
Copyright © 2026 Tehran University of Medical Sciences.  
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International 
license (https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work 
are permitted, provided the original work is properly cited.  
DOI:  

 

 

Frontiers in Biomedical Technologies Vol. 13, No. 2 (Spring 2026) XX-XX 

 

 

 

 

 

Exploring Brain Functional Connectivity in Hand Motion and Motor Imagery 

through fNIRS Signals: A Graph Theory Approach 

Mahsan Hajihosseini 1, Omid Asadi 1, Sima Shirzadi 2, Zahra Einalou 3* , Mehrdad Dadgostar 3 

1 Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran 

2 Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran 

3 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, 

MA, United States 

*Corresponding Author: Zahra Einalou  

Email: zahra_einalou@yahoo.com 

Received: 18 November 2022 / Accepted: 19 January 2024  

Abstract 

Purpose: Functional Near-Infrared Spectroscopy (fNIRS) is a valuable and cost-effective neuroimaging 

technique, particularly in the context of sensorimotor tasks and its applications in brain-computer interface (BCI) 

research. While numerous studies have explored brain functional connectivity during sensorimotor tasks, they 

have often primarily focused on electrical brain activity. In this study, we present a signal processing algorithm 

utilizing fNIRS-HbO2 data to identify active brain regions involved in both actual motor execution and motor 

imagery within a motor imagery task.  

Materials and Methods: Our algorithm incorporates several key steps: firstly, the application of wavelet 

transform to eliminate noise and preprocess the fNIRS signal. Subsequently, we employ correlation analysis to 

extract functional connectivity matrices for both motor execution and motor imagery. Finally, we compute global 

efficiency (GE) values, a significant graph theory parameter, to analyze network properties. Additionally, we 

investigate the small-world network characteristics within the connectivity matrices and classify motor execution 

and motor imagery using a t-test. 

Results: To gather data, we recorded 20-channel fNIRS signals, measuring changes in HbO2 concentration in the 

motor cortex, from 12 healthy participants at a sampling frequency of 10 Hz. Our findings not only confirm the 

presence of small-world network properties in the correlation matrices but also reveal that meaningful 

classification between motor execution and motor imagery of both right and left hands occurs when we select the 

top 40% of the strongest connections between channels. Furthermore, the results indicate a tendency towards 

stronger connectivity between channels in the left hemisphere. 

Conclusion: In summary, our study demonstrates that brain networks are organized as small-world networks 

during sensorimotor tasks and underscores the prominent role of the dominant hemisphere in executing these 

tasks. 

Keywords: Functional Near-Infrared Spectroscopy; Motor Imagery; Graph Theory; Small World Network; 

Functional Connectivity. 

 

 

 

 

 

 

 

 

 

ORIGINAL ARTICLE 

PROOF

https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-5701-9341


 Exploring Brain Functional Connectivity in Hand Motion and Motor Imagery through fNIRS Signals   

XX  FBT, Vol. 13, No. 2 (Spring 2026) XX-XX 

1. Introduction  

Advancements in neurological studies have 

unveiled the intricate interactions and functional 

connectivity within brain networks during various 

cognitive activities [1]. These interactions play a 

pivotal role in understanding the brain's capacity to 

integrate information across its diverse regions and are 

at the forefront of contemporary neuroscience 

research. Functional Near-Infrared Spectroscopy 

(fNIRS) has emerged as a powerful and non-invasive 

tool in exploring brain functional connectivity [2]. Its 

resilience to electrical noise and ease of application 

have made it an attractive choice for researchers 

aiming to unravel the dynamics of brain networks. 

Importantly, fNIRS allows for the measurement of 

changes in oxyhemoglobin and deoxyhemoglobin 

concentrations, enabling the assessment of metabolic 

activity within brain cells [2]. The versatility of fNIRS 

applications is reflected in their usage in a diverse 

range of cognitive tasks, including motor imagery [3-

4], music imagery [5-8], object rotation [9], motion 

detection [10], and mental arithmetic [11-16]. These 

studies have provided valuable insights into brain 

activity and connectivity patterns during various 

cognitive challenges. Graph theory has emerged as a 

valuable approach for analyzing brain networks, 

offering insights into their structural organization and 

connectivity patterns [17]. Previous studies employing 

graph theory have shed light on critical aspects of 

functional connectivity within the brain. Dadgostar et 

al. utilized this methodology to explore functional 

connectivity within the prefrontal cortex during 

cognitive tasks, revealing bilateral connectivity 

between hemispheres [1]. Einalou et al. investigated 

functional connectivity disparities between healthy 

individuals and patients with schizophrenia during 

cognitive challenges [18]. Additionally, studies have 

harnessed graph theory to assess brain functional 

connectivity under varying cognitive loads, 

highlighting fluctuations in global efficiency [17]. The 

impact of mental fatigue on the interaction between 

the Prefrontal Cortex (PFC) and Motor Cortex (MC) 

during simulated driving has also been scrutinized 

using fNIRS [19]. Motor imagery, a cognitive process 

simulating motion mentally before its execution, holds 

significant importance in cognitive and neurological 

rehabilitation [20]. This cognitive function has 

attracted attention in recent studies that have explored 

the parallels between Motor Execution (ME) and 

Motor Imagery (MI) [21-28]. An et al. employed 

fNIRS to illustrate that motor imagery activates the 

primary motor cortex [24]. Additionally, functional 

Magnetic Resonance Imaging (fMRI) studies have 

investigated functional connectivity in various brain 

regions during motor imagery tasks [29]. 

Despite substantial research in these domains, there 

remains a dearth of studies focusing on metabolic 

activities and functional connectivity during motor 

imagery tasks. This study aims to bridge this gap by 

comprehensively evaluating and comparing brain 

functional connectivity during the execution of motor 

tasks and motor imagery involving both right and left-

hand fingers using fNIRS signals. Data collected 

during the tasks are meticulously preprocessed using 

the wavelet transform, and functional connectivity 

information from the motor cortex (MC) is extracted 

using graph theory [30-32]. The overarching objective 

is to contribute to a deeper understanding of the 

metabolic activities and functional connectivity that 

underlie cognitive tasks and motor activities. The 

primary innovation of this study lies in its holistic 

examination of brain functional connectivity during 

motor imagery tasks, filling a significant research gap 

in the field [30-32]. By employing fNIRS and graph 

theory, we aim to provide a comprehensive 

understanding of the metabolic activities and 

connectivity dynamics underlying cognitive tasks and 

motor function. Our research promises to shed new 

light on the intricate processes governing motor 

imagery and cognitive activities, thus contributing to 

a deeper understanding of the human brain's functional 

architecture and potential applications in neurological 

rehabilitation. In synthesizing a comprehensive 

understanding of brain network interactions, fNIRS 

applications, graph theory, and motor imagery, this 

study aspires to elucidate the intricate processes that 

govern cognitive tasks and motor function. 

2. Materials and Methods  

2.1. Subjects and Protocol 

The data for this study were acquired using the 

OxyMonfNIRS (Artinis) system, within the facilities 

of the National Brain Mapping Laboratory. The 

participant cohort was composed of 12 healthy, right-
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handed individuals, each with a mean age of 25 ± 5 

years, and no history of psychiatric or neurological 

conditions. The study population consisted of 5 men 

and 7 women, yielding a gender distribution of 42% 

men and 58% women. 

Prior to data collection, all participants underwent a 

formal informed consent process and received detailed 

instructions on the task to be performed. A visual 

representation of the data recording protocol can be 

found in Figure 1. 

As shown in Figure 1, first the baseline signal was 

recorded for 60 seconds, and then four task blocks 

including motion left (ML), motor imagery left (MIL), 

motion right (MR), and motor imagery right (MIR) 

were performed by the participants. The duration of 

each task block was 20 seconds and each of them was 

repeated 4 times during data recording. Also, a rest 

time of 40 seconds was considered between the two 

task blocks. The total time of the data record process 

for each participant was 17 minutes and the task was 

performed in a dark and quiet room. During the task, 

fNIRS signals were recorded and saved from 20 

channels in the motor part of the volunteers' brains at 

a sampling frequency of 10 Hz as shown in Figure 2. 

The optodes were strategically positioned at specific 

anatomical locations in the motor cortex of the 

volunteers' brains. These locations were selected 

based on established neuroimaging principles and the 

nature of the motor-related tasks under investigation. 

Specifically, the optodes were placed over the primary 

motor cortex, which is typically located in the 

precentral gyrus of the cerebral cortex, in order to 

capture relevant brain activity associated with motor 

tasks. This precise placement ensured the recording of 

fNIRS signals from the primary motor cortex, a region 

known for its involvement in motor control and execution. 

Including the mention of the primary motor cortex provides 

clarity and specificity in the methodology. 

2.2. Signal Processing Algorithm 

In this study, the processing of fNIRS signals was 

performed using a detailed procedure, as depicted in 

Figure 3. The complexity arises from the fact that 

fNIRS signals, like other physiological signals, are 

susceptible to various sources of interference such as 

motion artifacts, ambient noise, physiological noise, 

and device noise. To extract the desired brain activity-

related signals from these interferences, noise removal 

methods are crucial. Prior research, as referenced in 

[1, 17, 33, 34], has established that fNIRS signals 

predominantly contain brain activity-related 

information within the frequency range of 0.003-0.08 

Hz. However, several physiological interferences, 

such as cardiac activity (0.8-1.5 Hz), respiratory 

activity (0.2-0.5 Hz), and changes in arterial blood 

pressure (0.1 Hz), can introduce unwanted noise into 

the fNIRS signal [1]. To enhance the study's ability to 

investigate brain function via fNIRS signals, it is 

imperative to mitigate the effects of these 

physiological interferences, as highlighted in 

references [35-37]. To address this issue, we 

employed the Discrete Wavelet Transform (DWT), 

which is well-documented for its effectiveness in 

denoising fNIRS signals. The fNIRS signal was first 

decomposed into 11 levels. As a preprocessing step, 

the approximation coefficients of level 11 were zeroed 

out to eliminate the DC signal, and the detail 

 

Figure 1. Protocol for recording motion and motor imagery of the right and left-hand’s fingers 

 

Figure 2. a. Location of fNIRS signal recording optodes on 

the motor area of the brain (yellow dots indicate light 

transmitters and blue dots indicate light receivers), b. 

Number of fNIRS channels in the motor area of the brain 
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coefficients of the first six levels were set to zero to 

extract the frequency content between 0.003 and 0.08 

Hz. Subsequently, we used the inverse wavelet 

transform to reconstruct the output signal within the 

specified frequency range (0.003-0.08 Hz). This 

approach, referenced in [1, 17, 38, 39, 34], allowed us 

to effectively remove unwanted noise and enhance the 

quality of the fNIRS signal for further analysis. 

Since the recorded signals include four blocks of left-

hand motion, left-hand motor imagery, right-hand 

motion, and right-hand motor imagery, for the signal 

segmentation, the parts related to each task block were 

separated from the whole signal according to the 

protocol in Figure 1. According to the sampling 

frequency, the total data length for each task block is 

equal to 200 samples. 

The correlation coefficient has been used to 

evaluate brain functional connectivity based on graph 

theory. 

In our study, we used Pearson's correlation 

coefficient (r) as a measure for the connectivity 

matrix. The formula for Pearson's correlation 

coefficient is as follows (Equation 1):  

R= 
∑(𝑥−𝑥̅ )(𝑦−𝑦̅)

√∑(𝑥−𝑥̅ )2(𝑦−𝑦̅)2
 (1) 

here: 

• X and Y represent the time series data of the two 

regions being correlated. 

• Xˉ and Yˉ denote the means of the respective 

time series data. 

Pearson's correlation coefficient is commonly used 

to quantify the linear relationship between two 

variables and is suitable for measuring connectivity 

between regions of interest in fNIRS data. 

By creating a functional connectivity matrix for 

each task block, connectivity between all relevant 

channels was obtained. Each channel corresponds to a 

node in the graph. Therefore, according to Equation 1, 

for a graph with N nodes, a connectivity matrix N × N 

is obtained whose array values are between -1 and +1 

[24]. 

𝐶𝑖𝑗 = [
𝐶11 … 𝐶1𝑁

⋮ ⋱ ⋮
𝐶𝑁1 … 𝐶𝑁𝑁

] (2) 

Where 𝐶𝑇𝑎𝑠𝑘 is the functional connectivity matrix 

related to each task block and the values of the 

correlation coefficient 𝐶𝑖𝑗  are between two channels 

(nodes) i and j. 

 

Figure 3. Proposed diagram for processing fNIRS signals 
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In this study, the graph matrix is calculated based 

on the correlation between each pair of channels. 

Hence, this matrix represents the metabolic activity of 

networks in the sensorimotor part of the brain, which 

are recorded by 20 fNIRS channels. Given that the 

values of correlation coefficients are between -1 and 

1, the proximity of the absolute value to 1 means that 

there is stronger connectivity between networks. 

After extracting the functional connectivity matrix 

by calculating the correlation coefficients between the 

channels, to evaluate the functional connectivity in the 

networks between the channels for four states of ML, 

MIL, MR, and MIR, two graph-related features were 

investigated under small-world conditions. 

2.2.1. Global Efficiency 

Global efficiency is obtained by calculating the 

inverse of the path length. In a high-performance 

network, short connectivity paths can be identified 

among different node pairs [25] (Equation 3): 

𝐺𝑙𝑜𝑏𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
1

𝑁(𝑁 − 1)
∑

1

𝐿𝑖𝑗
𝑖≠𝑗𝜖𝐺

 (3) 

N is the number of nodes and Lij is the path length 

between nodes i and j. 

2.2.2. Local Efficiency 

𝐿𝑜𝑐𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐺) =
1

𝑛
∑ 𝐸𝑔𝑙𝑜𝑏(𝐺𝑖)

𝑛𝑜𝑑𝑒𝑠

 (4) 

𝐺𝑖 is a subgraph of G consisting of the neighbors of 

node I (Equation 4). 

GE and LE were calculated for all individuals in all 4 

task states and finally averaged. 

2.2.3. Small-World Network   

A small-world network is a type of graph in which 

many nodes are not neighbors, but the neighbors of 

each node are most likely interconnected. As a result, 

it is possible to get from one node to another with a 

small number of steps. In fact, networks are called 

small-world networks whose usual distance between 

two random vertices (L) is a coefficient of the 

logarithm of the total number of nodes in the network 

(N) (Equation 5). 

∝ log (5) 

However, the clustering coefficient is not small in 

these networks. In other words, nodes tend to form 

clusters. In social network science, these features 

represent the small-world phenomenon in which 

strangers are connected by a short chain of 

acquaintances [26, 27]. 

In this study, to investigate the small-world nature of 

the given network, the mean correlation matrix of 

fNIRS signal components in each task state was 

obtained and then the weak connectivity was removed 

with a step of 1%, respectively. In each of the resulting 

matrices with different percentages of the strongest 

connectivity, graph parameters were calculated and 

then averaged. In contrast, for each of the 100 random 

connectivity matrices that were similar to the original 

graph in terms of the number of nodes and degree of a 

node, the proposed approach was implemented. The 

main graph was then compared with GE and LE for an 

average of 100 random graphs to investigate the small-

world network condition, GE and LE with different 

percentages of the strongest connectivity. Then, the 

appropriate threshold was selected from the 

percentage of strong connectivity that met the small-

world network condition. 

In a small-world network, there is always the 

following Equation 6. 

𝐿𝐸𝑟𝑒𝑎𝑙 > 𝐿𝐸𝑟𝑎𝑛𝑑𝑜𝑚 و 𝐺𝐸𝑟𝑒𝑎𝑙 < 𝐺𝐸𝑟𝑎𝑛𝑑𝑜𝑚 (6) 

2.2.4. Statistical Test 

T-test is the simplest form of testing parametric 

hypotheses for real data. The use of a t-test allows 

investigating the difference in the mean of the two 

statistical populations. In fact, this test allows 

evaluation of the difference between the two statistical 

populations according to the mean. It should be noted 

that the t-index is usually used when the variance of 

the population is unknown. The number t is calculated 

by the following Equation 7: 
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𝑡 =  
𝑥̅  −  𝑦̅

√
𝜎𝑥

2

𝑛𝑥
 +  

𝜎𝑦
2

𝑛𝑦

 

(7) 

Where x ̅ and y ̅ are the averages of the two 

statistical populations, and 𝜎 and n are the standard 

deviation and the number of samples of statistical 

populations, respectively. Finally, by calculating the 

degree of freedom (df), the calculated t number is 

compared with the table of t-distribution. If the 

calculated t is higher than the table of t-distribution, 

the test is significant [28] (Equation 8). 

𝑑𝑓 = 𝑛−1 (8) 

In this study, a t-test with a p-value of <0.05 was used 

for GE for right-hand motion and right-hand motor 

imagery, and left-hand motion and left-hand motor 

imagery to determine only a percentage of strong 

connectivity. A significant difference was between 

motion and motor imagery. Accordingly, the channels 

in which the specified percentage of strong 

connectivity related to each other in the connectivity 

matrix should first be identified. Then, the strongest 

connectivity of the channels in each state in parts of 

the brain was shown. Also, the channels related to 

each other both in motion and motor imagery were 

shown. 

3. Results  

3.1. Small World  

As shown in Figures 4 and 5, according to Equation 

5, the small-world network condition should be met 

for almost all thresholds. These Figures show the GE 

and LE values of the main and random graphs for the 

strongest network connectivity, respectively, in the 

thresholds between zero and 0.5. They also show that 

at these thresholds of GE of the main graph was lower 

than the random graph, but the values of LE were 

inversely higher in the main graph. Thus, these 

conditions not only prove that the main graph is the 

small-world network but also show that the strongest 

connectivity can be considered to reduce the 

calculation load by up to 60%. On the other hand, as 

shown in Figure 6, the GE ratio of the main graph to 

the random graph reached its lowest value around the 

threshold of 0.1, indicating the largest difference 

between the GE of the main graph and the random 

graph. However, as shown in Figure 7, the evaluation 

of the difference in the distribution of GE values of the 

main graph between the two classes ML-MIL and 

MR-MIR using t-test analysis shows that the 

distribution of GE values with the threshold of 0.3-0.5 

on average showed a significant difference (p <0.05). 

As shown, in both MR-MIR classes, GE distributions 

around the threshold of 0.1 were also significant. 

However, it can be said that for both ML-MIL and 

MR-MIR classes, the threshold of 0.4 had the largest 

difference in the distribution of GE. 

 

 

 

Figure 4. GE of the main and random graphs with 

different thresholds for each of the task states of ML, 

MIL, MR, and MIR. Bold lines represent main networks 

and dashes represent random networks 

 

Figure 5. LE of the main and random graphs with 

different thresholds for each of the task states of ML, 

MIL, MR, and MIR. Bold lines represent main networks 

and dashes represent random networks 
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The nodes that were related to each other in most of 

the participants are shown in Table 1. In fact, these 

nodes were related to each other in at least 7 

participants and were considered as graph nodes with 

the strongest connectivity. Figure 8 shows four graphs 

of ML, MIL, MR, and MIR. As shown in Table 1 and 

Figure 8, the strongest connectivity was in the fNIRS 

channels in the left hemisphere. 

4. Discussion 

Brain functional connectivity, particularly in the 

context of sensorimotor activity, is a complex and 

essential aspect of human physiology, attracting 

significant attention in various studies, notably in the 

field of Brain-Computer Interfaces (BCIs). 

Researchers in the field of neuroscience employ a 

comprehensive approach that dissects brain network 

activities at specific signal recording points. These 

recording points capture diverse aspects of brain 

function, such as electrical and metabolic activity, 

with each point representing an information node. The 

application of graph theory enables researchers to 

analyze the characteristics of this data, providing 

insights into the functional connectivity of different 

brain regions during various cognitive sensorimotor 

tasks. 

In this study, the primary objective was to 

investigate the functional connectivity of individuals' 

brains using graph theory, specifically during motor 

imagery tasks with functional Near-Infrared 

Spectroscopy (fNIRS) signals. To ensure the quality 

of the fNIRS data, a wavelet transform-based filter, in 

combination with correlation analysis, was employed 

for signal preprocessing. Global Efficiency (GE) 

emerged as a central graph parameter for assessing 

small-world network properties and detecting 

significant differences between motion and motor 

imagery states, as determined through t-tests. The 

results emphasized the suitability of GE for revealing 

significant disparities between the two groups. 

 

Figure 6. GE ratio of the main graph to random graph 

with different thresholds for each of the task states of 

ML, MIL, MR, and MIR 

 

Figure 7. Evaluation of the difference in the distribution 

of GE values of the main graph in two classes of ML-MIL 

and MR-MIR using t-test analysis 

Table 1. 40% of nodes with the strongest connectivity among all participants in the main graph 

Task Channel Connection 

ML 
(1,2)(1,3)(1,5)(1,8)(1,20)(2,3)(2,7)(2,20)(3,5)(3,6)(3,8)(3,10)(3,16)(3,20)(5,8)(6,9)  

(6,10)(7,20)(8,20)(12,17) 

MIL 
(1,16)(2,7)(2,20)(3,8)(3,16)(4,5)(4,16)(4,20)(6,7)(6,13)(7,8)(7,14)(9,10)(9,11)(9,12)  

(9,14)(12,17)(13,18)(15,18)(16,18) 

MR 
(1,3)(1,4)(1,5)(2,3)(2,7)(2,9)(3,4)(3,5)(3,6)(3,7)(4,5)(5,8)(6,7)(6,8)(6,9)(6,10)(7,8)(7,9)  

(7,13)(8,13)(9,13)(11,13) 

MIR 
(2,3)(2,18)(3,7)(3,8)(3,9)(3,18)(5,20)(6,7)(6,8)(7,8)(7,11)(9,10)(9,14)(14,15)(16,20)  

(17,18) 
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Furthermore, the study examined the Small-World 

Network (SWN) condition and identified the 

proportions of the strongest connectivity where GE 

exhibited significant differences, shedding light on the 

associated brain regions. 

The selection of graph theory measures, including 

Global Efficiency (GE) and small-world-ness, was a 

deliberate choice guided by the study's specific 

research objectives. Graph theory offers a wide array 

of metrics tailored to analyze complex networks. In 

this case, the study focused on assessing the functional 

connectivity of brain networks, particularly within the 

sensorimotor region, recorded by 20 fNIRS channels. 

Global Efficiency (GE) was chosen due to its ability 

to gauge the efficiency of information transmission 

between network nodes, providing insights into 

overall network efficiency regarding information 

flow, a crucial aspect in the study of brain 

connectivity. The inclusion of small-world-ness was 

driven by its capacity to reveal network organization 

concerning information segregation and integration. 

This metric illuminated whether the network exhibited 

small-world network characteristics, a common 

feature in various biological networks, including the 

brain. Small-world-ness provided insights into the 

balance between local specialization and global 

information integration, aligning with the study's 

objectives. 

The choice of the wavelet transform-based filter for 

fNIRS signal preprocessing was a well-founded 

decision, supported by previous studies [31, 35-37, 

40-42]. The utilization of motor imagery tasks and 

graph theory for the investigation of brain functional 

connectivity represents a methodological innovation 

with several distinct advantages over previous 

approaches, as exemplified in [40, 43]. Notably, this 

approach offers a unique insight into the dynamic 

reconfiguration of brain networks during cognitive 

tasks. Unlike many traditional resting-state fMRI 

studies, which primarily capture spontaneous 

fluctuations in brain activity, motor imagery tasks 

provide a controlled cognitive context, allowing us to 

explore how the brain responds to specific cognitive 

demands and simulates motor actions mentally. This 

not only enhances our understanding of the neural 

mechanisms underpinning cognitive processes but 

also holds substantial clinical relevance, as cognitive 

rehabilitation and neurorehabilitation often involve 

motor imagery exercises. Furthermore, by applying 

graph theory to these data, we can comprehensively 

assess the topological organization of brain networks, 

uncovering properties such as small-world 

characteristics and efficiency. This detailed network 

analysis surpasses traditional seed-based or region-of-

interest approaches, providing a holistic view of how 

brain regions communicate during motor imagery. 

Such insights can inform the development of tailored 

 

Figure 8. Four graphs related to four states of ML, MIL, MR, and MIR for subject 1 
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interventions for patients with motor-related 

disorders, such as stroke or Parkinson's disease, by 

optimizing brain network plasticity. Moreover, our 

methodology leverages advanced signal preprocessing 

techniques, as discussed in previous sections, to 

enhance data quality.  

This filter effectively removed noise from fNIRS 

signals and specifically addressed motion artifacts. In 

contrast, the Independent Component Analysis (ICA) 

algorithm, although capable of isolating independent 

sources, was less suitable for removing physiological 

noise present in the signal background, making it less 

ideal for this study's goals. 

The exploration of brain functional connectivity has 

been a recurring theme in various studies. Kim et al. 

[43] investigated changes in brain network 

connectivity during Motor Imagery (MI) tasks 

involving hand-finger movements. Xu [44] delved 

into the functional connectivity of the motor area in 

children with Down syndrome, comparing metrics 

such as GE and the shortest path length between 

patient groups and healthy individuals. This study, 

however, focused on assessing brain functional 

connectivity using motor imagery tasks and graph 

theory. 

In contrast to fMRI-based studies, such as that by 

Hu et al. [29], which explored changes in brain 

network topology using graph theory and assessed 

parameters like GE and Local Efficiency (LE), this 

study found distinct results. While the previous study 

reported a significant difference in LE within the range 

of 0.1-0.2, no significant difference was observed for 

GE. In this study, the evaluation of GE for the ML-

MIL and MR-MIR classes using t-tests revealed 

significant differences at thresholds of 0.4-0.5. Graphs 

constructed based on these thresholds provided 

valuable insights into brain network connectivity in 

the sensorimotor area during four task states. 

Additionally, the statistical analysis revealed that the 

nodes with the strongest connectivity were 

predominantly situated in the left hemisphere of the 

brain. This observation was consistent with the fact 

that all participants in the study were right-handed, 

suggesting stronger connectivity in the dominant 

hemisphere during cognitive tasks. These results 

aligned with a study by Chen et al. [45], which 

highlighted the need for different motor imagery-

based strategies for right-handed and left-handed 

individuals. 

In summary, this study demonstrated the utility of 

analyzing fNIRS signals using graph theory to 

investigate brain network connectivity during various 

sensorimotor tasks. The results provided valuable 

insights into the characteristics of these networks and 

their relevance to neuroscience and potential 

applications in neurorehabilitation and Brain-

Computer Interfaces (BCIs). 

5. Conclusion 

In the light of the critical role brain functional 

connectivity plays in comprehending its intricate 

structure and diagnosing various disorders, it is 

prudent to expand upon this study by integrating other 

imaging modalities such as functional Magnetic 

Resonance Imaging (fMRI) and 

Electroencephalography (EEG). These 

complementary approaches can provide a more 

comprehensive view of brain network interactions and 

contribute to a more robust understanding of 

functional connectivity patterns. 

While this study predominantly focused on Global 

Efficiency (GE) as a graph parameter, it is advisable 

to explore additional graph metrics and thresholds to 

determine the most suitable parameters for channel 

selection. A more comprehensive investigation could 

reveal nuanced insights into brain network 

connectivity and facilitate a more refined channel 

selection process, potentially improving the accuracy 

of connectivity analysis. 

Moreover, this study was conducted with a 

relatively small sample size for evaluating fNIRS 

signals, which revealed that brain networks in the 

dominant hemisphere exhibit stronger connectivity. 

To enhance the generalizability of the findings, it is 

essential to conduct research with larger and more 

diverse statistical populations. Expanding the scope of 

research to encompass hybrid graph representations of 

electrical and metabolic activity across different 

cerebral hemispheres presents an exciting avenue for 

future studies. 

The findings and methodologies presented in this 

study hold the promise of contributing to the 

betterment of individuals with disabilities, particularly 
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in the context of neurorehabilitation and Brain-

Computer Interfaces (BCIs). It is hoped that these 

research insights can pave the way for advancements 

in these areas, ultimately leading to improved 

therapeutic strategies and quality of life for those 

affected by neurological conditions. 
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