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Abstract 

Purpose: Making a decision based on available sensory information is called “Perceptual Decision-Making”. 

Since the uncertainty and difficulty in individuals' perceptual decision-making can create many adverse effects in 

their personal and social lives, research in this field seems necessary to achieve a more comprehensive 

understanding of the brain during perceptual decision-making. Despite numerous studies in this field, no robust 

system can objectively recognize people's perceptual decisions. This study investigates healthy individuals' 

Electroencephalogram (EEG) signals during a perceptual decision-making task to fill this research gap. 

Materials and Methods: The research employs an online EEG dataset based on visual stimuli, including faces 

and cars, obtained from 16 participants. After preprocessing the EEG signals, 26 features were extracted from the 

signals to explore the impact of coherence and spatial prioritization of stimulus on the decision-making process 

using Friedman’s non-parametric statistical analysis. Then, a Fuzzy Radial Basis Function (FRBF) network with 

the extracted features from TP9 and TP10 channels as input was utilized to classify the data based on the 

uncertainty of the processes in the brain. 

Results: The statistical analysis revealed that differences in the coherence of the stimulus representations have a 

significant (P-value < 0.05) greater impact on an individual's decision-making process than spatial prioritization. 

Also, the FRBF network classifier achieved an accuracy of 90.3% in classifying the test data as either a "Face" 

or "Car. 

Conclusion: The classification accuracy results showed that the proposed method is an effective procedure for 

recognizing human decisions. 

Keywords: Perceptual Decisions-Making; Electroencephalogram Signals; Statistical Analysis; Fuzzy Radial 

Basis Function. 
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1. Introduction  

Perceptual decision-making refers to selecting a 

choice from a list of options based on sensory 

information. The brain interprets this sensory 

information into a behavior, and the individual 

ultimately executes the decision [1-3]. Perceptual 

decision-making has a prominent place in personal 

relationships in addition to conscious and cognitive 

decisions made by individuals. Decisions should be 

made by considering all relevant evidence [2, 4]. 

Complex or uncertain decisions may have irreversible 

consequences for an individual's personal and social 

life. Studies on Electroencephalography (EEG) have 

shown that an increase in the activity of the centro-

parietal electrodes has been linked to the decision-

making process [5].  

Heekeren et al. [6] describe a general process in the 

human brain that occurs during perceptual decision-

making. Based on the single-cell recordings, the 

output of different groups of lower-level and 

selectively tuned sensory neurons can indicate a 

general mechanism in which higher-level brain 

regions make perceptual decisions. In this research, 

the existence of a mechanism in the human brain 

similar to monkey brains (previous studies) and active 

brain areas in situations related to more complex 

decision-making was investigated using fMRI data 

during a task in which the participant must determine 

if the displayed stimulus is a human or home image. 

According to the findings, there are different neurons 

in brain regions, each of which responds 

independently to the house and face stimuli, and the 

individual's decision is the product of the signal of 

these two groups of neurons. If more neurons signal 

for the house stimulus, the brain finally identifies it as 

the house and not the face and vice versa. According 

to research in [7], the N170 event-related potential can 

be a powerful indicator for identifying and 

distinguishing visual stimulus images with a human 

face from other images. This is because N170 event-

related potential has been observed in visual tasks in 

which one of the stimuli is a human face image. It is 

also believed that N170 is the product of the brain's 

early decoding in dealing with the picture of the 

human face. The N170 component has the greatest 

amplitude in the lower occipital lobes and typically 

occurs between 130 and 200 milliseconds [7]. This 

information becomes helpful in this study as almost 

half of the dataset consists of human face photos. 

So far, neuroimaging methods such as functional 

Magnetic Resonance Imaging (fMRI) and 

electroencephalography have been used to study brain 

activity during decision-making [1, 8]. 

Electroencephalography is an affordable, non-

invasive, and safe modality for brain research. EEG 

signals reveal physiological aspects of the brain that 

structural imaging techniques may not reveal. Owing 

to their high temporal resolution, they can also 

represent rapid neuronal changes and events in the 

millisecond scale [9]. Thus, besides being a disease 

[10]  disorder [11] detection or brain-computer 

communication [12] tool, EEG is often used to explain 

a variety of brain states, including mental load, 

arousal, and valence, all of which influence decision-

making explicitly or implicitly [1, 13]. Philiastides et 

al. [14, 15] have used EEG analysis and fMRI to 

obtain non-invasive neural measures of perceptual 

decision-making.  According to their claim, the 

decision-making process requires at least two general 

stages of neural processing. The first stage involves 

presenting evidence to primary sensory areas (for 

example, a visual experiment involves presenting a 

stimulus that the eye can perceive). The next step is to 

collect evidence relevant to the decision to bring it to 

the decision threshold. The results of [14] revealed the 

presence of two distinguishing components, the first 

of which was consistent with the well-known 

component N170, which is often seen in response to 

face image stimuli. The second component, more 

consistent with the research's psychological function, 

appears at least 130 milliseconds later than the 

previous component. Their findings indicate that the 

less evidence there is in the cognitive task, the later the 

presence of the second component (rather than the first 

component) occurs. They, in their later research [15], 

demonstrated that the sequence of events related to 

perceptual decision-making extends widely 

throughout the brain neural network, with the lateral 

occipital complex being one of the most important 

since it is thought to be the first region in the brain 

where decision-making occurs. Yajing et al. [2] 

proposed the Discriminative Spatial Network Pattern 

(DSNP) model, which is an EEG-based computational 

intelligence structure capable of predicting participant 

decision-making responses. DSNP features were 

extracted from the measured brain network during a 
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single-trial experiment and used to train a Linear 

Discriminate Analysis classifier (LDA) to predict 

trial-by-trial responses. Brain signals were recorded 

from two separate and independent groups using two 

different EEG systems to evaluate the proposed DSNP 

method. The trial-by-trial predictors performed 

efficiently, with an accuracy of 0.88±0.09 and 

0.90±0.10 for the first and second datasets, 

respectively. Imani et al. [16] used a hidden semi-

Markov model to characterize the decision-making 

building blocks, assigning each sample to one stage 

and determining the transition timing between them. 

They utilized an online available EEG-fMRI dataset, 

in which participants classified items in a 2x2 factorial 

design task with internal user state (spatial 

prioritization) and external world state (stimulus 

coherency) factors. The findings revealed that the 

coherency factor, rather than spatial prioritization, 

influences evidence accumulation for decision-

making. 

The uncertainty and difficulty in individuals' 

perceptual decision-making can adversely affect their 

personal and social lives. Therefore, research in this 

field seems necessary to understand the brain better 

during perceptual decision-making. Researchers hope 

to develop a tool for predicting such human decisions 

by better understanding the perceptual decision-

making process. Although several studies have been 

conducted in this area, the mechanism of the brain 

during perceptual decision-making is not yet clear to 

researchers. Furthermore, previous studies have 

shown that using neural networks to identify different 

classes based on EEG signal features can outperform 

conventional classifiers. To fill this research gap, this 

study aims to explore EEG signals in healthy 

individuals while performing a perceptual decision-

making task using a Fuzzy Radial Basis Function 

(FRBF) network. The primary hypothesis of this study 

is that the fuzzy clustering in this classifier model is 

similar to what occurs in the brain. Since there is no 

binary decision-making mode in the brain and there is 

uncertainty in which each option has a special weight 

in decision-making and finally, the option that passes 

a threshold is selected, it has been attempted in this 

research to incorporate this uncertainty into the final 

model so that the performance of the perceptual 

decision recognition system will improve. All in all, 

this study tends to investigate the separability of two 

different perceptual decisions made over a visual 

stimulus, focusing only on the EEG signal. The 

findings of this research will potentially aid in gaining 

a better understanding of the neural basis of human 

perceptual decision-making. Moreover, the results of 

the proposed classification will demonstrate the 

capability and capacity of such approaches for 

integration with Brain-Computer Interface (BCI) 

systems. 

2. Materials and Methods  

2.1. EEG Signal 

A 62-channel EEG signal from 16 participants was 

used in this research [17], with a 5 kHz sampling 

frequency. It is noteworthy that sample size 

determination was based on the available data, rather 

than through conventional sample size calculation 

methods. Electrocardiogram (ECG) and 

Electrooculogram (EOG) signals related to the 

electrical activity of the heart and eyes, respectively, 

were recorded simultaneously on two different 

channels. The signal also included indicators for 

different events. Behavioral, EEG, and fMRI data 

were collected from participants performing visual 

perceptual decision-making tasks. The recorded EEG 

signals were divided into two parts of recorded EEG 

inside and outside the fMRI machine. The data 

recorded outside the fMRI device was used in this 

research. Therefore, the EEG signals weren't affected 

by any MR artifacts. The fMRI data was not used in 

this research, as most BCI machine learning 

techniques rely on EEG rather than MRI data. 

Furthermore, from the computational perspective, a 

machine learning model based on EEG 1-D signals is 

more efficient than a model using 2-D MRI data. This 

is because the input data's dimensionality affects the 

machine learning models and neural networks' 

complexity and performance. Higher dimensions 

require more layers, neurons, and parameters, which 

increase the computational cost and reduce the 

learning speed of the model. Additionally, EEG data 

is more affordable and easier to obtain than MRI data, 

which facilitates this study's future extension. The 

presentation of stimulation in this task is visual, and 

the participants perform the task of perceptual 

decision-making in a space with 2×2 factors, which 

include the coherence of the stimuli ("high" and "low" 

levels) and spatial prioritization ("Yes" and "No" 
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states). When perceptual decisions are tested in the 

lab, human participants are typically asked to 

categorize a particular object stimulus, like an image 

of a face or a car, into one of two categories [4]. This 

study's initial stimulus set included 18 car and 18 face 

pictures. The number of frontal, left lateral, and right 

lateral views in the two original picture sets was 

matched. The participant was shown a “Face” or “Car” 

stimulus with modified spatial phase coherence. As 

depicted in Figure 1, each experiment began with an 

arrow in the center of the image, displayed for 1 

second. The arrow had three possible states: 1) 

pointing to the right, 2) pointing to the left, and 3) 

pointing to both sides. The first two states indicated 

the location of the stimulus in the next step, while the 

third state meant that the stimulus would appear 

randomly on either the right or left side. The 

participant was instructed to answer quickly and 

accurately without time constraints. 

2.2. Preprocessing and Grand Average ERP 

Calculation 

In this study, the raw EEG signals from [17] were 

used. EEG signal recordings are inherently susceptible 

to noise and artifacts, meaning that the raw data 

collected from participants contains not only brain 

activity signals but also noise and artifacts from 

physiological (e.g., EOG) and non-physiological 

sources (e.g., power line interference). To address 

these issues, we implemented several preprocessing 

steps: first, we downsampled the signals to 500 Hz to 

minimize computational load while maintaining 

necessary frequency resolution; next, we applied 

average referencing to reduce the impact of potential 

errors in the reference channel. Baseline correction 

was performed by subtracting the mean value of each 

channel from its samples, followed by filtering using 

a 5th-order elliptic high-pass filter (0.5 Hz cutoff) and 

a 6th-order elliptic notch filter (50 Hz) implemented 

with the MATLAB "filtfilt" function to avoid phase 

distortion. Independent Component Analysis 

(MULTICOMBI algorithm [18]) was conducted to 

separate and remove components associated with 

ocular and cardiac artifacts [19], with components 

correlated with EOG and ECG channels above a 60% 

threshold being identified and removed. Signals were 

then segmented into epochs centered around stimulus 

presentations, with automatic rejection of epochs 

exceeding 1000 µV or having a standard deviation 

greater than five times the channel's standard 

deviation. Finally, only epochs corresponding to 

correct participant responses were retained for further 

analysis, ensuring the validity of features used in 

subsequent machine learning operations. These 

preprocessing steps ensured that the final signals were 

adequately cleaned and ready for further analysis. 

After that, all individuals' Event-Related Potentials 

(ERPs) in all stimuli were calculated, and their Grand 

Averages (GA) in various cases were analyzed. It 

should be mentioned that only 12 channels of O1, O2, 

PO3, PO4, PO7, PO8, T7, T8, TP9, TP10, P7, and P8 

based on the [7, 17] were considered in the processing 

steps to reduce the computational load. 

2.3. Feature Extraction 

The perceptual decision-making task in this 

research involved human face images. Previous 

studies have demonstrated that the event-related 

potential N170 is prominent in visual tasks with 

human face stimuli [7]. Since the N170 component 

(120-300 ms) was desired in this study, features were 

extracted from the signal by considering this 

component's time interval of occurrence. These 

features included temporal features such as Latency, 

Amplitude, Latency/Amplitude ratio, Absolute 

 

Figure 1. An overview of the study design depicted in 

[17]. According to this figure, the stimuli presented to 

individuals in this research included images of "human 

faces" and "cars," which were classified into four 

groups based on the two features of coherence (low, 

high) and spatial prioritization (attention: Yes, No). In 

the figures with one arrow pointing to the right or left, 

the person knew where the stimulus would appear in the 

next step. Otherwise, the stimulus would be randomly 

displayed on one of the right or left sides 
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Amplitude, Absolute Latency/Amplitude ratio, 

Positive Area, Negative Area, Absolute Negative 

Area, Total Area, Absolute Total Area, Total Absolute 

Area, Average Absolute Signal Slope, Peak-to-Peak 

(spatial Peak-to-Peak), Peak-to-Peak time window, 

Peak-to-Peak Slope, Zero Crossing, Zero Crossing 

Density, Slope Sign Alterations [20] as well as 

Absolute frequency power of the signal in Delta, 

Theta, Alpha, Betta and Gamma frequency bands, 

Spectral Entropy, and Katz Fractal Dimension [21]. A 

brief explanation per feature is provided in Table 1. 

Please refer to [20] for the detailed properties of 

each feature. 

2.4. Statistical Analysis 

After extracting these 26 features from 12 selected 

channels, the statistical differences between the 

groups under study were examined using existing 

methods. First, the histogram of each group's data was 

plotted and analyzed. These plots revealed that the 

data did not follow a normal distribution. To ensure 

this, the Kolmogorov-Smirnov test was used to 

determine the data distribution. In this statistical test, 

the null hypothesis states that the data distribution 

follows the normal distribution. If the test result rejects 

the null hypothesis, then it can be said that the data do 

not follow the normal distribution, and non-parametric 

tests must be used to compare different groups. Given 

the non-parametric distribution of the continuously 

matched data with more than two groups to compare, 

the Friedman statistical test followed by a Sidak post-

hoc test was used to analyze the presence of significant 

differences in the study groups based on the data 

characteristics (non-normal distribution and 

dependence in the groups). 

2.5. Classification 

A Support Vector Machine (SVM) is a machine-

learning algorithm for classification tasks [22]. The 

main objective of the SVM classifier is to find the best 

decision boundary (or hyperplane) that can separate 

two classes of data with maximum margin. SVMs are 

effective for datasets with high dimensionality and can 

also be used for multi-class classification problems. 

However, the accuracy of SVM classification is 

mainly for data that can be linearly separated. Another 

thing that has made this classifier work well, 

especially for separating the medical data of two 

classes, is its robustness against outlier data. In 

general, the effectiveness of this classifier in different 

tasks depends on the appropriate selection of kernel 

functions and their parameters. In this study, SVM 

classification was used as the first classification 

approach, but ended up with a poor result. 

Consequently, a more complex alternative, the Fuzzy 

Radial Basis Function (FRBF) [22], is the final 

solution.  

FRBF network is an artificial neural network that 

combines the RBF network with a fuzzy c-means 

algorithm. The RBF network produces a linear 

combination of radial basis functions for input 

parameters and neurons as its output. These networks 

can be used for time series forecasting, classification, 

and system control. RBF networks usually have three 

layers: an input layer, a hidden layer with a nonlinear 

RBF activation function, and an output layer. The 

network's input is a real-number vector, and its output 

is a scalar that is a nonlinear function of the input. In 

this research, for example, the input vector is the 

features extracted from the previously mentioned 

channels, and the output is a scalar number 

representing the final label of the data. A two-step 

algorithm is typically used to train RBF networks. The 

vectors of the centers of the radial basis functions in 

the hidden layer are chosen in the first step. This step 

in Fuzzy RBF networks uses the Fuzzy C-Mean 

(FCM) method. Then, in the second training step, a 

linear model for hidden layer outputs is fitted 

according to the objective function. Based on the 

physiological evidence [23], the brain does not make 

binary decisions but rather deals with uncertainty and 

assigns different weights to each option. The option 

that exceeds a threshold is chosen. This research aims 

to incorporate this uncertainty into the final model to 

enhance the perceptual decision recognition system's 

performance. For this purpose, the fuzzy method is 

applied instead of conventional clustering methods 

such as K-Means to assign a membership value for 

each point. This means that, unlike traditional methods 

that classify each point as either belonging or not 

belonging to a cluster, the fuzzy method defines a 

number between 0 and 1 as the degree of membership 

of each data point to each cluster individually. This 

results in more reliable final centers. 
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Table 1. Eighteen morphological features brief explanation  

Feature 

Description 
Formula 

Feature 

Description 
Formula 

Amplitude 

The maximum signal 

value. In the formula, 

𝑆(𝑡) is the value of 

the signal at the time 

point 𝑡. 

𝑠𝑚𝑎𝑥{𝑚𝑎𝑥  Total absolute area 𝐴𝑝|𝑛| = 𝐴𝑝 + |𝐴𝑛| 

Latency 

The time at which the 

maximum signal 

value appears. 

𝑡 𝑡 𝑠(𝑡) = 𝑠𝑚𝑎𝑥⁄
𝑆𝑚𝑎𝑥

 Absolute total area ATAR = |Apn| 

Latency/amplitude 

ratio 
LAR = tSmax/Smax 

Average absolute 

signal slope 
|𝑆̄̇| =

1

𝑛
∑

1

𝜏

1000𝑚𝑠−𝜏

𝑡=300𝑚𝑠

|𝑠(𝑡 + 𝜏) − 𝑠(𝑡)| 

Absolute amplitude AAMP = |Smax| Peak-to-peak 𝑝𝑝 = max{𝑠(𝑡)} − min⁡{𝑠(𝑡)} 

Absolute 

latency/amplitude 

ratio 
ALAR = |tSmax/Smax| 

Peak-to-peak time 

window 
𝑡𝑝𝑝 = 𝑡𝑆𝑚𝑖𝑛𝑆𝑚𝑎𝑥  

Positive area 

The sum of the 

positive signal values 


=

+=
ms

mst

p tstsA
1000

300

))()((5.0  Peak-to-peak slope 𝑠̇𝑝𝑝 =
𝑝𝑝

𝑡𝑝𝑝
 

Negative area 

The sum of the 

negative signal values 

=

+=
ms

mst

n tstsA
1000

300

))()((5.0  

Zero crossings 

Zero crossing per the 

number of times t that 

S(t) = 0, in the peak-

to-peak time window. 

𝑛𝑍𝐶 ∑ 𝛿𝑆

𝑡𝑆𝑚𝑎𝑥∑

𝑡=𝑡𝑆𝑚𝑖𝑛

 

Absolute negative 

area 
ANAR = |An| 

Zero crossings 

density 

Zero crossing per 

time unit, in the peak-

to-peak time window. 

𝑑𝑍𝐶 =
𝑛𝑍𝐶
𝑡𝑝𝑝

 

Total area 𝐴𝑝𝑛 = 𝐴𝑝 + 𝐴𝑛 

Katz Fractal 

Dimension 

In the formula, 𝐿 is 

the sum and 𝑑 is the 

average Euclidean 

distance of the 

samples from each 

other. 

𝐷 = ⁡
𝑙𝑜𝑔10(𝐿)

𝑙𝑜𝑔10(𝑑)
 

Absolute frequency 

power 

for Delta, Theta, 

Alpha, Betta, and 

Gamma frequency 

bands. In the formula, 

the 𝑆(𝑓)⁡is the signal 

value at the frequency 

𝑓. 

∑|𝑆(𝑓)|2 Spectral Entropy 𝐻 = ⁡− ∑ 𝑃(𝑚) log2 𝑃(𝑚)

𝑁

𝑚=1

 

Slop sign alterations 

The number of slope 

sign alterations of two 

adjacent points of the 

ERP signal 

𝑛𝑠𝑎 = ∑ 0.5 |
𝑠(𝑡 − 𝜏) − 𝑠(𝑡)

|𝑠(𝑡 − 𝜏) − 𝑠(𝑡)|
+

𝑠(𝑡 + 𝜏) − 𝑠(𝑡)

|𝑠(𝑡 + 𝜏) − 𝑠(𝑡)|
|

1000𝑚𝑠−𝜏

𝑡=300𝑚𝑠+𝜏
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3. Results  

3.1. Grand Average ERPs 

After preprocessing, Grand Average ERPs were 

calculated and plotted in the 12 channels mentioned 

above. Grand Average ERPs are the ERPs averaged 

over a specific channel, and plotting them is a helpful 

approach for monitoring the variability in ERPs across 

subjects. These ERPs were calculated and plotted 

separately for four different states of coherence (low, 

high) and spatial prioritization (attention; Yes, No) to 

represent "Face" and "Car" stimuli. Figure 2 shows the 

Grand Average ERP of the O2 channel for "Face" (part 

a) and "Car" (part b) stimuli. The blue lines in each 

plot reflect the "high coherence" with the "spatial 

priority" state, while the blue dashed lines represent 

the "high coherence" without the "spatial priority" 

state. Coherence refers to the noise factor utilized in 

the function authors in [16] used to add some noise to 

their pictures. A high coherence means a low noise 

factor or, equivalently, a high Signal-to-Noise-Ratio 

(SNR), whereas a low coherence means a low SNR. 

The red lines reflect the state of "low coherence" with 

the "spatial priority," while the red dashed lines 

represent the state of "low coherence" without the 

"spatial priority". One of the most important 

components related to ERP analysis is the P300 

component. The P300 component is a large positive 

peak that usually appears around 300 msec after the 

stimulus onset but can appear up to 1000 msec later 

[24]. Study [25] has shown that the increment of the 

P300 component amplitude is associated with post-

stimulus processes, such as decision-making. 

According to Figure 2, the P300 component is 

observed in all cases with a marginally greater 

amplitude for "Face" viewing than "Car" viewing. The 

general waveform of both the "Face" and "Car" 

groups, on the other hand, follows the same pattern in 

such a way that in both ERP waveforms (part (a) and 

(b) of Figure 2), the amplitude of the waveform first 

increases and reaches a maximum value and then 

decreases again over time. 

According to the Grand Average ERPs, the P300 

component is observed in all cases with a marginally 

greater amplitude for "Face" viewing than "Car" 

viewing. The general waveform of both the "Face" and 

"Car" groups, on the other hand, follows the same 

pattern in such a way that in both ERP waveforms 

(part (a) and (b) of Figure 2), the amplitude of the 

waveform first increases and reaches a maximum 

value and then decreases again over time. The N170 

component can also be seen in the waveforms at 130-

200 millisecond intervals. This time interval was 

chosen for feature extraction because of the 

observation of the N170 component in Grand average 

ERPs and previous research [7] indicating that this 

component is typically evoked in response to facial 

image stimulation. It is worth noting that since the 

difference in N170 component amplitude between the 

two classes was more pronounced in the TP9 and 

TP10 channels, only the features derived from these 

two channels were used for classification. The grand 

average ERP for TP9 (part a) and TP10 (part b) is 

depicted in Figure 3. 

3.2. Statistical Analysis 

The examination of each group’s data distribution 

by histogram and Kolmogorov-Smirnov test (P-Value 

< 0.05) revealed that the data did not follow the normal 

distribution. The results of the Friedman non-

parametric test suggest that only three features, Total 

Area, Zero Crossing, and Slope Sign Alterations, did 

not show a statistically significant difference between 

the two classes.  

As mentioned before, the images shown to 

individuals in this study were divided into four 

categories based on the two features of coherence 

(low, high) and spatial prioritization (attention; Yes, 

No). Therefore, the EEG signals of individuals were 

also categorized into these four related groups. To 

better understand the differences in brain activity 

affected by these four types of stimuli, the Sidak post 

hoc statistical test was utilized to analyze significant 

differences found by the Friedman test. According to 

the results, high coherence with spatial prioritization 

and low coherence without spatial prioritization 

showed the highest and lowest statistical differences, 

respectively. In other words, it is inferred from the 

results that regardless of the attention factor, the test 

results show significance based on the coherence of 

the stimulus. As a result, it can be concluded that the 

variation in the coherence of the stimulus 

representations significantly impacts the individual's 

brain mechanism during decision-making. 
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3.3. Classification 

Before training the RBF neural network, an SVM 

with MATLAB’s hyperparameter optimization was 

conducted and validated with the 10-fold cross-

validation approach. After fine-tuning, the best model 

resulted in a test accuracy of 56.9% for the channels 

TP9 and TP10. The SVM method was dropped 

because of poor performance. As the computational 

cost of the fuzzy radial basis function classification is 

high, training the radial basis function neural network 

with FCM was performed with only features extracted 

from two channels, TP9 and TP10. Given that only 

three features out of 26 showed statistical 

insignificance, in addition to the large number of data 

points compared to the number of features, we utilized 

all 26 features for the classification because the 

computational cost after feature reduction was 

negligible. The network's input layer is 26-

dimensional data from two channels, the hidden layer 

is a single layer with 520 neurons (equal to the number 

of FCM clusters), and the output layer is the data label. 

We conducted a grid search to find the best parameters 

for the model. It should be noted that the Fuzzy C-

means weighting exponent was set to 2. 

In this research, the FRBF network was used for 

classification. In the FRBF classifier, the number of 

neurons in the network's hidden layer and, as a result, 

the number of parameters used is large. Also, the 

classifier training process includes two stages, leading 

to a high computational cost for the FRBF classifier. 

Therefore, unlike the SVM classifier, in the FRBF 

  

                                    a                                                                                        b 

Figure 3. Grand Average ERP of the O2 channel for (a) "Face" viewing and (b) "Car" viewing; The colors 

blue and red represent High and Low coherence, respectively, while the line (dash) indicates with (without) 

the spatial priority. According to Figure 2, the P300 component is observed in all cases with a marginally  

greater amplitude for "Face" viewing than "Car" viewing. The general waveform of both the "Face" and "Car" 

groups, on the other hand, follows the same pattern in such a way that in both ERP waveforms (part (a) and 

(b) of Figure 2), the amplitude of the waveform first increases and reaches a maximum value and then 

decreases again over time 

  

                                           a                                                                                        b 

Figure 2. The grand average ERP of channels (a) TP10 and (b) TP9 for the face (Red) vs car (Blue) stimuli 
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classifier, the hold-out method was performed once to 

evaluate the classifier so that 70% of the data was used 

for training and 30% for testing. It is noteworthy that 

these 30% and 70% of the data were chosen randomly, 

but it was considered that both groups 

(training/testing) should contain an equal ratio of each 

of the two classes (face/car). The classification results 

are shown in the confusion matrix in Figure 4. 

The label “0” was used for the face class and “1” 

for the car class. Figure 4 shows no face picture has 

been misclassified as a car, whereas a few cars 

(16.3%) are misclassified as face pictures. Our 

explanation for this observation is that given the 

balanced nature of the dataset, the strong N170 

occurring in the participant’s signal after seeing the 

face picture is such a dominant ERP that makes it 

almost impossible for the model to misclassify face 

pictures. In contrast, some trials of the car pictures 

possibly have an almost notable N170 compared to 

others, leading to their misclassification.  Finally, the 

training accuracy was 92.7%, while the test accuracy 

was 90.3%. Table 2 shows the results of FRBF 

network classification for the test data set. According 

to this table, none of the "Face" samples were 

mislabeled as "car," while only 9.7% of the "Car" 

samples were mislabeled as "face. 

 

 

 

 

 

4. Discussion 

In this study, the brain signals of 16 healthy people 

were analyzed when performing a perceptual decision-

making task to differentiate face images from car 

images. For this purpose, steps such as preprocessing, 

investigation of event-related potentials, feature 

extraction, statistical analysis of feature space, and 

classification were performed.  

4.1. Major Findings 

The results of Event-Related Potentials revealed 

that the P300 component was evident in all of the cases 

under consideration. Previous research [3] has also 

revealed the presence of the P300 component in the 

brain signal during decision-making. According to 

[26], a higher P300 amplitude demonstrates more 

confidence in decision-making, whereas a longer P300 

latency implies lower attentiveness. Likewise, [27] 

showed how the P300 amplitude could represent 

information processing at a preliminary decision-

making stage.  

The results also showed that the potentials for 

"Face" observation have a higher amplitude than those 

for "Car." On the other hand, the general waveform of 

both "Face” and “Car" stimuli follows the same 

pattern. The N170 component can also be detected in 

the waveforms at 130- to 200-millisecond intervals. 

When observing the facial stimulus, this component 

has a greater amplitude in the lower occipital regions 

than the car, consistent with previous research [7] on 

the relationship between the N170 component and 

face processing. Based on this, the period of the N170 

component activation was used to extract 18 temporal 

features (out of 26 features) in the following step. In 

addition, two TP9 and TP10 channels were chosen for 

feature extraction in the classification process. 

Although incorrectly answered epochs were 

excluded in the preprocessing phase and were not 

considered in the processing steps, in the end, to have 

a deeper look at the issue, ERPs related to incorrect 

answers versus ERPs related to correct answers were 

also examined. Figure 5 shows the Grand Average 

ERP of the O2 channel for "correct" answers versus 

“incorrect” answers. In this case, the amplitude of the 

P300 component in the Grand Average of event-

related potentials in incorrect responses is greater than 

Table 2. Results obtained from FRBF network 

classification for classifying "Face” stimulus 

AccuracyF 90.3% 

PrecisionF 80.6% 

SensitivityF 100% 

F1-ScoreF 89.2% 

 

 

Figure 4. Confusion matrix resulting from the 

classification using the RBF neural network 
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in correct responses. This can be due to the person's 

confidence in selecting the correct answer. For 

example, it can be presumed that when a person gives 

an incorrect answer, they have less confidence in their 

answer. Therefore, their focus is more involved so that 

they can use the visual evidence they receive from the 

stimuli to get the two options to the decision threshold 

and make the final decision. However, this is not in 

line with the finding in [26] that a higher P300 

amplitude indicates more confidence in decision-

making. This case has been investigated in a different 

study [28] using two perceptual decision-making 

modes with difficult and easy levels. Their findings 

showed incorrect decisions elicited a larger P300 

amplitude in the easy group. In contrast, there was no 

difference in the P300 amplitude between correct and 

incorrect decisions in the difficult group. Their 

findings thus corroborate ours in the simple case. 

According to the statistical analysis, the comparison 

between high coherence with spatial prioritization 

state and low coherence without spatial prioritization 

state had the largest number of statistical differences, 

and the comparison between high coherence without 

spatial prioritization state and low coherence without 

spatial prioritization state had the lowest number of 

statistical differences. As a result, it can be inferred 

that differences in stimulus representation coherence 

have a more significant effect on an individual's brain 

mechanism during decision-making. This finding is in 

line with the findings of [16], which found that the 

coherency factor would have a better relationship with 

the stage of evidence accumulation in the decision-

making process rather than the prioritization factor. 

This research employed a Fuzzy Radial Basis 

Function (FRBF) network as the classifier. The 

primary assumption behind this selection is that the 

fuzzy clustering in this classifier model resembles that 

can be observed in the brain. To improve the 

performance of the perceptual decision recognition 

system, it has been attempted in this research to 

include uncertainty in the final model since there is no 

binary decision-making mode in the brain, and there is 

uncertainty in which each option has a particular 

weight in decision-making and ultimately the choice 

that passes a threshold is selected.  

Until now, various researchers have investigated 

perceptual decision-making in humans based on EEG 

signals. In a study, Pham et al. [29] produced a 

framework for processing EEG data to determine the 

narrow frequency bands that influence the decision-

making process on the same data set. They achieved 

an accuracy of 66.18% by using the SVM classifier. In 

another study, Yajing et al. [2] proposed the 

Discriminative Spatial Network Pattern (DSNP) 

model to predict participant decision-making 

responses. The Linear Discriminate Analysis (LDA) 

classifier results on the used EEG signals from two 

separate and independent groups indicated an 

accuracy rate of 0.88±0.09 and 0.90±0.10 for the first 

and second datasets, respectively. The classification 

accuracy results of the present study (90.3%) showed 

that the proposed method, which includes feature 

extraction, channel selection, and FRBF network, is an 

effective method for recognizing human decisions 

compared to other state-of-the-art studies. However, 

the comparison of methods with different datasets may 

not be fair due to the difference in the nature of the 

data.  

As a practical use of the proposed methodology, 

individual decision recognition can be applied to smart 

cars and Brain-Computer Interface (BCI) systems. 

Designing more reliable and accurate decision 

recognition systems for these applications can 

enhance the safety, efficiency, and convenience of 

human-vehicle interaction. 

4.2. Limitations 

One of the limitations we dealt with working on this 

dataset was the small number of available classes. 

Including only two classes of car and face images, 

 

Figure 5. Grand Average ERP of the O2 channel for 

"correct" answers versus “incorrect” answers 
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testing the proposed structure for face images versus 

more classes using this dataset is impossible. 

Moreover, there is a low diversity and variability in 

the image dataset shown to the participants. The 

dataset does not cover factors like color and the effect 

of different backgrounds. 

4.3. Future Work 

We suggest testing the effect of fusing MRI data 

with the existing EEG data or using MRI data with 

image processing techniques for classification to 

compare the results with our study. Moreover, 

designing a new test comprising more classes covering 

more aspects like color and background is desirable. 

5. Conclusion 

Humans sometimes face situations where they must 

choose between multiple choices provided by sensory 

information. Uncertainty or disruption in decision-

making can lead to serious problems in people's 

personal and social lives. In this research, the brain 

signals of healthy individuals while performing a 

perceptual decision-making task were studied. The 

results show that the coherency factor had a greater 

effect on the brain's decision-making process than 

spatial prioritization. Moreover, the proposed method 

has a 90.3% accuracy in recognizing a person's 

decision in a two-class scenario. This study's findings 

can enhance our understanding of how humans make 

perceptual decisions in response to visual stimuli, 

using brain signals and a predictive model . 
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