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Abstract

Purpose: Making a decision based on available sensory information is called “Perceptual Decision-Making”.
Since the uncertainty and difficulty in individuals' perceptual decision-making can create many adverse effects in
their personal and social lives, research in this field seems necessary to achieve a more comprehensive
understanding of the brain during perceptual decision-making. Despite numerous studies in this field, no robust
system can objectively recognize people's perceptual decisions. This study investigates healthy individuals'
Electroencephalogram (EEG) signals during a perceptual decision-making task to fill this research gap.

Materials and Methods: The research employs an online EEG dataset based on visual stimuli, including faces
and cars, obtained from 16 participants. After preprocessing the EEG signals, 26 features were extracted from the
signals to explore the impact of coherence and spatial prioritization of stimulus on the decision-making process
using Friedman’s non-parametric statistical analysis. Then, a Fuzzy Radial Basis Function (FRBF) network with
the extracted features from TP9 and TP10 channels as input was utilized to classify the data based on the
uncertainty of the processes in the brain.

Results: The statistical analysis revealed that differences in the coherence of the stimulus representations have a
significant (P-value < 0.05) greater impact on an individual's decision-making process than spatial prioritization.
Also, the FRBF network classifier achieved an accuracy of 90.3% in classifying the test data as either a "Face"
or "Car.

Conclusion: The classification accuracy results showed that the proposed method is an effective procedure for
recognizing human decisions.

Keywords: Perceptual Decisions-Making; Electroencephalogram Signals; Statistical Analysis; Fuzzy Radial
Basis Function.
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Perceptual Decision-Making Recognition

1. Introduction

Perceptual decision-making refers to selecting a
choice from a list of options based on sensory
information. The brain interprets this sensory
information into a behavior, and the individual
ultimately executes the decision [1-3]. Perceptual
decision-making has a prominent place in personal
relationships in addition to conscious and cognitive
decisions made by individuals. Decisions should be
made by considering all relevant evidence [2, 4].
Complex or uncertain decisions may have irreversible
consequences for an individual's personal and social
life. Studies on Electroencephalography (EEG) have
shown that an increase in the activity of the centro-
parietal electrodes has been linked to the decision-
making process [5].

Heekeren et al. [6] describe a general process in the
human brain that occurs during perceptual decision-
making. Based on the single-cell recordings, the
output of different groups of lower-level and
selectively tuned sensory neurons can indicate a
general mechanism in which higher-level brain
regions make perceptual decisions. In this research,
the existence of a mechanism in the human brain
similar to monkey brains (previous studies) and active
brain areas in situations related to more complex
decision-making was investigated using fMRI data
during a task in which the participant must determine
if the displayed stimulus is a human or home image.
According to the findings, there are different neurons
in brain regions, each of which responds
independently to the house and face stimuli, and the
individual's decision is the product of the signal of
these two groups of neurons. If more neurons signal
for the house stimulus, the brain finally identifies it as
the house and not the face and vice versa. According
to research in [ 7], the N170 event-related potential can
be a powerful indicator for identifying and
distinguishing visual stimulus images with a human
face from other images. This is because N170 event-
related potential has been observed in visual tasks in
which one of the stimuli is a human face image. It is
also believed that N170 is the product of the brain's
early decoding in dealing with the picture of the
human face. The N170 component has the greatest
amplitude in the lower occipital lobes and typically
occurs between 130 and 200 milliseconds [7]. This
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information becomes helpful in this study as almost
half of the dataset consists of human face photos.

So far, neuroimaging methods such as functional

Magnetic  Resonance  Imaging (fMRI) and
electroencephalography have been used to study brain
activity during decision-making [1, 8].

Electroencephalography is an affordable, non-
invasive, and safe modality for brain research. EEG
signals reveal physiological aspects of the brain that
structural imaging techniques may not reveal. Owing
to their high temporal resolution, they can also
represent rapid neuronal changes and events in the
millisecond scale [9]. Thus, besides being a disease
[10] disorder [11] detection or brain-computer
communication [ 12] tool, EEG is often used to explain
a variety of brain states, including mental load,
arousal, and valence, all of which influence decision-
making explicitly or implicitly [1, 13]. Philiastides et
al. [14, 15] have used EEG analysis and fMRI to
obtain non-invasive neural measures of perceptual
decision-making.  According to their claim, the
decision-making process requires at least two general
stages of neural processing. The first stage involves
presenting evidence to primary sensory areas (for
example, a visual experiment involves presenting a
stimulus that the eye can perceive). The next step is to
collect evidence relevant to the decision to bring it to
the decision threshold. The results of [ 14] revealed the
presence of two distinguishing components, the first
of which was consistent with the well-known
component N170, which is often seen in response to
face image stimuli. The second component, more
consistent with the research's psychological function,
appears at least 130 milliseconds later than the
previous component. Their findings indicate that the
less evidence there is in the cognitive task, the later the
presence of the second component (rather than the first
component) occurs. They, in their later research [15],
demonstrated that the sequence of events related to
perceptual widely
throughout the brain neural network, with the lateral
occipital complex being one of the most important

decision-making  extends

since it is thought to be the first region in the brain
where decision-making occurs. Yajing et al. [2]
proposed the Discriminative Spatial Network Pattern
(DSNP) model, which is an EEG-based computational
intelligence structure capable of predicting participant
decision-making responses. DSNP features were
extracted from the measured brain network during a
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single-trial experiment and used to train a Linear
Discriminate Analysis classifier (LDA) to predict
trial-by-trial responses. Brain signals were recorded
from two separate and independent groups using two
different EEG systems to evaluate the proposed DSNP
method. The trial-by-trial predictors performed
efficiently, with an accuracy of 0.88+0.09 and
0.90+0.10 for the first and second datasets,
respectively. Imani ef al. [16] used a hidden semi-
Markov model to characterize the decision-making
building blocks, assigning each sample to one stage
and determining the transition timing between them.
They utilized an online available EEG-fMRI dataset,
in which participants classified items in a 2x2 factorial
design task with internal user state (spatial
prioritization) and external world state (stimulus
coherency) factors. The findings revealed that the
coherency factor, rather than spatial prioritization,
influences evidence accumulation for decision-
making.

The wuncertainty and difficulty in individuals'
perceptual decision-making can adversely affect their
personal and social lives. Therefore, research in this
field seems necessary to understand the brain better
during perceptual decision-making. Researchers hope
to develop a tool for predicting such human decisions
by better understanding the perceptual decision-
making process. Although several studies have been
conducted in this area, the mechanism of the brain
during perceptual decision-making is not yet clear to
researchers. Furthermore, previous studies have
shown that using neural networks to identify different
classes based on EEG signal features can outperform
conventional classifiers. To fill this research gap, this
study aims to explore EEG signals in healthy
individuals while performing a perceptual decision-
making task using a Fuzzy Radial Basis Function
(FRBF) network. The primary hypothesis of this study
is that the fuzzy clustering in this classifier model is
similar to what occurs in the brain. Since there is no
binary decision-making mode in the brain and there is
uncertainty in which each option has a special weight
in decision-making and finally, the option that passes
a threshold is selected, it has been attempted in this
research to incorporate this uncertainty into the final
model so that the performance of the perceptual
decision recognition system will improve. All in all,
this study tends to investigate the separability of two
different perceptual decisions made over a visual
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stimulus, focusing only on the EEG signal. The
findings of this research will potentially aid in gaining
a better understanding of the neural basis of human
perceptual decision-making. Moreover, the results of
the proposed classification will demonstrate the
capability and capacity of such approaches for
integration with Brain-Computer Interface (BCI)
systems.

2. Materials and Methods

2.1. EEG Signal

A 62-channel EEG signal from 16 participants was
used in this research [17], with a 5 kHz sampling
frequency. It is noteworthy that sample size
determination was based on the available data, rather
than through conventional sample size calculation
methods. Electrocardiogram (ECG) and
Electrooculogram (EOG) signals related to the
electrical activity of the heart and eyes, respectively,
were recorded simultaneously on two different
channels. The signal also included indicators for
different events. Behavioral, EEG, and fMRI data
were collected from participants performing visual
perceptual decision-making tasks. The recorded EEG
signals were divided into two parts of recorded EEG
inside and outside the fMRI machine. The data
recorded outside the fMRI device was used in this
research. Therefore, the EEG signals weren't affected
by any MR artifacts. The fMRI data was not used in
this research, as most BCI machine learning
techniques rely on EEG rather than MRI data.
Furthermore, from the computational perspective, a
machine learning model based on EEG 1-D signals is
more efficient than a model using 2-D MRI data. This
is because the input data's dimensionality affects the
machine learning models and neural networks'
complexity and performance. Higher dimensions
require more layers, neurons, and parameters, which
increase the computational cost and reduce the
learning speed of the model. Additionally, EEG data
is more affordable and easier to obtain than MRI data,
which facilitates this study's future extension. The
presentation of stimulation in this task is visual, and
the participants perform the task of perceptual
decision-making in a space with 2x2 factors, which
include the coherence of the stimuli ("high" and "low"
levels) and spatial prioritization ("Yes" and "No"
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states). When perceptual decisions are tested in the
lab, human participants are typically asked to
categorize a particular object stimulus, like an image
of a face or a car, into one of two categories [4]. This
study's initial stimulus set included 18 car and 18 face
pictures. The number of frontal, left lateral, and right
lateral views in the two original picture sets was
matched. The participant was shown a “Face” or “Car”
stimulus with modified spatial phase coherence. As
depicted in Figure 1, each experiment began with an
arrow in the center of the image, displayed for 1
second. The arrow had three possible states: 1)
pointing to the right, 2) pointing to the left, and 3)
pointing to both sides. The first two states indicated
the location of the stimulus in the next step, while the
third state meant that the stimulus would appear
randomly on either the right or left side. The
participant was instructed to answer quickly and
accurately without time constraints.

Spatial Prioritization  category

High

Coherence

Low

Figure 1. An overview of the study design depicted in
[17]. According to this figure, the stimuli presented to
individuals in this research included images of "human
faces" and "cars," which were classified into four
groups based on the two features of coherence (low,
high) and spatial prioritization (attention: Yes, No). In
the figures with one arrow pointing to the right or left,
the person knew where the stimulus would appear in the
next step. Otherwise, the stimulus would be randomly
displayed on one of the right or left sides

2.2. Preprocessing and Grand Average ERP
Calculation

In this study, the raw EEG signals from [17] were
used. EEG signal recordings are inherently susceptible
to noise and artifacts, meaning that the raw data
collected from participants contains not only brain
activity signals but also noise and artifacts from
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physiological (e.g., EOG) and non-physiological
sources (e.g., power line interference). To address
these issues, we implemented several preprocessing
steps: first, we downsampled the signals to 500 Hz to
minimize computational load while maintaining
necessary frequency resolution; next, we applied
average referencing to reduce the impact of potential
errors in the reference channel. Baseline correction
was performed by subtracting the mean value of each
channel from its samples, followed by filtering using
a 5™-order elliptic high-pass filter (0.5 Hz cutoff) and
a 6"-order elliptic notch filter (50 Hz) implemented
with the MATLAB "filtfilt" function to avoid phase
distortion.  Independent = Component  Analysis
(MULTICOMBI algorithm [18]) was conducted to
separate and remove components associated with
ocular and cardiac artifacts [19], with components
correlated with EOG and ECG channels above a 60%
threshold being identified and removed. Signals were
then segmented into epochs centered around stimulus
presentations, with automatic rejection of epochs
exceeding 1000 puV or having a standard deviation
greater than five times the channel's standard
deviation. Finally, only epochs corresponding to
correct participant responses were retained for further
analysis, ensuring the validity of features used in
These
preprocessing steps ensured that the final signals were
adequately cleaned and ready for further analysis.
After that, all individuals' Event-Related Potentials
(ERPs) in all stimuli were calculated, and their Grand
Averages (GA) in various cases were analyzed. It
should be mentioned that only 12 channels of O1, 02,
PO3, PO4, PO7, POS, T7, T8, TP9, TP10, P7, and P8
based on the [7, 17] were considered in the processing

subsequent machine learning operations.

steps to reduce the computational load.
2.3.  Feature Extraction

The perceptual decision-making task in this
research involved human face images. Previous
studies have demonstrated that the event-related
potential N170 is prominent in visual tasks with
human face stimuli [7]. Since the N170 component
(120-300 ms) was desired in this study, features were
extracted from the signal by considering this
component's time interval of occurrence. These
features included temporal features such as Latency,
Amplitude, Latency/Amplitude ratio, Absolute
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Amplitude, Absolute Latency/Amplitude ratio,
Positive Area, Negative Area, Absolute Negative
Area, Total Area, Absolute Total Area, Total Absolute
Area, Average Absolute Signal Slope, Peak-to-Peak
(spatial Peak-to-Peak), Peak-to-Peak time window,
Peak-to-Peak Slope, Zero Crossing, Zero Crossing
Density, Slope Sign Alterations [20] as well as
Absolute frequency power of the signal in Delta,
Theta, Alpha, Betta and Gamma frequency bands,
Spectral Entropy, and Katz Fractal Dimension [21]. A
brief explanation per feature is provided in Table 1.

Please refer to [20] for the detailed properties of
each feature.

2.4.  Statistical Analysis

After extracting these 26 features from 12 selected
channels, the statistical differences between the
groups under study were examined using existing
methods. First, the histogram of each group's data was
plotted and analyzed. These plots revealed that the
data did not follow a normal distribution. To ensure
this, the Kolmogorov-Smirnov test was used to
determine the data distribution. In this statistical test,
the null hypothesis states that the data distribution
follows the normal distribution. If the test result rejects
the null hypothesis, then it can be said that the data do
not follow the normal distribution, and non-parametric
tests must be used to compare different groups. Given
the non-parametric distribution of the continuously
matched data with more than two groups to compare,
the Friedman statistical test followed by a Sidak post-
hoc test was used to analyze the presence of significant
differences in the study groups based on the data
distribution  and

characteristics  (non-normal

dependence in the groups).
2.5. Classification

A Support Vector Machine (SVM) is a machine-
learning algorithm for classification tasks [22]. The
main objective of the SVM classifier is to find the best
decision boundary (or hyperplane) that can separate
two classes of data with maximum margin. SVMs are
effective for datasets with high dimensionality and can
also be used for multi-class classification problems.
However, the accuracy of SVM classification is
mainly for data that can be linearly separated. Another
thing that has made this classifier work well,
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especially for separating the medical data of two
classes, is its robustness against outlier data. In
general, the effectiveness of this classifier in different
tasks depends on the appropriate selection of kernel
functions and their parameters. In this study, SVM
classification was used as the first classification
approach, but ended up with a poor result.
Consequently, a more complex alternative, the Fuzzy
Radial Basis Function (FRBF) [22], is the final
solution.

FRBF network is an artificial neural network that
combines the RBF network with a fuzzy c-means
algorithm. The RBF network produces a linear
combination of radial basis functions for input
parameters and neurons as its output. These networks
can be used for time series forecasting, classification,
and system control. RBF networks usually have three
layers: an input layer, a hidden layer with a nonlinear
RBF activation function, and an output layer. The
network's input is a real-number vector, and its output
is a scalar that is a nonlinear function of the input. In
this research, for example, the input vector is the
features extracted from the previously mentioned
channels, and the output is a scalar number
representing the final label of the data. A two-step
algorithm is typically used to train RBF networks. The
vectors of the centers of the radial basis functions in
the hidden layer are chosen in the first step. This step
in Fuzzy RBF networks uses the Fuzzy C-Mean
(FCM) method. Then, in the second training step, a
linear model for hidden layer outputs is fitted
according to the objective function. Based on the
physiological evidence [23], the brain does not make
binary decisions but rather deals with uncertainty and
assigns different weights to each option. The option
that exceeds a threshold is chosen. This research aims
to incorporate this uncertainty into the final model to
enhance the perceptual decision recognition system's
performance. For this purpose, the fuzzy method is
applied instead of conventional clustering methods
such as K-Means to assign a membership value for
each point. This means that, unlike traditional methods
that classify each point as either belonging or not
belonging to a cluster, the fuzzy method defines a
number between 0 and 1 as the degree of membership
of each data point to each cluster individually. This
results in more reliable final centers.
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Table 1. Eighteen morphological features brief explanation

Feature Feature
. . Formula . . Formula
Description Description
Amplitude
The maximum signal
value. In the formula, smax{max Total absolute area Ap|n| = Ap + |4,

S(t) is the value of
the signal at the time
point t.

Latency
The time at which the
maximum signal
value appears.

tt/st) = Smax smax

Absolute total area

Latency/amplitude
ratio

LAR = tsmax/Smax

Average absolute
signal slope

ATAR = |Ap|
1000ms—t 1

> Cls+ D - sl
£=300ms T

Absolute amplitude

AAMP =[S,

Peak-to-peak

pp = max{s(t)} — min {s(t)}

Absolute
latency/amplitude
ratio

ALAR = [tsmax/Smax|

Peak-to-peak time
window

tpp = tSMiNgyay

Positive area 1000ms ) pp
The sum of the » = Z 0.5(s(t)+ |S(t)|) Peak-to-peak slope Spp =
positive signal values t=300ms pp
Zero crossings
Negative area 1000/ms Zero crossing per the tsmaxX
The sum of the A = ZO.S(S(t) + |S(t)|) number of times t that Nge Z S5
negative signal values 1=300ms S(t) = 0, in the peak- t=tsmin
to-peak time window.
Zero crossings
. density n
Absolute negative ANAR = |A,| Zero crossing per dzc = =
area time unit, in the peak- pp
to-peak time window.
Katz Fractal
Dimension
In the formula, L is
Total area Ay = A, + A, the sum and d’ is the D= logyo(L)
average Euclidean logqo(d)

distance of the
samples from each

Absolute frequency
power
for Delta, Theta,
Alpha, Betta, and
Gamma frequency
bands. In the formula,
the S(f) is the signal
value at the frequency

f.

H= — Z P(m)log, P(m)

Slop sign alterations

The number of slope

sign alterations of two

adjacent points of the
ERP signal

other.
Z NG Spectral Entropy
1000ms—t
0.5 s(t—1)—s(t)
Ngg = . ——
t=300ms+t |S(t T) S(t)l

s(t+1)—5s(t)

st +17) = s(®)]
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3. Results

3.1. Grand Average ERPs

After preprocessing, Grand Average ERPs were
calculated and plotted in the 12 channels mentioned
above. Grand Average ERPs are the ERPs averaged
over a specific channel, and plotting them is a helpful
approach for monitoring the variability in ERPs across
subjects. These ERPs were calculated and plotted
separately for four different states of coherence (low,
high) and spatial prioritization (attention; Yes, No) to
represent "Face" and "Car" stimuli. Figure 2 shows the
Grand Average ERP of the O2 channel for "Face" (part
a) and "Car" (part b) stimuli. The blue lines in each
plot reflect the "high coherence" with the "spatial
priority" state, while the blue dashed lines represent
the "high coherence" without the "spatial priority"
state. Coherence refers to the noise factor utilized in
the function authors in [16] used to add some noise to
their pictures. A high coherence means a low noise
factor or, equivalently, a high Signal-to-Noise-Ratio
(SNR), whereas a low coherence means a low SNR.
The red lines reflect the state of "low coherence" with
the "spatial priority," while the red dashed lines
represent the state of "low coherence" without the
"spatial priority". One of the most important
components related to ERP analysis is the P300
component. The P300 component is a large positive
peak that usually appears around 300 msec after the
stimulus onset but can appear up to 1000 msec later
[24]. Study [25] has shown that the increment of the
P300 component amplitude is associated with post-
stimulus processes, such as decision-making.
According to Figure 2, the P300 component is
observed in all cases with a marginally greater
amplitude for "Face" viewing than "Car" viewing. The
general waveform of both the "Face" and "Car"
groups, on the other hand, follows the same pattern in
such a way that in both ERP waveforms (part (a) and
(b) of Figure 2), the amplitude of the waveform first
increases and reaches a maximum value and then
decreases again over time.

According to the Grand Average ERPs, the P300
component is observed in all cases with a marginally
greater amplitude for "Face" viewing than "Car"
viewing. The general waveform of both the "Face" and
"Car" groups, on the other hand, follows the same
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pattern in such a way that in both ERP waveforms
(part (a) and (b) of Figure 2), the amplitude of the
waveform first increases and reaches a maximum
value and then decreases again over time. The N170
component can also be seen in the waveforms at 130-
200 millisecond intervals. This time interval was
chosen for feature extraction because of the
observation of the N170 component in Grand average
ERPs and previous research [7] indicating that this
component is typically evoked in response to facial
image stimulation. It is worth noting that since the
difference in N170 component amplitude between the
two classes was more pronounced in the TP9 and
TP10 channels, only the features derived from these
two channels were used for classification. The grand
average ERP for TP9 (part a) and TP10 (part b) is
depicted in Figure 3.

3.2.  Statistical Analysis

The examination of each group’s data distribution
by histogram and Kolmogorov-Smirnov test (P-Value
<0.05) revealed that the data did not follow the normal
distribution. The results of the Friedman non-
parametric test suggest that only three features, Total
Area, Zero Crossing, and Slope Sign Alterations, did
not show a statistically significant difference between
the two classes.

As mentioned before, the images shown to
individuals in this study were divided into four
categories based on the two features of coherence
(low, high) and spatial prioritization (attention; Yes,
No). Therefore, the EEG signals of individuals were
also categorized into these four related groups. To
better understand the differences in brain activity
affected by these four types of stimuli, the Sidak post
hoc statistical test was utilized to analyze significant
differences found by the Friedman test. According to
the results, high coherence with spatial prioritization
and low coherence without spatial prioritization
showed the highest and lowest statistical differences,
respectively. In other words, it is inferred from the
results that regardless of the attention factor, the test
results show significance based on the coherence of
the stimulus. As a result, it can be concluded that the
variation in the coherence of the stimulus
representations significantly impacts the individual's
brain mechanism during decision-making.
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Figure 3. Grand Average ERP of the O2 channel for (a) "Face" viewing and (b) "Car" viewing; The colors
blue and red represent High and Low coherence, respectively, while the line (dash) indicates with (without)
the spatial priority. According to Figure 2, the P300 component is observed in all cases with a marginally
greater amplitude for "Face" viewing than "Car" viewing. The general waveform of both the "Face" and "Car"
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Figure 2. The grand average ERP of channels (a) TP10 and (b) TP9 for the face (Red) vs car (Blue) stimuli

3.3. Classification

Before training the RBF neural network, an SVM
with MATLAB’s hyperparameter optimization was
conducted and validated with the 10-fold cross-
validation approach. After fine-tuning, the best model
resulted in a test accuracy of 56.9% for the channels
TP9 and TP10. The SVM method was dropped
because of poor performance. As the computational
cost of the fuzzy radial basis function classification is
high, training the radial basis function neural network
with FCM was performed with only features extracted
from two channels, TP9 and TP10. Given that only
three features out of 26 showed statistical
insignificance, in addition to the large number of data
points compared to the number of features, we utilized
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all 26 features for the classification because the
computational cost after feature reduction was
negligible. The network's input layer is 26-
dimensional data from two channels, the hidden layer
is a single layer with 520 neurons (equal to the number
of FCM clusters), and the output layer is the data label.
We conducted a grid search to find the best parameters
for the model. It should be noted that the Fuzzy C-
means weighting exponent was set to 2.

In this research, the FRBF network was used for
classification. In the FRBF classifier, the number of
neurons in the network's hidden layer and, as a result,
the number of parameters used is large. Also, the
classifier training process includes two stages, leading
to a high computational cost for the FRBF classifier.
Therefore, unlike the SVM classifier, in the FRBF
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classifier, the hold-out method was performed once to
evaluate the classifier so that 70% of the data was used
for training and 30% for testing. It is noteworthy that
these 30% and 70% of the data were chosen randomly,
but it was considered that both groups
(training/testing) should contain an equal ratio of each
of the two classes (face/car). The classification results
are shown in the confusion matrix in Figure 4.

The label “0” was used for the face class and “1”
for the car class. Figure 4 shows no face picture has
been misclassified as a car, whereas a few cars
(16.3%) are misclassified as face pictures. Our
explanation for this observation is that given the
balanced nature of the dataset, the strong N170
occurring in the participant’s signal after seeing the
face picture is such a dominant ERP that makes it
almost impossible for the model to misclassify face
pictures. In contrast, some trials of the car pictures
possibly have an almost notable N170 compared to
others, leading to their misclassification. Finally, the
training accuracy was 92.7%, while the test accuracy
was 90.3%. Table 2 shows the results of FRBF
network classification for the test data set. According
to this table, none of the "Face" samples were
mislabeled as "car," while only 9.7% of the "Car"
samples were mislabeled as "face.

Table 2. Results obtained from FRBF network
classification for classifying "Face” stimulus

Accuracyr 90.3%
Precisiong 80.6%
Sensitivityr 100%
F1-Scorer 89.2%
Confusion Matrix for Radial Basis Function
2088 0 0%
9 403% 0.0% 0.0
13
k!
D 504 2592
3 9.7% 50.0%
3
o
806 100 90.3%
19.4¢ 0.0% 9.7%
|
Q N

Target Class

Figure 4. Confusion matrix resulting from the
classification using the RBF neural network

195

4. Discussion

In this study, the brain signals of 16 healthy people
were analyzed when performing a perceptual decision-
making task to differentiate face images from car
images. For this purpose, steps such as preprocessing,
investigation of event-related potentials, feature
extraction, statistical analysis of feature space, and
classification were performed.

4.1. Major Findings

The results of Event-Related Potentials revealed
that the P300 component was evident in all of the cases
under consideration. Previous research [3] has also
revealed the presence of the P300 component in the
brain signal during decision-making. According to
[26], a higher P300 amplitude demonstrates more
confidence in decision-making, whereas a longer P300
latency implies lower attentiveness. Likewise, [27]
showed how the P300 amplitude could represent
information processing at a preliminary decision-
making stage.

The results also showed that the potentials for
"Face" observation have a higher amplitude than those
for "Car." On the other hand, the general waveform of
both "Face” and “Car" stimuli follows the same
pattern. The N170 component can also be detected in
the waveforms at 130- to 200-millisecond intervals.
When observing the facial stimulus, this component
has a greater amplitude in the lower occipital regions
than the car, consistent with previous research [7] on
the relationship between the N170 component and
face processing. Based on this, the period of the N170
component activation was used to extract 18 temporal
features (out of 26 features) in the following step. In
addition, two TP9 and TP10 channels were chosen for
feature extraction in the classification process.

Although
excluded in the preprocessing phase and were not
considered in the processing steps, in the end, to have
a deeper look at the issue, ERPs related to incorrect
answers versus ERPs related to correct answers were
also examined. Figure 5 shows the Grand Average
ERP of the O2 channel for "correct" answers versus
“incorrect” answers. In this case, the amplitude of the
P300 component in the Grand Average of event-
related potentials in incorrect responses is greater than

incorrectly answered epochs were
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in correct responses. This can be due to the person's
confidence in selecting the correct answer. For
example, it can be presumed that when a person gives
an incorrect answer, they have less confidence in their
answer. Therefore, their focus is more involved so that
they can use the visual evidence they receive from the
stimuli to get the two options to the decision threshold
and make the final decision. However, this is not in
line with the finding in [26] that a higher P300
amplitude indicates more confidence in decision-
making. This case has been investigated in a different
study [28] using two perceptual decision-making
modes with difficult and easy levels. Their findings
showed incorrect decisions elicited a larger P300
amplitude in the easy group. In contrast, there was no
difference in the P300 amplitude between correct and
incorrect decisions in the difficult group. Their
findings thus corroborate ours in the simple case.

According to the statistical analysis, the comparison
between high coherence with spatial prioritization
state and low coherence without spatial prioritization
state had the largest number of statistical differences,
and the comparison between high coherence without
spatial prioritization state and low coherence without
spatial prioritization state had the lowest number of
statistical differences. As a result, it can be inferred
that differences in stimulus representation coherence
have a more significant effect on an individual's brain
mechanism during decision-making. This finding is in
line with the findings of [16], which found that the
coherency factor would have a better relationship with
the stage of evidence accumulation in the decision-
making process rather than the prioritization factor.

Correct
Incorrect

Amplitude
(in micro volts)

-200 0 200 400 600 800 1000
Time
(in ms)

Figure 5. Grand Average ERP of the O, channel for
"correct" answers versus “incorrect” answers
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This research employed a Fuzzy Radial Basis
Function (FRBF) network as the classifier. The
primary assumption behind this selection is that the
fuzzy clustering in this classifier model resembles that
can be observed in the brain. To improve the
performance of the perceptual decision recognition
system, it has been attempted in this research to
include uncertainty in the final model since there is no
binary decision-making mode in the brain, and there is
uncertainty in which each option has a particular
weight in decision-making and ultimately the choice
that passes a threshold is selected.

Until now, various researchers have investigated
perceptual decision-making in humans based on EEG
signals. In a study, Pham et al. [29] produced a
framework for processing EEG data to determine the
narrow frequency bands that influence the decision-
making process on the same data set. They achieved
an accuracy of 66.18% by using the SVM classifier. In
another study, Yajing et al. [2] proposed the
Discriminative Spatial Network Pattern (DSNP)
model to predict participant decision-making
responses. The Linear Discriminate Analysis (LDA)
classifier results on the used EEG signals from two
separate and independent groups indicated an
accuracy rate of 0.8810.09 and 0.90+0.10 for the first
and second datasets, respectively. The classification
accuracy results of the present study (90.3%) showed
that the proposed method, which includes feature
extraction, channel selection, and FRBF network, is an
effective method for recognizing human decisions
compared to other state-of-the-art studies. However,
the comparison of methods with different datasets may
not be fair due to the difference in the nature of the
data.

As a practical use of the proposed methodology,
individual decision recognition can be applied to smart
cars and Brain-Computer Interface (BCI) systems.
Designing more reliable and accurate decision
recognition systems for these applications can
enhance the safety, efficiency, and convenience of

human-vehicle interaction.
4.2, Limitations

One of the limitations we dealt with working on this
dataset was the small number of available classes.
Including only two classes of car and face images,
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testing the proposed structure for face images versus
more classes using this dataset is impossible.
Moreover, there is a low diversity and variability in
the image dataset shown to the participants. The
dataset does not cover factors like color and the effect
of different backgrounds.

4.3. Future Work

We suggest testing the effect of fusing MRI data
with the existing EEG data or using MRI data with
image processing techniques for classification to
compare the results with our study. Moreover,
designing a new test comprising more classes covering
more aspects like color and background is desirable.

5. Conclusion

Humans sometimes face situations where they must
choose between multiple choices provided by sensory
information. Uncertainty or disruption in decision-
making can lead to serious problems in people's
personal and social lives. In this research, the brain
signals of healthy individuals while performing a
perceptual decision-making task were studied. The
results show that the coherency factor had a greater
effect on the brain's decision-making process than
spatial prioritization. Moreover, the proposed method
has a 90.3% accuracy in recognizing a person's
decision in a two-class scenario. This study's findings
can enhance our understanding of how humans make
perceptual decisions in response to visual stimuli,
using brain signals and a predictive model.
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