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Abstract

nd cost-effective neuroimaging
in brain-computer interface (BCI)
during sensorimotor tasks, they
present a signal processing algorithm

Purpose: Functional Near-Infrared Spectroscopy (fNIRS) is a va
technique, particularly in the context of sensorimotor tasks andd i
research. While numerous studies have explored brain fun
have often primarily focused on electrical brain activity. In
utilizing fNIRS-HbO2 data to identify active brain regi
imagery within a motor imagery task.

key steps: firstly, the application of wavelet
Subsequently, we employ correlation analysis to
scution and motor imagery. Finally, we compute global
efficiency (GE) values, a significant{g parameter, to analyze network properties. Additionally, we
investigate the small-world netwo } 1stics within the connectivity matrices and classify motor execution

Materials and Methods: Our algorithm incorf
transform to eliminate noise and preprocess

0-channel fNIRS signals, measuring changes in HbO2 concentration in the
motor cortex, from 12 healthy patticipants at a sampling frequency of 10 Hz. Our findings not only confirm the
presence of small-world network@properties in the correlation matrices but also reveal that meaningful
classification between motor execution and motor imagery of both right and left hands occurs when we select the
top 40% of the strongest connections between channels. Furthermore, the results indicate a tendency towards
stronger connectivity between channels in the left hemisphere.

Conclusion: In summary, our study demonstrates that brain networks are organized as small-world networks
during sensorimotor tasks and underscores the prominent role of the dominant hemisphere in executing these
tasks.
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Exploring Brain Functional Connectivity in Hand Motion and Motor Imagery through fNIRS Signals

1. Introduction

Advancements in neurological studies have
unveiled the intricate interactions and functional
connectivity within brain networks during various
cognitive activities [1]. These interactions play a
pivotal role in understanding the brain's capacity to
integrate information across its diverse regions and are
at the forefront of contemporary neuroscience
research. Functional Near-Infrared Spectroscopy
(fNIRS) has emerged as a powerful and non-invasive
tool in exploring brain functional connectivity [2]. Its
resilience to electrical noise and ease of application
have made it an attractive choice for researchers
aiming to unravel the dynamics of brain networks.
Importantly, fNIRS allows for the measurement of
changes in oxyhemoglobin and deoxyhemoglobin
concentrations, enabling the assessment of metabolic
activity within brain cells [2]. The versatility of fNIRS
applications is reflected in their usage in a diverse
range of cognitive tasks, including motor imagery [3-
4], music imagery [5-8], object rotation [9], motion
detection [10], and mental arithmetic [11-16]. Tk
studies have provided valuable insights into

activity and connectivity patterns during

il . .
ﬁ prain. Dadgostar et

xplore functional

connectivity patterns [17]. Pr
graph theory have shed li

functional connectivity withi
al. utilized this methodology tG
connectivity within the prefrontal cortex during
cognitive tasks,

between hemispheres [1]. Einalou et al. investigated

revealing bilateral connectivity

functional connectivity disparities between healthy
individuals and patients with schizophrenia during
cognitive challenges [18]. Additionally, studies have
harnessed graph theory to assess brain functional
under varying cognitive loads,
highlighting fluctuations in global efficiency [ 17]. The
impact of mental fatigue on the interaction between
the Prefrontal Cortex (PFC) and Motor Cortex (MC)
during simulated driving has also been scrutinized
using fNIRS [19]. Motor imagery, a cognitive process

connectivity

simulating motion mentally before its execution, holds
significant importance in cognitive and neurological
rehabilitation [20]. This cognitive function has
attracted attention in recent studies that have explored

XX

the parallels between Motor Execution (ME) and
Motor Imagery (MI) [21-28]. An et al. employed
fNIRS to illustrate that motor imagery activates the
primary motor cortex [24]. Additionally, functional
Magnetic Resonance Imaging (fMRI) studies have
investigated functional connectivity in various brain
regions during motor imagery tasks [29].

Despite substantial research in these domains, there
remains a dearth of studies focusing on metabolic
activities and functional connectivity during motor
imagery tasks. This study aims to bridge this gap by
comprehensively evaluating and comparing brain
functional connectivity during the execution of motor
tasks and motor imagery involving both right and left-
hand fingers using fNIRS signals. Data collected

e motor cortex (MC) is extracted
0-32]. The overarching objective
e tova deeper understanding of the
ties and functional connectivity that

nary innovation of this study lies in its holistic
amination of brain functional connectivity during
ofor imagery tasks, filling a significant research gap
the field [30-32]. By employing fNIRS and graph
theory, to provide a comprehensive
understanding of the metabolic
connectivity dynamics underlying cognitive tasks and

we aim
activities and

motor function. Our research promises to shed new
light on the intricate processes governing motor
imagery and cognitive activities, thus contributing to
a deeper understanding of the human brain's functional
architecture and potential applications in neurological
rehabilitation. In synthesizing a comprehensive
understanding of brain network interactions, fNIRS
applications, graph theory, and motor imagery, this
study aspires to elucidate the intricate processes that
govern cognitive tasks and motor function.

2. Materials and Methods

2.1. Subjects and Protocol

The data for this study were acquired using the
OxyMonfNIRS (Artinis) system, within the facilities
of the National Brain Mapping Laboratory. The
participant cohort was composed of 12 healthy, right-
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handed individuals, each with a mean age of 25 = 5
years, and no history of psychiatric or neurological
conditions. The study population consisted of 5 men
and 7 women, yielding a gender distribution of 42%
men and 58% women.

Prior to data collection, all participants underwent a
formal informed consent process and received detailed
instructions on the task to be performed. A visual
representation of the data recording protocol can be
found in Figure 1.

As shown in Figure 1, first the baseline signal was
recorded for 60 seconds, and then four task blocks
including motion left (ML), motor imagery left (MIL),
motion right (MR), and motor imagery right (MIR)
were performed by the participants. The duration of
each task block was 20 seconds and each of them was
repeated 4 times during data recording. Also, a rest
time of 40 seconds was considered between the two
task blocks. The total time of the data record process
for each participant was 17 minutes and the task was
performed in a dark and quiet room. During the task,
fNIRS signals were recorded and saved from
channels in the motor part of the volunteers' braifis
a sampling frequency of 10 Hz as shown in Fig

volunteers' brains. These locations

based on established neuroimagi
nature of the motor-related

LdS (
Specifically, the optodes we @

motor cortex, which is typicall

over the primary
located in the
precentral gyrus of the cerebral c@ptex, in order to
capture relevant brain activity associated with motor
tasks. This precise placement ensured the recording of
fNIRS signals from the primary motor cortex, a region
known for its involvement in motor control and execution.
Including the mention of the primary motor cortex provides

clarity and specificity in the methodology.

Transmitter

@ Receiver

Figure 2. a. Location of fNIRS signal recording optodes on
the motor area of the brain (yellow dots indicate light
transmitters and blue dots indicate light receivers), b.
Number of fNIRS channels in the motor area of the brain

2.2.  Signal Processing Algorithm

In this study, the processing of fNIRS signals was

ther physiological signals, are
us sources of interference such as
ient noise, physiological noise,
2. To extract the desired brain activity-
rom these interferences, noise removal

asePcrucial. Prior research, as referenced in
7, 33, 34], has established that fNIRS signals
pminantly  contain  brain  activity-related
pformation within the frequency range of 0.003-0.08
z. However, several physiological interferences,
such as cardiac activity (0.8-1.5 Hz), respiratory
activity (0.2-0.5 Hz), and changes in arterial blood
pressure (0.1 Hz), can introduce unwanted noise into
the fNIRS signal [1]. To enhance the study's ability to
investigate brain function via fNIRS signals, it is
to mitigate the effects of these
physiological interferences, as highlighted
references [35-37]. To address this issue, we
employed the Discrete Wavelet Transform (DWT),
which is well-documented for its effectiveness in
denoising fNIRS signals. The fNIRS signal was first
decomposed into 11 levels. As a preprocessing step,

the approximation coefficients of level 11 were zeroed

imperative
in

out to eliminate the DC signal, and the detail

Left Left Right i
Baseline Rest Rest g Rest it
Motion Imagine Motion Imagine
< >« > < >« - 4 >« >« > < >
60s 20s 40s 20s 40s 20s 40s 20s

Figure 1. Protocol for recording motion and motor imagery of the right and left-hand’s fingers
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fNIRS
Signals

Small World Network for each Task

Generate the Random

Wavelet Filtering

A4

(" Wavelet N X - \
Decomposition Connection Mat!'lx
Mother wavelet: db5 Method: .Corrclat{on
L Level number: 11 ) Connection matrix:
20x20x48
I Task number: 4
4 Filtering ) Subjects: 12 )
Remove the sub-band 1
coefficients of levels less ~N
\_ than 6 ) Task Segmentation
Window: 20s
(Figure 1)
(" Wavelet ) . /
Reconstruction
Mother wavelet: db5
\_ Level number: 11 )

Figure 3. Proposed diagram for processing fNIRS signals

coefficients of the first six levels were set to zero tg
extract the frequency content between 0.003 and @50

Hz. Subsequently, we used the inverse wa
transform to reconstruct the output signal wi

hand motion, left-hand motor{imagery, right-hand
motion, and right-hand motor imagewy, for the signal
segmentation, the parts related to each task block were
separated from the whole signal according to the
protocol in Figure 1. According to the sampling
frequency, the total data length for each task block is

equal to 200 samples.

The correlation coefficient has been used to
evaluate brain functional connectivity based on graph
theory.

In our study, we used Pearson's correlation
coefficient (r) as a measure for the connectivity

matrix. The formula for Pearson's correlation
coefficient is as follows (Equation 1):
2(x-%)y-¥)
R: —_—
VE(x=X)2(y-¥)? ()

XX

v Connection Matrix
Average the ) Random connection
Connection Matrixes matrix: 20x20x 100
Mean connection matrix: Condition: Random
20%20 ) connection matrix should
has same degree with the

! connection matrixes in

( Thresholding ) \

each node /
Remove the n% of poor - L] N
connections in matrix Thresholding
L (1<n<99) ) Remove the n% of poor
connections in matrix
3 (1<n<99)
( ™ - T ~
Parameters ' -
- Global efficiency Parameters
. - Global efficiency
- Local efficie L ocal effici
y (- Local efficiency )

Parameters

X and Y represent the time series data of the two
regions being correlated.

X and Y denote the means of the respective
time series data.

Pearson's correlation coefficient is commonly used
to quantify the linear relationship between two
variables and is suitable for measuring connectivity
between regions of interest in fNIRS data.

By creating a functional connectivity matrix for
each task block, connectivity between all relevant
channels was obtained. Each channel corresponds to a
node in the graph. Therefore, according to Equation 1,
for a graph with N nodes, a connectivity matrix N x N
is obtained whose array values are between -1 and +1
[24].

Cll e ClN
Cy=|i @)
CNl e CNN

Where Crask is the functional connectivity matrix
related to each task block and the values of the
correlation coefficient C;; are between two channels
(nodes) i and j.
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In this study, the graph matrix is calculated based
on the correlation between each pair of channels.
Hence, this matrix represents the metabolic activity of
networks in the sensorimotor part of the brain, which
are recorded by 20 fNIRS channels. Given that the
values of correlation coefficients are between -1 and
1, the proximity of the absolute value to 1 means that
there is stronger connectivity between networks.

After extracting the functional connectivity matrix
by calculating the correlation coefficients between the
channels, to evaluate the functional connectivity in the
networks between the channels for four states of ML,
MIL, MR, and MIR, two graph-related features were
investigated under small-world conditions.

2.2.1. Global Efficiency

Global efficiency is obtained by calculating the
inverse of the path length. In a high-performance
network, short connectivity paths can be identified
among different node pairs [25] (Equation 3):

1 1
Global Ef ficiency = —N(N 0 E -
—-1) ij

i#jeG

N is the number of nodes and Lij is t
between nodes i and j.

2.2.2. Local Efficiency

1
Local Ef ficiency (G) = -

nodes

»(Gi) (4)

G is a subgraph of G consisting of the neighbors of
node I (Equation 4).

GE and LE were calculated for all individuals in all 4
task states and finally averaged.

2.2.3. Small-World Network

A small-world network is a type of graph in which
many nodes are not neighbors, but the neighbors of
each node are most likely interconnected. As a result,
it is possible to get from one node to another with a
small number of steps. In fact, networks are called
small-world networks whose usual distance between
two random vertices (L) is a coefficient of the

FBT, Vol. 13, No. 2 (Spring 2026) XX-XX

logarithm of the total number of nodes in the network
(N) (Equation 5).

& log ®)]

However, the clustering coefficient is not small in
these networks. In other words, nodes tend to form
clusters. In social network science, these features
represent the small-world phenomenon in which
strangers are connected by a short chain of
acquaintances [26, 27].

In this study, to investigate the small-world nature of
the given network, the mean correlation matrix of
fNIRS signal components in each task state was
obtained and then,the weak connectivity was removed

with a step of I, respectively. In each of the resulting

matrices
parameters were calculated and
trast, for each of the 100 random

was then compared with GE and LE for an
age of 100 random graphs to investigate the small-
orld network condition, GE and LE with different
percentages of the strongest connectivity. Then, the
appropriate  threshold was selected from the
percentage of strong connectivity that met the small-
world network condition.

In a small-world network, there is always the
following Equation 6.

LEreal > LErandom 4 GEreal < GErandom (6)

2.2.4. Statistical Test

T-test is the simplest form of testing parametric
hypotheses for real data. The use of a t-test allows
investigating the difference in the mean of the two
statistical populations. In fact, this test allows
evaluation of the difference between the two statistical
populations according to the mean. It should be noted
that the t-index is usually used when the variance of
the population is unknown. The number 7 is calculated
by the following Equation 7:

XX
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x —

t = Y
o , o )
n, ' n,

Where x and y are the averages of the two
statistical populations, and ¢ and n are the standard
deviation and the number of samples of statistical
populations, respectively. Finally, by calculating the
degree of freedom (df), the calculated t number is
compared with the table of t-distribution. If the
calculated t is higher than the table of t-distribution,
the test is significant [28] (Equation 8).

df =n—1 (8)

In this study, a t-test with a p-value of <0.05 was used
for GE for right-hand motion and right-hand motor
imagery, and left-hand motion and left-hand motor
imagery to determine only a percentage of strong
connectivity. A significant difference was between
motion and motor imagery. Accordingly, the channels
in which the specified percentage of stron
connectivity related to each other in the connecti
matrix should first be identified. Then, the stror
connectivity of the channels in each stateg
the brain was shown. Also, the chang
each other both in motion and mot®
shown.

3. Results

3.1. Small World

As shown in Figures 4 and 5, according to Equation
5, the small-world network condition should be met
for almost all thresholds. These Figures show the GE
and LE values of the main and random graphs for the
strongest network connectivity, respectively, in the
thresholds between zero and 0.5. They also show that
at these thresholds of GE of the main graph was lower
than the random graph, but the values of LE were
inversely higher in the main graph. Thus, these
conditions not only prove that the main graph is the
small-world network but also show that the strongest
connectivity can be considered to reduce the
calculation load by up to 60%. On the other hand, as
shown in Figure 6, the GE ratio of the main graph to
the random graph reached its lowest value around the

XX

threshold of 0.1, indicating the largest difference
between the GE of the main graph and the random
graph. However, as shown in Figure 7, the evaluation
of the difference in the distribution of GE values of the
main graph between the two classes ML-MIL and
MR-MIR using t-test analysis shows that the
distribution of GE values with the threshold of 0.3-0.5
on average showed a significant difference (p <0.05).
As shown, in both MR-MIR classes, GE distributions
around the threshold of 0.1 were also significant.
However, it can be said that for both ML-MIL and
MR-MIR classes, the threshold of 0.4 had the largest
difference in the distribution of GE.

—ML

——MIL | |

—MR

—MIR
;

. . . . . .
015 0.2 025 03 035 04 045 05
Preserved Threshold

Figure 4. GE of the main and random graphs with
different thresholds for each of the task states of ML,
MIL, MR, and MIR. Bold lines represent main networks
and dashes represent random networks
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Figure 5. LE of the main and random graphs with
different thresholds for each of the task states of ML,
MIL, MR, and MIR. Bold lines represent main networks
and dashes represent random networks
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Figure 6. GE ratio of the main graph to random graph
with different thresholds for each of the task states of
ML, MIL, MR, and MIR

The nodes that were related to each other in most of
the participants are shown in Table 1. In fact, these
nodes were related to each other in at least 7
participants and were considered as graph nodes with
the strongest connectivity. Figure 8 shows four graphs
of ML, MIL, MR, and MIR. As shown in Table 1 and
Figure 8, the strongest connectivity was in the fNIR
channels in the left hemisphere.

4. Discussion

Brain functional connectivity, part
context of sensorimotor activi

a
U
0

essential aspect of huma
significant attention in vario
field of Brain-Computer (BCIs).
Researchers in the field of neurosgience employ a
comprehensive approach that dissects brain network
activities at specific signal recording points. These
recording points capture diverse aspects of brain

function, such as electrical and metabolic activity,

T T T
—— GE (ML & MIL)
—— GE (MR & MIR) | 1
-------- p-Value = 0.05

Preserved Threshold

Figure 7. Evaluation of the difference in the distribution
of GE values of the main graph in two classes of ML-MIL
t-test analysis

ting an information node. The
theory enables researchers to
teristics of this data, providing
tional connectivity of different
ring various cognitive sensorimotor

this study, the primary objective was to
stigate the functional connectivity of individuals'

s using graph theory, specifically during motor
agery tasks
Spectroscopy (fNIRS) signals. To ensure the quality
of the fNIRS data, a wavelet transform-based filter, in
combination with correlation analysis, was employed
for signal preprocessing. Global Efficiency (GE)

with functional Near-Infrared

emerged as a central graph parameter for assessing
small-world network properties and detecting
significant differences between motion and motor
imagery states, as determined through t-tests. The
results emphasized the suitability of GE for revealing
significant disparities between the two groups.

Table 1. 40% of nodes with the strongest connectivity among all participants in the main graph

Task Channel Connection
ML (1,2)(1,3)(1,5)(1,8)(1,20)(2,3)(2,7)(2,20)(3,5)(3,6)(3,8)(3,10)(3,16)(3,20)(5,8)(6,9)
(6,10)(7,20)(8,20)(12,17)
MIL (1,16)(2,7)(2,20)(3,8)(3,16)(4,5)(4,16)(4,20)(6,7)(6,13)(7,8)(7,14)(9,10)(9,11)(9,12)
(9,14)(12,17)(13,18)(15,18)(16,18)
MR (1,3)(1,4)(1,5)(2,3)(2,7)(2,9)(3,4)(3,5)(3,6)(3,7)(4,5)(5,8)(6,7)(6,8)(6,9)(6,10)(7,8)(7,9)
(7,13)(8,13)(9,13)(11,13)
MIR (2,3)(2,18)(3,7)(3,8)(3,9)(3,18)(5,20)(6,7)(6,8)(7,8)(7,11)(9,10)(9,14)(14,15)(16,20)

(17,18)
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State: 1 Subject: 1

State: 2 Subject: 1

C6 c8 C5 C16 ‘c18 15

1 1 L 1 L

15

State: 4 Subject: 1
C6 c8 c5 ' ci6  C18 C15

C7. C, 20 C14

Furthermore, the study examined the Small-World
Network (SWN) condition and identified thg
proportions of the strongest connectivity where

Global Efficiency (GE) and small-
deliberate choice guided by
of metrics tailored to anal lex networks. In
this case, the study focused on a
connectivity of brain networks, pa

ssing the functional
larly within the
sensorimotor region, recorded by 20 fNIRS channels.
Global Efficiency (GE) was chosen due to its ability
to gauge the efficiency of information transmission
between network nodes, providing insights into
overall network efficiency regarding information
flow, a crucial aspect in the study of brain
connectivity. The inclusion of small-world-ness was
driven by its capacity to reveal network organization
concerning information segregation and integration.
This metric illuminated whether the network exhibited
small-world network characteristics, a common
feature in various biological networks, including the
brain. Small-world-ness provided insights into the
balance between local specialization and global
information integration, aligning with the study's
objectives.

XX

the wavelet transform-based filter for
preprocessing was a well-founded
upported by previous studies [31, 35-37,
2]. The utilization of motor imagery tasks and
theory for the investigation of brain functional
gonnectivity represents a methodological innovation
with several distinct advantages over previous
approaches, as exemplified in [40, 43]. Notably, this
approach offers a unique insight into the dynamic
reconfiguration of brain networks during cognitive
tasks. Unlike many traditional resting-state fMRI
studies, which primarily capture
fluctuations in brain activity, motor imagery tasks

spontaneous

provide a controlled cognitive context, allowing us to
explore how the brain responds to specific cognitive
demands and simulates motor actions mentally. This
not only enhances our understanding of the neural
mechanisms underpinning cognitive processes but
also holds substantial clinical relevance, as cognitive
rehabilitation and neurorchabilitation often involve
motor imagery exercises. Furthermore, by applying
graph theory to these data, we can comprehensively
assess the topological organization of brain networks,
uncovering properties such as  small-world
characteristics and efficiency. This detailed network
analysis surpasses traditional seed-based or region-of-
interest approaches, providing a holistic view of how
brain regions communicate during motor imagery.
Such insights can inform the development of tailored

FBT, Vol. 13, No. 2 (Spring 2026) XX-XX
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interventions for patients with motor-related
disorders, such as stroke or Parkinson's disease, by
optimizing brain network plasticity. Moreover, our
methodology leverages advanced signal preprocessing
techniques, as discussed in previous sections, to
enhance data quality.

This filter effectively removed noise from fNIRS
signals and specifically addressed motion artifacts. In
contrast, the Independent Component Analysis (ICA)
algorithm, although capable of isolating independent
sources, was less suitable for removing physiological
noise present in the signal background, making it less
ideal for this study's goals.

The exploration of brain functional connectivity has
been a recurring theme in various studies. Kim et al.
[43] investigated changes in brain network
connectivity during Motor Imagery (MI) tasks
involving hand-finger movements. Xu [44] delved
into the functional connectivity of the motor area in
children with Down syndrome, comparing metrics
such as GE and the shortest path length between
patient groups and healthy individuals. This stud
however, focused on assessing brain functior
connectivity using motor imagery tasks and
theory.

In contrast to fMRI-based studies

reported a significant difference within the range
of 0.1-0.2, no significant differenceWas observed for
GE. In this study, the evaluation of GE for the ML-
MIL and MR-MIR classes using t-tests revealed
significant differences at thresholds of 0.4-0.5. Graphs
constructed based on these thresholds provided
valuable insights into brain network connectivity in
the sensorimotor area during four task states.
Additionally, the statistical analysis revealed that the
nodes with the strongest connectivity were
predominantly situated in the left hemisphere of the
brain. This observation was consistent with the fact
that all participants in the study were right-handed,
suggesting stronger connectivity in the dominant
hemisphere during cognitive tasks. These results
aligned with a study by Chen et al. [45], which

highlighted the need for different motor imagery-

FBT, Vol. 13, No. 2 (Spring 2026) XX-XX

based strategies for right-handed and left-handed
individuals.

In summary, this study demonstrated the utility of
analyzing fNIRS signals using graph theory to
investigate brain network connectivity during various
sensorimotor tasks. The results provided valuable
insights into the characteristics of these networks and
their relevance and potential
applications in neurorchabilitation and Brain-
Computer Interfaces (BCls).

to neuroscience

5. Conclusion

In the light of the critical role brain functional
in comprehending its intricate
ing various disorders, it is

connectivity p,

ging (fMRI) and
ography (EEG). These
approaches can provide a more
e view of brain network interactions and
ibute to a more robust understanding of
ional connectivity patterns.

hile this study predominantly focused on Global
Efficiency (GE) as a graph parameter, it is advisable
to explore additional graph metrics and thresholds to
determine the most suitable parameters for channel
selection. A more comprehensive investigation could
reveal nuanced insights into brain network
connectivity and facilitate a more refined channel
selection process, potentially improving the accuracy

of connectivity analysis.

Moreover, this study was conducted with a
relatively small sample size for evaluating fNIRS
signals, which revealed that brain networks in the
dominant hemisphere exhibit stronger connectivity.
To enhance the generalizability of the findings, it is
essential to conduct research with larger and more
diverse statistical populations. Expanding the scope of
research to encompass hybrid graph representations of
electrical and metabolic activity across different
cerebral hemispheres presents an exciting avenue for
future studies.

The findings and methodologies presented in this
study hold the promise of contributing to the
betterment of individuals with disabilities, particularly

XX



Exploring Brain Functional Connectivity in Hand Motion and Motor Imagery through fNIRS Signals

in the context of neurorchabilitation and Brain-
Computer Interfaces (BCIs). It is hoped that these
research insights can pave the way for advancements
in these areas, ultimately leading to improved
therapeutic strategies and quality of life for those
affected by neurological conditions.
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