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Design and Implementation of an Emotional Learning Controller 
for Force Control of a Robotic Laparoscopic Instrument 

Seyed Mohsen Khadem1, Saeed Behzadipour1,2,*, Mehrdad  Boroushaki3, Farzam Farahmand1,2, Mahdi Tavakoli4

1. Department of  Mechanical Engineering, Sharif  University of  Technology, Tehran, Iran.
2. Institute for Advanced Medical Technologies (IAMT), Tehran University of Medical Sciences, Tehran, Iran.
3. Department of  Energy Engineering, Sharif  University of  Technology, Tehran, Iran.
4. Department of  Electrical Engineering, University of  Alberta, Edmonton, Canada.

* Corresponding Author: 
Saeed Behzadipour, PhD
Associate Professor, School of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran.
Tel: (+98) 21-66165542 / Fax: (+98) 21-66000021
E-mail: Behzadipour@sharif.edu  

Purpose: Force control of robotic instruments is a difficult task due to the uncertainties caused 
by changes in the instrument’s geometrical and mechanical characteristics during surgery as 
well as the nonlinear dynamics of the instrument. A new approach based on an intelligent 
controller is developed to control the force interactions of a robotic surgical instrument with 
delicate soft tissues. This feature assists the surgeon by providing a safe grasp of soft tissues 
during dissection or suturing. Besides, by controlling and optimizing the magnitude of the 
instrument/tissue contact forces, controlled grasp will significantly reduce the surgery trauma. 

Method: The controller is devised using a neuro-fuzzy regulator that receives the tracking 
error and its derivative as inputs, and a PD critic that evaluates the actual pinch force and 
produces an emotional signal. The controller tunes its parameters by means of minimizing 
the critic’s output signal, i.e., stress, so that the force tracking error is reduced. Numerical 
simulations and experimental tests were performed to evaluate the controller.

Results: Simulation tests revealed that the controller can effectively adapt its rules when the 
instrument’s geometry and frictional behavior changes. The experiments revealed a settling 
time of 0.7 s with 3.1% overshoot. In comparison with a PID, the proposed controller reduced 
the mean squared error (MSE) by 94% for a target constant force, and 24% for a target 
sinusoidal trajectory. 

Conclusion: the proposed controller showed a superior performance in force control of tissue 
in safe grasp in comparison with a PID particularly for constant target forces. 
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1. Introduction

obotic surgery systems have eliminated 
many of the inherent limitations involved 
in minimally invasive surgeries such as 
low dexterity, surgeons’ fatigue, and poor 
ergonomics[1, 2]. Some other limitations 

of MIS, however, are still present in robotic surgery sys-
tems such as the lack of tactile sense that can negatively 
affect the efficacy and safety of surgery. With no or in-
sufficient tactile information from the tool-tissue force 

R
interactions, the surgeon might not be able to control the 
magnitude of the force he applies to the tissue properly, 
increasing the risk of surgery trauma [3].

As an attempt to remove this limitation, several sen-
sor integrated laparoscopic instruments have been 
introduced in the last decade. However, there are still 
some challenges that impede their widespread applica-
tion in robotic surgery systems. For instance, during a 
simple minimally invasive surgery, a variety of instru-
ments with different tips and functionalities, e.g., cutter, 
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grasper, dissector and needle holder, are usually used. 
For a force controller to be effective and safe, it should 
be able to handle such variations in the kinematics and 
dynamics of the system [4]. 

Another deterrent to the practical force control of 
robotic sensorized instruments is mechanical imper-
fection such as joint clearance and friction which may 
also change through time. Although these are ordinary 
qualities of any mechanical device, they become very 
annoying during the control of robot/human interaction, 
especially in dealing with delicate human organs. Thus, 
the controller should be also intelligent to identify in-
strument’s clearances and be robust against the change 
of its frictional behavior.

Neural networks, with their intriguing properties such 
as learning ability, interpolation, parallel processing, and 
nonlinear function estimation, have been incorporated 
in many complex control problems.  A neuro-controller 
in general, performs a specific form of adaptive control, 
with the controller in the form of a multilayer neural 
network with adaptable parameters defined as adjust-
able weights[5]. Alternatively, fuzzy controllers have 
been shown to work well as supervisory controllers in 
conditions involving high nonlinearities, time varying 
parameters or system uncertainties[6]. In order to realize 
the benefits of both Fuzzy and neural controllers, some 
modern intelligent methods have used neuro-fuzzy 
structures to combine the generalization capabilities of 
neural networks and the decision making competence 
of fuzzy systems [7, 8].  The heart of such intelligent 
control systems is a fuzzy controller whose parameters 
are self-tuned through a learning technique. Genetically 
optimized fuzzy controllers, back-propagation through 
plant and reinforcement learning have shown successful 
implementation of this method [9, 10]. 

Reinforcement learning is considered an effective 
learning technique, in which a critic agent gives rewards 
and punishments with respect to the states reached by 
the controller [11]. The advantages of this technique 
over previously used methods has been largely appreci-
ated by the community [12] and it has been successfully 
implemented in a wide variety of applications, e.g., cars, 
missile guiding systems, steam generators etc.[13-15]. 
However, it suffers from a slow convergence speed and 
more importantly the critic`s hesitation for the failure 
of the controller and commencing to deliver correction 
signals [16]. This restricts the application of the rein-
forcement learning technique in zero-tolerance error 
systems such as robotic surgery in which any minor 
failure might lead to severe injury or huge financial loss. 

A solution to this problem might be obtained using 
emotional based learning that integrates the sentimen-
tal factors into the decision making process. In general, 
decision making, even in case of human beings, is fully 
based on rationality and emotional cues are concealed 
[17]. However, the positive and important role of emo-
tions in decision making has been recognized recently 
not only in psychology, but also in artificial intelli-
gence and robotics [18]. For instance, Lucas developed 
a computational model based on the limbic system in 
the mammalian brain for control engineering applica-
tions [19]. He applied the proposed controller for some 
SISO, MIMO and nonlinear systems and the results 
demonstrated excellent control action, disturbance 
handling and system parameter robustness. In another 
work, Mehrabian et al. evaluated the performance of a 
proposed Brain Emotional Learning model by applying 
it on different nonlinear uncertain systems. The results 
showed very good adaptability and robustness, while 
maintaining stability [20].  In summary, emotional cues 
can provide an approximate method for selecting the ap-
propriate actions, when uncertainties and limitations of 
computational resources interfere with the rational de-
cision making. This feature can be used to develop an 
emotional based learning technique that generalizes the 
application of reinforcement learning and improves its 
performance. 

In this work, a novel emotional learning based intelli-
gent controller is introduced and its application for force 
control of tissue grasp during a minimally invasive ro-
botic surgery (MIRS) is addressed. The controller con-
sists of a neuro-fuzzy regulator that receives the track-
ing error and its derivative as inputs, and a PD critic 
that evaluates the plant`s desired output and produces 
an emotional signal. The controller tunes its parameters 
by means of minimizing the critic’s output signal, i.e. 
stress, so that the tracking error is reduced. Moreover, 
the efficacy of the controller in controlling the tool- tis-
sue force interactions is evaluated in a number of simu-
lation and experimental tests.

2. Methods

A mathematical model was developed to describe the 
mechanics of the robotic instrument and to represent its 
functional behavior. Then an emotional learning intelli-
gent controller is introduced and the scheme of the pro-
posed intelligent controller and the role of its elements 
are discussed. 
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2.1. The Robotic Instrument

The robotic laparoscopy instrument considered in this 
study is the end-effector of a slave robot [21], used in a 
haptic master-slave robotic surgery system. This 3-link 
serial spherical robot has a remote center of motion and 
includes 3 Degrees of Freedom (DoFs) for positioning 
the instrument during surgery. 

The force interactions of the instrument and tissue are 
measured using strain gauges installed on the instru-
ment’s tip. In the present study, the instrument was a 
laparoscopic grasper with two strain gauges installed on 
both sides of one of the jaw`s tips. The target here is the 
control of the pinch force, i.e. the force exerted on the 
tissue by the jaws, using the output of the strain gauges 
as the feedback.

 Figure 1 shows a detailed view of the instrument. L 
is the contact length, i.e. the distance between the tissue 
contact point and the jaws pivot. a  , b and c are geo-
metrical parameters dependent on the jaw profile and θ   
is the jaw angle.  jF  is the force at the tip of the jaws and  

iF  is the tool actuation force. Based on the geometrical 
equations that govern the instrument motion and the 

virtual work principle (2. . . . 0j iF l d F dxθ − = ) instrument`s 
dynamic model is as follows [22]:
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In equation (1), we have neglected the effects of the 
weight of the tool tip. By implementing the dynamics of 
the motor and gearbox and the effects of the friction, the 

reference model of the instrument used for the simula-
tion of the tool-tissue force interactions can be achieved:

2

2
sin( ) cos( )[ sin( ) ( )( )]

sin( )1 ( )

2 2 1 2[ ( ) ( ) ] ( )

j

m g T g j

LF a c aa
b a c

b

J N J m K i N mg f f
l l N l

θ θθ
θ

π π πθ

=
+

− −
+

−

− + + + + − −

                                                                                      (2)

Figure 1. Geometrical parameters of laparoscopic instrument.

gf  and  jf  are the gearbox and instrument joints` 
frictions, respectively. These two terms are estimated 
using conventional friction models. Actuator`s current 
set point ( i ) is the model`s input and the output is the 
exerted grasp force ( jF ).The parameters of the model 
as in (2), are given in Table 1:

In order to add the effects of the gearbox and the ball 
screw friction to the model, we used the friction esti-
mation model developed by Canudas et al [23]. This 

Parameter Description Parameter Description

jF tool-tissue interaction force l ball screw pitch

i  grasp motor current set point jf joints friction

TK motor torque constant gf gearbox and ball screw friction

N grasp motor gearbox`s transmission ratio L jaw pivot and tissue contact point distance 
(effective length of tip)

rJ grasp motor`s rotor inertia , ,a b c instrument jaw`s geometrical parameters

gJ gearbox`s inertia θ instrument jaw angle

Table 1. Values of the laparoscopic instrument model parameters
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model is mostly used for actuator friction compensation 
in robot manipulators with low velocities. Since the in-
strument jaws move slowly during tissue grasping, this 
model seems appropriate for our study. The veracity of 
this model in predicting the actuators friction in mecha-
nisms has been confirmed thanks to its vast applications 
in industrial robotic systems. Eq. (3) represents the fric-
tion model of the actuator in this robotic instrument:

 0 1 2[ ( ) (1 ( ))]sgn( )gf e eβ ω β ωα α α ω− −= + + −

                                                                                      (3)

where gf  and ω  are the actuator  friction force and 
spindle drive angular velocity, respectively. The friction 

parameters 0α , 1 0α α+   and 2α  are coulomb friction, 
static friction and viscous friction, respectively. β  is a 
constant value.

In order to estimate the friction at the instrument 
joints, we used the equation provided by Tavkoli et al. 
[24]. This model considers two rigid bodies in contact 
through elastic bristles. The friction force/torque be-
tween the two bodies can be modeled based on their 
relative velocity  ω  and the bristles’ average deflection. 
By assuming asymmetry in Stribeck friction affects 
when the instrument moves in the positive and negative 
directions, one can write:

1 1 2 2
1 2 21

(1 ) ( ) (1 ) ( )j s c sc

a a a ae u e u e u e uω ω ω ω
ω ω ω ωτ σω τ τ τ τ− −

− − − −= + − + + − +

1 1 2 2
1 2 21

(1 ) ( ) (1 ) ( )j s c sc

a a a ae u e u e u e uω ω ω ω
ω ω ω ωτ σω τ τ τ τ− −

− − − −= + − + + − +
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2
j jf

l
πτ=                                                                 (4b) 

where  jτ ,  jf  and ω  are the joints friction torque, 
joints friction force and angular velocity of the tool tip 
at the motor output shaft, respectively.  The first term in 
Eq. (3a), σω accounts for the viscous friction. Friction pa-
rameters ciτ , siτ and ia with i=1 correspond to the move-
ment of the tool tip in the positive direction ( mω > 0), and 
for the tip movement in the negative direction ( mω  < 0) 
i is set to 2. Also, xu is the step function, i.e. xu  = 1 if x 
> 0; and 0 otherwise.

The reference model`s parameters for the robotic in-
strument of our study are shown in Table 2. Since the 
instrument`s jaws move slowly during tissue grasping, 
the coefficients of the viscous friction were assumed to 
be negligible.

Parameter Value Parameter Value

k  24.4 mNm/A 2α 0

N 720/25 β 20 sec/rad 

 l 2 mm σ 0 N.m.sec/rad

L 18 mm 1cτ 1.6e-2 N.m

a  2.85 mm 1sτ 1.9e-2 N.m

b 5 mm 2cτ 1.85e-2 N.m

 c 1.5 mm 2sτ 1.1e-1 N.m

0α 9.5 N 1a 55 sec/rad

1 0α α+  14.3 N 2a 42 sec/rad

Table 2. The values of the laparoscopic instrument model 
parameters.

As Equations (2), (3) and (4a) indicate, the dynamics 
of the instrument is highly nonlinear. Also it is very sus-
ceptible to the geometrical parameters and the exact lo-
cation of the contact point of the instrument’s jaws and 
the tissue. In addition, the friction of the instrument’s 
joints and the actuator are discontinuous and unstable 
when velocity tends to zero. In here, the possibility of 
such situations in which the value of the system param-
eters are slightly different from their nominal ones are 
referred to as uncertainties and will distort the accurate 
control of the tissue/instrument interaction forces.  An-
other uncertainty comes from the fact that the friction 
constants may vary due to the continuous use of the in-
strument. Therefore, a nonlinear controller is needed to 
control the tool-tissue force interactions which is also 
robust against the unpredictable variations of these pa-
rameters. In the next sections of this paper, an emotional 
learning intelligent controller is introduced for this ap-
plication and the effects of unpredicted changes in the 
model parameters are investigated.

2.2. Emotional Based Intelligent Controller

Cognition and emotion are two prominent factors in 
the development of decision making skills in human 
beings. Human cognition strength uses perception and 
rationalization to take a decisive action. However, an-
other important aspect of human`s mental life is emo-
tion. The human`s actions are affected by sentimental 
elements such as stress, satisfaction or excitement. Hu-
mans always try to reduce the stress or get excited by 
achieving a certain goal [25]. Therefore, despite animal 
learning which is proportional to the reinforcement con-
tingency and the effects of reward and punishment, in 
humans, other factors such as intensity and quality of 
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2.3. Neuro-Fuzzy Controller

The model of Takagi-Sugeno-Kang (TSK) [30] is used 
here to develop the fuzzy controller. This model is char-
acterized by N rules:

Ri : If ( 1x  is 1iF ) and ( 2x  is 
2iF ) and … and ( nx   is inF  ) 

Then  ( )i ic g X=                                                           (5)

where  1,2,...,i N=   are the number of rules; jx (  1,2,...,j n= ) 

are the input variables; ijF  is the ith linguistic value, 
and ( )i ic g X= is the consequence of the ith rule, where 

: ngi →R R . The output of the TSK model is the weight-
ed average of each rule’s output.

Implementing the fuzzy system in the framework of a 
neural network would result in a six layer neuro-fuzzy 

network (Figure 3). This network is equivalent to a 2-in-
put and 1-output TSK controller with 4 rules. The first 
layer maps the input data into [-1, 1] interval. In the sec-
ond layer, the inputs` degree of membership in fuzzy 

sets is calculated, giving an output as ( )
ijF jxµ . In the third 

layer, each neuron, by using the product-operator, multi-
plies the incoming inputs and establishes the antecedent 
parts of the fuzzy rules, i.e., 

1 2 ...i F F F× × × . The fourth 

layer normalizes the firing strengths, leading to an out-

put as 
1

N

i i
i

u u
=
∑ . The fifth layer uses TSK defuzzifier rule 

of (5) and the final output of neuro-fuzzy network is the 
summation of the fifth layer outputs. The last layer acts 
as a defuzzifier to determine the final output according-
ly. For a 2-input 1-output TSK controller, the output is 
calculated as the following:

reinforcement and possession of stress or excitement 
are involved [26, 27].

In the last few years, a great attention has been devoted 
to develop a computational model for human emotional 
learning. Our model of emotional-based learning is in 
fact a cognitive restatement of reinforcement learning, 
firstly introduced in 1983 by Barto [28]. It includes a 
critic or supervisor that continuously compares the 
plant’s output with the desired target to produce a stress 
signal that modifies the controller. The main goal of the 
system is to minimize the critic`s stress (emotional) sig-
nal via updating and modifying the controller. 

The key difference between emotional learning and 
classic reinforcement learning is in the evaluating signal 
produced by the supervisor. In the classic reinforcement 
learning model, supervisor's signal, namely r, accepts 
binary values, i.e. r=+1 for total failure of the controller 
and r=0 if the controller meets the demands. However, 

in the modern approach critic`s signal is allowed to take 
real values between -1, +1; where -1 and +1 describe the 
boundaries of the total failure, and the closer the signal 
to zero, the better the performance of the controller [29]. 
This means that the system does not wait for total fail-
ure of the plant. Instead, at each sample time, it updates 
the controller variables to minimize the critic`s output 
signal which is interpreted as emotional or stress signal.

The emotional learning based controller consists of 
three main elements. The first one is a neuro-fuzzy con-
troller that receives the current state of the plant as an in-
put and issues the appropriate control signal. The critic 
agent assesses the behavior of the controller, criticizes it 
and provides the system with the stress signal. Finally, 
the learning element utilizes an optimization method 
to minimize the stress signal and modify the control-
ler variables. Figure 2 shows structure of the proposed 
emotional learning based controller.

 Saeed Behzadipour et al.  Emotional Learning Controller for a Robotic Laparoscopic Instrument

Figure 2. Structure of emotional learning based controller.
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where ia  ,  ib  and  ic  are the coefficients of the TSK 
rules that are tuned via emotional learning.

2.4. Emotional Critic

In our proposed method, the critic`s inputs are the 
plant`s output error and its first derivative. The critic`s 
output signal is the commensurate emotional signal          
( r ). We defined  as a linear combination of the out-

put signal error ( refe y y= − ) and its first derivative. 
refy  stands for the reference input, i.e. the desired pinch 

force in the tool-tissue interaction, and y  represents the 
actual output force. Therefore, the critic`s output is cal-
culated as: 

1 2r k e k e= +                                                                      (7)

where r is the output signal of the critic, 1k  and  2k  are 
positive constants. This formulation, in fact, leads to a 
proportional-derivative (PD) critic. For instance, if the 
error of the pinch force is high but decreasing (negative 
derivative), then the performance of the controller is ac-
ceptable and a better performance is expected in future. 
As another example, if the error is low and its derivative 
has a large positive value, the critic should disapprove this 
as an unsatisfactory performance of the controller. These 
examples show the fuzzy nature of the critic itself. 

The critic`s signals are used to continuously update the 
TSK controller output layer parameters. The aim of the 
control system is to minimize the sum of the squares of 
the emotional signals. Thus, we can describe the error 
function, E, as the following:

21
2

E r=
                                                                         (8)

This error function can be interpreted as the stress ap-
plied to the controller. The main goal of the emotional 
learning controller is to minimize the overall stress of 
the system.

2.5. Emotional Learning

As it was mentioned in the previous sections, the pur-
pose of learning is to minimize the stress signal via up-
dating the parameters of TSK controller. Here, we used 
the steepest decent method for adjusting the weights of 
the fifth layer of the controller:

Ew
w

η ∂
∆ = −

∂                                                                      (9)

where η  is the learning rate of the controller and w   
represents its tunable parameters ( ia , ib  and ic ). By 
applying the chain rule, we have:

E E r y u
w r y u w
∂ ∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂ ∂

                                                     (10)

The first term in the chain is obtained using (8):

E r
r

∂
=

∂
                                                                         (11)

Also y
u
∂
∂  is the Jacobin of the system, J  , which rep-

resents the system`s gradient, i.e. the long term variation 
of the plant output with respect to the control signal. 
Estimating J   with its sign would be sufficient and it 
can be simply found through a trial and error process. 
Therefore, using (11) and (10) along with (9), the adap-
tation rule of the tunable parameters is achieved as the 
following:

Figure 3. Sample neuro-fuzzy network equivalents with MISO fuzzy system with 2 inputs.
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 Because of the large variations in the magnitude of 
error and its derivative as the inputs of TSK control-
ler, the fuzzy system has five linguistic labels for each 
input, i.e., Negative (N), Small Negative (SN), Zero (Z), 
Small Positive (SP) and Positive (P). Thus, the neuro-
fuzzy network includes 25 =25  rules in its rule base. We 
used Gaussian membership functions for Z, SN and SP, 
and Sigmoidal membership functions for N and P, as 
the following:

2

2

( )( : , ) exp( )Gaussian
x lx lµ σ
σ
−

= −
                                  

 (14a)

1( : , )
1 exp( ( ))sgm x m n

m x n
µ =

+ − −                                  (14b)

where  , ,l m n  and σ  are the membership functions 
coefficients. As the values of these parameters change, 
the Gaussian and Sigmoidal functions vary accordingly, 
exhibiting various forms of membership functions on 
linguistic labels. 

Figure 5 illustrates the shape of the membership func-
tions of TSK controller. A linear combination of error 
and its first derivative, i.e. linear PD, was chosen as the 
critic of the control system. In fact, a major advantage 
of our control system, in comparison with other intel-
ligent controllers, is the insensibility of the critic to the 
exact values of its coefficients. We found the values of 
the critic coefficients by trial and error, in a way that the 
plant shows a reasonable and allowable response. These 

u rw rJ
w y

η ∂ ∂
∆ =

∂ ∂                                                            
 (12)                                                      

Hence, considering e  and e  as the neuro-fuzzy net-
work inputs, in accordance to (12), (7) and (6), the up-
date rules for a , b  and c are given as [15]: 
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=

= +

∑
                                             

  (13c)

2.6. Control System Architecture

The main objective of the force controller is to track 
a target pinch force, assumed to be both effective and 
safe, so that while the desired surgical function, e.g. su-

turing, dissecting, etc. is achieved, excessive harmful 
forces are avoided. Through tissue grasp, depending on 
the relative magnitude of applied forces, the tissue may 
slip, be damaged, or grasped successfully. When exter-
nal pull forces are high compared to the pinch force, the 
tissue slips out of the forceps, whereas when both pull 
and pinch forces are high, the tissue might be damaged. 
This means that during an auto grasp, while external 
forces are applied to the tissue, the instrument should 
exert a controlled force to ensure that neither the tissue 
will damage nor it would slip [4]. The architecture of the 
designed controller, using the emotional based learning 
technique is shown in Figure 4. The desired pinch force 
is given as the system`s input and the control system 
determines the error and its derivative as inputs of the 
neuro-fuzzy controller. In order to track the desired 
pinch force, the parameters of the controller are continu-
ously updated through emotional learning using (13a). 
The force interaction of the model with the soft tissue 
was modeled using two springs and dampers, attached 
perpendicularly to the instrument jaws. Using the data 
reported in the literature, the springs` stiffness and the 
damping coefficient were assumed to be 400 N m-1 and 
5 N sec m-1, respectively [31].
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Figure 4. Structure of the emotional learning based intelligent controller proposed for controlling the instrument’s pinch force.
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The main drawback of a linear PD critic arises from 
the fact that it might not be able to predict the nonlinear 
behavior of complex dynamics. The main solution is to 
use adaptive gains for the PD critic by means of a gain 
schedule [13]. Such a schedule can be achieved by an 
iterative trial and error process. However sometimes in 
practice, in systems such as ours, obtaining these gains 
might be very difficult. The reason is the unpredicted 
fluctuations in the magnitude of error and its derivative. 
In here, in order to enhance the controller`s performance 
and makes its response more accurate, we used adaptive 
learning rates. Firstly, we separated the learning rate of 
each input in (13a), which is responsible for tuning the 
parameters related to the system`s error. Then, we used 
(15) as the adaptation rule for tuning  s in (13a):

100 2rη = +                                                                    (15)

where η   is the learning rate for pinch force error and   
is the stress signal. Equation (15) was achieved in a trial 

and error procedure, to assign appropriate learning rates 
based on the magnitude of stress signal. In fact, using this 
method, we have given the critic the ability to act faster 
by choosing higher learning rates at the starting point, 
when the error is higher than normal. As the error be-
comes smaller and the learning element becomes weaker 
in tuning the controller parameters, the critic`s stress sig-
nal becomes inert. By assigning smaller learning rates, 
using (15), the performance of the learning element is 
enhanced and the controller accuracy in diminishing the 
error increases. In our study, the two other learning rates 
in (12b) and (12c) were kept constant at 0.01. 

2.7. Experimental Setup

This section describes the experimental setup that was 
used to evaluate the controller`s functionality, and com-
pares its performance with a well-tuned PID controller. 

coefficients were found in response to a step input signal 
in such a way that the error reaches zero in the fastest 
way without any overshoots. The final values obtained 

for  1k  and  2k  were 28 10−×  and 65 10−× , respectively. 
Since the system`s output increased with increasing the 
input, J was estimated to be 1+ .

Figure 5. Neuro-fuzzy network membership functions for (a) error (b) error derivative.
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Two small self-temperature-compensated strain gaug-
es with a gauge factor of 2.11 (BFLA-2-8, TML Co., 
Ltd., Tokyo, Japan) were used to obtain the force feed-
back. The strain gauges were attached to the proximal 
parts of the jaws. They were wired into a Wheatstone 
bridge circuit with 10 V excitation voltages. Adjustable 
potentiometers were used to calibrate the output voltag-
es. The output signal of the bridge was passed through a 
10Hz low pass filter and amplified 1000 times by a dy-
namic load cell amplifier (DN-AM100, DACELL Co., 
Ltd., South Korea). Furthermore, the amplified voltage 
was digitized using a Quanser USB data acquisition card 
(Q8-USB, Quanser Inc., Ltd., Canada) with the sam-
pling frequency set at 0.5 KHz. In order to calibrate the 
force sensors, the instrument`s jaw was held horizontal-
ly to act as a cantilever beam. A calibrated digital force 
gauge (FG-5005, Lutron Electronic Enterprise, Taipei, 
Taiwan) was mounted on a vertical test stand, with its 
tip placed vertically. The tip of the force gauge was low-
ered steadily, using the setup’s handle, so that a known 
force was applied perpendicular to the jaw. The external 
force was increased from zero to about 10N and then 
returned to zero and the outputs of the strain gauges, as 

well as the digital force gauge reading, were recorded. 
This data, along with a linear regression model, were 
used to obtain the relationship between the pinch force 
and the amplified output voltage of the bridge.

Figure 7 shows the architecture of the proposed force 
control scheme used in experiments. The strain gauge 
force feedback from the grasper jaw, i.e. the actual 
pinch force, and the desired pinch force were the con-
trol system`s inputs. The programming was done in 
Quanser hardware-in-the-loop environment which is 
supported by MATLAB.

3. Results

3.1. Simulation Results

In this section, the simulation results of the designed 
control system are presented. The simulation was per-
formed on the mathematical model of the instrument, 
described previously, using MATLAB. In the first sim-
ulation, the control system was used as a regulator to 
keep the pinch force constant at 0.5 N. This is an ap-

The top and front views of the experimental setup, 
including a robotic gripper, a laparoscopic instrument, 
and a synthetic soft material are shown in Figure 6. The 
robotic gripper was an active mechanism which could 
easily hold different laparoscopic instruments and actu-
ate them. The actuating system consisted of a servo DC 
motor, a gear head with spindle drive and an encoder. 
A graphite brushed 11WDC-motor (RE-max 24, Max-
on Motor AG., Switzerland) with a digital servo drive 
(EPOS2, Maxon Motor AG., Switzerland), were used in 
combination with a spindle drive with 29:1 ratio, 6mm 
diameter ball screw, and 2mm lead (GP 22 S, Maxon 

Motor AG., Switzerland). By means of a specially de-
signed coupling, any conventional laparoscopic instru-
ment could be connected to the actuation system. The 
coupling consisted of two parts, tube gripper that held 
the instruments tube still, and the insert gripper that con-
nected the instrument`s insert to the actuation system. 
By pushing a button, the instrument could be simply re-
leased from the insert gripper, as shown in Figure 6. The 
instrument was mounted on a fixed support, designed 
for the experiment. During the tests, a rubber block with 
a 3 MPa Young’s modulus was used as the soft tissue. 

Figure 6. Top and front views of the experimental setup.
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Figure 7. Architecture of the force control scheme of the instrument.

propriate pinch force for slip/damage free grasping of 
soft tissues, when there is no external pull or pinch force 
[4]. At first, the instrument started grasping the tissue 
with an insignificant constant force. After 0.5 sec, when 
the contact between jaws and tissue was established, 
the controller became initiated. The performance of the 
control system to reach the target force is illustrated 
in Figure 8. After a settling time of 2.7 sec, the target 
force was achieved by the controller. The disturbance 
in the pinch force before actuation of the controller was 
due to the impact between the instrument’s tip and the 
soft tissue. Figure 8 (b) illustrates the sequential trend 
of some chosen tuning parameters for the controller. As 
the time passed, these parameters were modified and the 
controller learned the appropriate rules to improve its 
performance.

In order to investigate the controller robustness against 
model uncertainties, we simulated an abrupt 20% de-
crease in the friction of the instrument’s joints, after 5 
sec from the start of the grasping procedure. Also, in two 
other simulations, the controller was tested for changes 
in the geometry of the instrument, when the jaws were 
15% larger and when the effective length of the tip was 
decreased by 20%. Figure 9 shows the response of the 
proposed controller to these variations. As the controller 
encountered the sudden change in the friction at 5 sec 
from the starting point, it adapted the parameters of the 
control rules and improved its performance gradually. 
The oscillating disturbance with a maximum value of 
0.73 N was damped after 0.48 sec. Also, replacing the 
instrument jaws had no major impact on the controller's 
performance.

Figure 8. Performance of the control system in simulation: 
(a) pinch force (b) sequential trend of the selected tuning pa-
rameters.
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Figure 10 shows the performance of the controller as a 
tracker. The desired pinch force was considered to have 
a second order polynomial profile, starting from 0.5 N 
and reaching 5 N in 5 seconds. This profile is consis-
tent with the clinical practice considering the fact that 
surgeons manipulate delicate organs with caution and 
avoid applying fast movements and exerting continuous 
pinch forces larger than 5N. At first, the tracking error of 
the controller was considerable. However, in less than 
0.1 seconds, the critic started modifying the controller 
parameters to decrease the error, and as soon as the con-
troller reclaimed itself the error went to zero. 

3.2. Experiments Results

The implementation of the proposed emotional learn-
ing controller for the force control of the robotic laparo-
scopic instrument is presented here. Experiments were 
performed to evaluate the controller`s functionality, and 

Figure 9. Performance of the control system in simulation 
after (a) 20% decrease in the joint friction after 5 seconds (b) 
15% enlargement of the instrument’s jaws.

Figure 10. Performance of the controller in tracking a target 
pinch force in simulation.
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in particular to compare its performance with a well-
tuned PID controller. 

In the first set of experiments, the proposed control sys-
tem was commanded to grasp the rubber band with a con-
stant force of 1.5 N. Figure 11 illustrates the controller`s 
performance in two situations with different initial set-
tings for the TSK’s coefficients. In the first experiment, 
the coefficients of the TSK controller were set randomly 
between 0 and 1. In the next experiment, we used the av-
erage values of these parameters, achieved through the 
first tryout, as the initial setting of the controller. As it can 
be seen, by using the trained controller, the performance 
of the controller was significantly enhanced. At the be-
ginning of the real surgery, the controller can be simply 
trained through one controlled tissue grasp.

In the next set of experiments, we evaluated the per-
formance of the designed controller in tracking a force 
trajectory. The desired trajectory was a sinusoidal force 
with 0.08 Hz frequency. As illustrated in Figure 12, 
except for the peak of the first cycle, the performance 
of the emotional controller was more satisfactory than 
that of the PID in tracking the target pinch force profile. 
In fact, the intelligent feature of our emotional control-
ler was well demonstrated in the trend of the resulting 
pinch force. The small deviation in the control action 
at the first peak was probably due to the adverse clear-
ances in the instrument`s joints; it became considerable 
when the direction of the velocity changed. Although 
the PID`s response to this unsought disturbance was 
more favorable for the first cycle, the emotional intelli-
gent controller tended to learn these sudden disruptions 
and provided improved responses in the next cycles. 
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Figure 11. Performance of the control system (in experi-
ment) to achieve a target constant pinch force (a) untrained 
controller (b) trained controller.

Figure 12. Performance of the controllers (in experiment) in 
tracking a sinusoidal pinch force (a) emotional controller (b) 
PID controller (c) tracking error.

4. Discussion

The main reason to develop a sophisticated controller 
was the nonlinearities involved in the dynamics of the 
instrument and the uncertainties caused by the changes 
in its geometrical and mechanical characteristics dur-
ing surgery. The designed controller included three el-
ements: a neuro-fuzzy controller, a critic agent, and a 
learning element. The critic and learning elements were 
emotion based, to handle the uncertainties of the system 
and to react to the output errors faster, before a complete 
failure occurs. The performance of the controller was 
evaluated in a number of simulation and experimental 
tests. In simulation tests, the controller was examined 
for changes in the instrument geometry and frictional 
behavior, and was found effective in adapting the pa-
rameters of the control rules and improving its perfor-
mance. The experimental results were also promising in 
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Controller Type PID Emotional Controller Trained Emotional Controller

MSE Index 0.0672 0.0297 0.0034

Table 3. MSE performance index for PID and emotional controller as regulators.

Controller Type PID Emotional Controller

MSE Index 0.1573 0.1194

Table 4. MSE performance index for PID and emotional controller in tracking a sinusoidal pinch force.

meeting the expectations. A settling time of 0.7 sec with 
3.1% overshoot was achieved, using the trained emo-
tional controller.  

In order to evaluate the performance of the designed 
intelligent control system in more detail, we compared 
the results of the controller with those of a PID that was 
well-tuned using Ziegler–Nichols tuning method. The 
comparison was performed quantitatively, based on the 

mean square of error (MSE) index. Values of the MSE 
for the PID and the designed emotional control system 
in trained and untrained conditions are given in Table 
3. In both cases, the emotional controller exhibited an 
enhanced performance in comparison with the PID. In 
particular, the trained emotional controller provided 
a reduction of 94% in the mean squared error (MSE) 
compared to the PID.

Table 4 shows the MSE index of the PID and the de-
signed emotional controller in tracking a sinusoidal 
pinch force calculated in a 40 second interval. Similarly, 

the emotional controller had an enhanced performance 
compared to a PID in tracking a sinusoidal trajectory, by 
providing a 24% lower MSE.

The sequential trends of some of the tuning parameters 
of the controller are shown in Figure 13. Some param-
eters underwent constant changes during the experiment 
while others remained unaffected in the initial period 
of the test. The untouched parameters (such as 19b  and 

16c ) were coefficients of non-active rules in the initial 
period. As time passed and the controller faced new dis-
turbances, new rules became identified, leading to sud-
den changes in the frozen parameters. Consequently, it 
could subtle the disturbances and resulted in lower er-
rors compared to the PID in average.

Figure 13. Sequential trend of the selected tuning param-
eters (in experiment) while tracking a sinusoidal pinch force.

5. Conclusions

An intelligent controller based on emotional learning 
concept was developed for force control in robotic grasp-
ing of tissue in surgery. It was implemented on a robotic 
grasper which is made for a tele-surgery robotic system. 
It was shown by simulations and experiments that the ap-
plication of such control scheme is more effective com-
pared to a conventional PID controller. The main reason 
may be in the high variations of kinematics and dynamics 
characteristics of the plant during the course of surgery.

The tests were designed to evaluate the performance 
of the controller using MSE index in maintaining a con-
stant grasp force (as a regulator) and in tracking a de-
sired pinch force. The tests were performed on a phan-
tom test from synthetic materials.

The proposed controller showed a significant improve-
ment while performing as a regulator after the training 
is complete. In tracking control, the improvement was 
considerable but not as significant.  
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