can be said that, 

at first, EEG or ECG signal is acquired from the person 

during sleep. Received data enters the SAEs network for 

processing. In this network, as mentioned, all operations 

related to signal processing are performed thoroughly and 

automatically. After completing the necessary operations 

on the data by the network, the output is received, which 

includes the classification of different sleep stages. It is 

necessary to emphasize that once the EEG signal enters 

the network and we record the output, the ECG signal is 

entered separately and the results are received, the effects 

of these signals are investigated independently. Figure 6  

shows different steps of signal processing using the 

proposed SA3-SAE algorithm.  

 

Figure 6. Different steps of signal processing using the proposed algorithm 
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3. Results 

Simulation of the proposed SA3-SAE method has been 

performed using MATLAB R2018b. The evaluation 

criteria of a proposed algorithm contain accuracy, 

sensitivity, and specificity calculated according to 

Equations 8-10. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠 + 𝐹𝑛𝑒𝑔

 (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑛𝑒𝑔

𝑇𝑛𝑒𝑔 + 𝐹𝑝𝑜𝑠

 (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝𝑜𝑠 + 𝑇𝑛𝑒𝑔

𝑇𝑛𝑒𝑔 + 𝐹𝑛𝑒𝑔 + 𝑇𝑝𝑜𝑠 + 𝐹𝑝𝑜𝑠

 (10) 

In these equations, 𝑇𝑃𝑂𝑆 is correctly identified target 

class and 𝐹𝑃𝑂𝑆 is incorrectly identified target class. Also 

𝑇𝑛𝑒𝑔 refers to the correctly identified non-target class and  

𝐹𝑛𝑒𝑔  refers to the incorrectly identified non-target class. 

The accuracy, sensitivity, and specificity for five sleep 

stages classification using SA3-SAEs with a single-EEG 

signal are shown in Table 4. The best value for all these 

criteria is one and the closeness to one is the desirability 

of the result. As it can be seen, the proposed algorithm in 

both databases has detected the waking stage with the 

highest accuracy. However, since the identification of 

S1 is very complicated due to its high similarity with 

wake, it can be seen that the proposed algorithm has 

done this step well in both databases.  

For a better comparison, Figure 7 shows the accuracy, 

specificity, and sensitivity results for five sleep classes 

by single-channel EEG and two different databases.  

Table 5 shows the sensitivity, specificity, and accuracy 

values of six sleep classes using the EEG signal by the 

Table 4. Results of sensitivity, specificity, and accuracy for five sleep stages by EEG signal 

 SHHS Database ISRUC Database 

Stages Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

Wake 0.9236 0.9481 0.9967 0.7968 0.9848 0.9968 

REM 0.9542 0.9470 0.8110 0.6902 0.9847 0.9206 

S1 0.4583 0.9478 0.9217 0.7195 0.9812 0.9947 

S2 0.9174 0.9475 0.9949 0.8569 0.9959 0.9966 

SWS 0.821 0.9300 0.9969 0.8472 0.9776 0.8509 

 

 

Figure 7. Accuracy, specificity, and sensitivity results for 5 sleep classes by two different databases and EEG signal. 
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proposed algorithm. Table 5 shows the values of the 

SHHS database for classifying six sleep classes, because 

the ISRUC database is labeled for a maximum of five 

sleep classes. As shown in Table 6, the proposed algorithm 

is very capable of identifying stage 3 sleep. It also shows 

the highest sensitivity to determine the wake stage.  

Table 6 shows the accuracy of classifying the different 

stages of sleep by the EEG signal from the SHHS 

database. In 3-class result, stage 1 is instead of NREM 

(3-class means wake, REM, and NREM).  

Immediately after falling asleep, the person enters stage 

1 and the diagnosis of stage 1 due to the similarity to 

waking is always one of the challenges of classifying sleep 

stages, as can be seen in all sleep classes, the proposed 

method uses the EEG signal to recognizes stage 1 well. 

Table 7 shows the classification values of each sleep 

step separately for 2-5 sleep classes using the ISRUC 

database and single-channel EEG. As can be seen in 

Table 7, the 2 and 3 classes of sleep are correctly 

identified using the ISRUC database. However, in sleep 

studies using EEG signals, the classification of 5 sleep 

stages according to the AASM standard is useful. The 

proposed algorithm classifies five stages of sleep with 

high accuracy, which can be suitable for clinical use.  

Table 8 shows the results of accuracy, sensitivity, and 

specificity for classifying different stages of sleep by 

Table 5. Sensitivity, specificity, and accuracy values of 

the 6-classes of sleep using EEG signal 

SHHS Database 

Stages Sensitivity Specificity Accuracy 

Wake 0.9087 0.9961 0.9938 

REM 0.8456 0.9762 0.8160 

S1 0.3808 0.9997 0.9217 

S2 0.9314 0.9772 0.9810 

S3 0.7693 0.9993 0.9658 

S4 0.2274 0.9908 0.9629 

 

Table 6. Accuracy of classifying the different sleep 

stages by the EEG signal from the SHHS database 

Class Stages 

2 class 
NREM/ REM 

1.00/ 1.00 

3 class 
Wake/ REM/ NREM 

0.999/ 0.989 / 0.999 

4 class 
Wake/ REM / light sleep/ deep sleep 

0.9960/ 0.8641/ 0.9622/ 0.9987 

5 class 
Wake/ REM/ S1/ S2/ SWS 

0.9967/ 0.8110/ 0.9217/ 0.9949/ 0.9969 

6 class 
Wake/ REM/ S1/ S2/ S3/ S4 

0.994/ 0.825/ 0.987/ 0.958/ 0.996/ 0.983 

 

Table 7. Classification accuracy of each sleep steps 

separately for 2-5 sleep classes using the ISRUC database 

by EEG 

Class Stages 

2 class 
NREM/ REM 

1.00/ 1.00 

3 class 
Wake/ REM/ NREM 

1.00/ 1.00 / 1.00 

4 class 
Wake/ REM / light sleep/ deep sleep 

0.9871/ 0.9960/ 0.9978/ 0.9981 

5 class 
Wake/ REM/ S1/ S2/ SWS 

0.996/ 0.920/ 0.994/ 0.996/ 0.850 

 

 

Table 8. Results of accuracy, sensitivity, and specificity for classifying different sleep stages 

by ECG signal on SHHS database 

Signal Evaluated criteria 2 class 3 class 4 class 5 class 6 class 

SHHS1 

(EEG) 

Sensitivity 1.00 0.9990 0.8601 0.8149 0.8456 

Specificity 1.00 0.9835 0.9824 0.9440 0.9896 

Accuracy 0.995 0.983 0.9780 0.9688 0.961 

SHHS1 

(ECG) 

Sensitivity 0.8901 0.6942 0.5285 0.4501 - 

Specificity 0.9837 0.7429 0.6695 0.5116 - 

Accuracy 0.9400 0.7513 0.6070 0.601 - 
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EEG and ECG signal on the SHHS database (sensitivity 

and specificity values are expressed as averages). As 

mentioned, the classification of different sleep stages by 

the ECG signal is usually done up to 4 levels of sleep 

because this type of classification is due to the limited 

information obtained from the ECG signal. In addition, 

it can be seen that the classification accuracy using EEG 

offers higher accuracy than the ECG signal. As you can 

see in Table 8, the ECG signal, due to its elementary 

recording number, and its ability to use in any situation, 

cannot classify 5 or 6 classes of sleep well. Of course, 

in most clinical needs, by identifying 3 or 4 classes of 

sleep, they can also diagnose sleep disorders and do not 

examine a person's sleep. So, it can be seen that the EEG 

signal has a higher ability to classify the 5th and 6th classes 

of sleep, but this signal is more difficult to record than the 

ECG signal. So, in cases where it is necessary to identify 

a smaller number of steps, an ECG can be used, which 

has a much easier recording.  

Table 9  shows the classification accuracy of different 

sleep stages in various classes using the ECG signal.  

One of the most essential criteria for agreement 

between two or more cases is Cohen’s kappa coefficient 

[70, 71]. The Kappa coefficient is calculated according 

to Equation 11.  

𝑘 = 1 −
1 − 𝑝𝑜

1 − 𝑝𝑒

 (11) 

In Equation 11, 𝑝𝑜is a relative observed agreement 

among raters and 𝑝𝑒is a hypothetical probability of chance 

agreement. The ideal case for the kappa coefficient is 1. 

Table 10 shows the Cohen’s kappa of the proposed 

method with two databases for 2-6 sleep classes by EEG 

signal compared to the recent study on sleep by EEG. As 

can be seen in Table 10, the kappa coefficient obtained for 

the classification of 2-6 classes of sleep in the proposed 

method is higher than other methods, which can be a 

reason for the superiority of the network over other 

proposed methods.  

As mentioned, in recent years, a lot of research has been 

done on the classification of sleep stages using deep 

learning networks based on EEG signals. Table 11 shows 

the results of some of these studies and the classification 

results of the proposed SA3-SAE method. As can be seen, 

the results of the proposed method have increased the 

accuracy of classification compared to previous research. 

Previous research has often used CNN networks to classify 

sleep phases, but these networks have computational 

complexity and do not provide acceptable accuracy. 

Little research has been done on the use of deep 

learning networks to classify different sleep stages using 

ECG signals. Table 12 compares the kappa results and the 

accuracy of previous research and the proposed method 

Table 9. Classification accuracy of each sleep steps 

separately for 2-4 sleep classes using ECG 

Class Stages 

2 class 
NREM/ REM 

0.931/ 0.716 

3 class 
Wake/ REM/ NREM 

0.826/ 0.6604 / 0.801 

4 class 
Wake/ REM / light sleep/ deep sleep 

0.788/ 0.4806/ 0.628/ 0.5806 

 

Table 10. Cohen’s kappa of the proposed method with two databases for 2-6 sleep classes by EEG 

Method Network Database 2 class 3 class 4 class 5 class 6 class 

Supratak [32] CNN SHHS - - - 0.72 - 

Sors [42] CNN SHHS - - - 0.81 - 

Chui [72] CNN ISRUC - - - 0.922  

Al-Hussaini [73] SLEEPER ISRUC - - - 0.839 - 

Diego [74] CNN SHHS - - - 0.650 - 

Liu [75] XGBoost SHHS - - 0.811 0.795 - 

Blanco [76] DS-CNN SHHS - - - - 0.80 

AS3-SAE SAEs SHHS 0.972 0.966 0.9199 0.9210 0.8913 

AS3-SAE SAEs ISRUC 0.980 0.9726 0.9214 0.931 - 
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using ECG signals. As shown in Table 12, the proposed 

method has classified two classes of sleep among ECG 

signal sleep studies with the highest accuracy and kappa. 

But it cannot classify more classes of sleep using the ECG 

signal. So, it is better to use the proposed network with 

EEG signals, because by using EEG, it has a higher 

capability compared to other networks that have been 

provided so far.  

In this method, a SA3-SAEs network with 10 hidden 

layers in two encoder and decoder blocks is used. The 

number of hidden layers has been selected for this network 

with trial and error. Table 13 shows the results of accuracy 

of AS3-SAEs network with 8 and 12 hidden layers 

for five-stage sleep classification on SHHS database. 

According to Table 13, accuracy of automatic classification 

of sleep stages with SAEs with 12 hidden layers on single 

channel EEG is 81.9% and accuracy of automatic 

classification of sleep stages with SAEs with 8 hidden 

layers on single channel EEG is 70.6%. As can be seen 

in this table, the number of hidden layers less or greater 

than 10 does not produce the desired results. Also, the 

number of layers less or more than 10 cannot detect REM 

stage. REM stage is very similar to Wake and the network's 

ability to recognize this stage from single channel EEG.  

3.1.  Investigation of Robustness Capability of SAEs  

SAEs networks consist of two parts of an encoder 

and an automatic decoder, which will process the input 

information in two stages. Due to the special structure 

Table 11. Accuracy of 2-6 sleep stages classification of recent studies and proposed method by EEG 

Method network database signal 2 class 3 class 4 class 5 class 6 class 

Sors [42] CNN SHHS EEG - - - 0.87 - 

Supratak [32] CNN SHHS EEG - - - 0.820 - 

Zhou [77] CNN SHHS EEG - - 0.849 - - 

Liu [75] XGBoost SHHS EEG - - 0.875 0.858 - 

Blanco [76] DS-CNN SHHS EEG - - - - 0.8606 

AS3-SAE SAEs SHHS EEG 0.995 0.983 0.9780 0.9688 0.961 

AS3-SAE SAEs ISRUC EEG 0.996 0.994 0.9511 0.9431 - 

 

Table 12. Comparison of the kappa results and the accuracy of previous research and the proposed method 

using ECG signals 

Method Database Network  2 class 3 class 4 class 5 class 

Li [24] SHHS CNN 
Accuracy 

kappa 
- - 

0.65 

0.47 
- 

Miriam [78] SHHS CNN 
Accuracy 

Kappa 
- - - 

0.769 

0.58 

Li [79] SHHS CNN 
Accuracy 

Kappa 

0.8149 

0.58 
- 

0.68 

0.44 
- 

Proposed method SHHS SAEs 
Accuracy 

kappa 

0.9400 

0.8824 

0.7513 

0.6915 

0.6070 

0.532 

0.601 

0.553 

 

Tables 13. Results of the accuracy of AS3-SAEs network 

with different hidden layers for five-stage sleep classification 

on SHHS database 

Layers Stages 8 layer 10 layer 12 layer 

Wake 0.98 0.9967 0.56 

REM 0.40 0.8110 1.00 

S1 0.18 0.9217 0.53 

S2 0.98 0.9949 1.00 

SWS 0.99 0.9969 1.00 
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of the network, which includes two separate blocks, and 

signal processing operations are performed separately 

in each block, noisy data will be quickly identified and 

removed by the network itself. To verify the robustness 

of the network against noise and its behavior in the 

presence of a noisy EEG signal, we manually contaminate 

the signal with the noise, and the result has been checked. 

SHHS database signals are available without any noise. 

To do this, the following steps are performed to make this 

signal noisy. Initially, the original signal is normalized. 

Signal normalization for x(n) time series is calculated 

according to Equation 12.  

𝑥_𝑛𝑜𝑟𝑚 =
𝑥(𝑛) − 𝑚𝑖𝑛( 𝑥(𝑛))

𝑚𝑎𝑥( 𝑥(𝑛)) − 𝑚𝑖𝑛( 𝑥(𝑛))
 (12) 

According to recent research on sleep stages, sleep 

signals are mostly contaminated with Gaussian noise, and 

Gaussian noise is used to investigate the effect of noise 

on network performance [80, 81]. After normalizing the 

signal, a Gaussian noise [82] with zero mean and variance 

of 0.1, 0.05, and 0.01 is added to the primary signal of 

the SHHS and ISRUC database. In this way, we have 

noisy and unprocessed signals which we can reclassify 

the stages of sleep with them and see if the proposed 

network can perform well with noisy signals or not. 

Considering the nightly recording of sleep signals and the 

long recording time, the probability of signal contamination 

by noise is very high, and it is necessary to design 

networks that are resistant to noise. For this reason, in 

this section, we classify the stages of sleep with the 

proposed network using noisy signals to see the 

capabilities of the network in this regard. To test the 

resistance of the networks to noise, five stages of sleep 

are classified with a noisy signal from these databases 

with a single-channel EEG. Table 14 shows the accuracy 

of each stage in the automatic classification of the five 

stages of sleep by a noisy EEG signal with different 

variances by SA3-SAEs. As can be seen in Table 14, in 

the classification of 5 stages of sleep, all the stages are 

recognized well when the pre-processed signal is used 

(with a maximum difference of 3%), and the network 

proves its ability in different noise levels. For a better 

comparison, Figure 8 shows the accuracy of classifying 

five classes of sleep, using the noisy signal and the 

processed signal (on ISRUC and SHHS database), by 

the SA3_SAEs network. As can be seen in Figure 8, the 

proposed network recognizes the stages of wake, S2, 

and SWS well in noisy and non-noise modes. 

4. Conclusion and Future Works 

In this paper, a new deep learning network called AS3-

SAEs has been proposed to classify sleep stages by single-

channel EEG and ECG. AS3-SAEs are a Stacked 

Autoencoder with 10 hidden layers and perform all 

operations related to processing all signals with high 

accuracy and speed. The EEG and ECG signals were 

each processed separately by the proposed network, and 

the different stages of sleep were classified by these two 

signals according to international standards. Among recent 

research that have used EEG signal and deep learning 

networks to identify sleep stages, our proposed network 

has been able to increase the stage classification accuracy 

by 4-5% on average, and due to the high accuracy of this 

network it can be suitable for clinical use. In addition, 

a proposed method for examining 2-6 classes has been 

presented, while in recent research, only one or 

two classes of sleep have been investigated. The 

Table 14. The accuracy of each stage on automatic classification of the five stages of sleep by a noisy EEG signal 

by different variances by SA3-SAEs 

Stages 

SHHS Database ISRUC Database 

Variance 

0.01 0.05 0.1 0.01 0.05 0.1 

Wake 0.990 0.993 0.971 0.933 0.871 0.864 

REM 0.895 0.838 0.772 0.926 0.944 0.920 

S1 0.886 0.8443 0.711 0.973 0.985 0.917 

S2 0.963 0.977 0.948 0.995 0.994 0.995 

SWS 0.997 0.994 0.985 0.917 0.953 0.928 

Total ACC 0.9630 0.960 0.932 0.960 0.955 0.930 
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comprehensiveness of this network can make it easy for 

everyone to compare and use this network because, in 

different clinical uses, it is necessary for a network to 

show its ability to examine all stages of sleep. Compared 

to other research conducted in the field of sleep using 

ECG signals, the proposed network has increased 

classification accuracy in identifying two and three 

classes of sleep compared to other methods, which 

indicates the high ability of the network to detect the 

awakening stage and deep sleep using ECG signals. 

Also, considering that for the first time in this paper 

EEG and ECG results are presented simultaneously 

for classifying sleep stages. According to the results, 

it can be seen that the signal EEG is very accurate in 

classifying sleep stages, still ECG signal can replace 

the EEG in the future due to the ease of recording. In 

future research, powerful algorithms can be used to 

increase the accuracy of sleep stage classification using 

ECG signal, which at the same time has the advantages 

of easy signal recording and high accuracy in identifying 

sleep stages.  
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