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Abstract 

Purpose: The purpose of this study was to create an Intelligence System (IS) to analyze the Electroencephalogram 

(EEG) characteristics of patients with mild Traumatic Brain Injury (mTBI) and healthy volunteers. Generally, 

mTBI research demonstrates that patients suffer from Working Memory (WM). The frontal cortex is involved in 

the clinical physiology of mTBI and is crucial for delayed memory.  

Materials and Methods: The Frontal-Medial Theta (FMT) is one of the most critical factors in mTBI verification. 

The oscillatory strength of FMT (4-8Hz) over the Frontal-Medial Cortex (FMC) or Supplementary Motor Area 

(SMA) and the medial-Sensory Motor Cortex (mSMC) is associated with efficient WM performance. The 

designed IS accesses the FMT of mTBI and healthy subjects by FCz and Cz electrodes placed in FMC or SMA 

and mSMC, respectively. The Multi-level Discrete Wavelet Transformation (MDWT) of EEG (FCz and Cz) is 

suggested here to investigate the mTBI. The FMT rhythms of EEG of FCz and Cz channels are extracted through 

3-level-DWT. Then, 1768 features [712 features of healthy subjects + 1056 features of mTBI patients] for both 

the FCz and Cz electrodes were calculated via their FMT using eight statistical feature computations. 

 

 

Conclusion: The strength of the FMT-FCz and FMT-Cz electrodes is approximately the same, and both are 

equally crucial to investigating mild Traumatic Brain Injury. 

Keywords: Multi-Level Discrete Wavelet Transformation; Frontal-Medial Theta; Frontal-Medial Cortex; 

Supplementary Motor Area; Medial-Sensory Motor Cortex; Mild Traumatic Brain Injury. 
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PROOF
Results:  The  study  found  that  the  FMT  strength  of  FCz  and  Cz  electrodes  is  similar.  The  Bagging  Classifier

achieved 83.3333% accuracy with the  5% split for the FCz electrode.
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1. Introduction  

Traumatic Brain Injuries (TBIs) must still be identified 

and adequately evaluated if treatment and prognosis are to 

be successful. TBIs include initial damage induced by a 

mechanical insult, which can be death in the worst 

possible circumstances. In crucial cases, the well-known 

principle of the golden hour, which states that 

rehabilitation must be administered within the first 60 

minutes for a trauma patient outside of the hospital, could 

influence the patient's medical condition [1]. The 

consequences of delayed treatment may include cerebral 

Dysautoregulation, Oedema, and high intracranial 

pressure [2]. As a result, early detection is critical for the 

ensuing treatment approach. TBI severity can be 

determined using various grading systems. The Glasgow 

Coma Scale (GCS) is a standard evaluation [3]. The GCS 

evaluates the severity of a TBI relying on the "motor 

response," "eye-opening reaction," and "verbal response" 

[4]. The GCS ratings for mild, moderate, and severe TBI 

patients are 14-15, 9-13, and 3-8, respectively. The GCS 

isn't perfect because it's a qualitative test that's very 

subjective and prone to bias. Additionally, an injured eye 

likely won't be able to perform the eye-opening response 

[5].  

In medical research, Computed Tomography (CT) 

and Magnetic Resonance Imaging (MRI) are the two 

clinical methods most frequently employed to identify 

brain dysfunctions. Nevertheless, they often fail to 

identify enduring abnormalities in patients with mTBI 

[6]. Furthermore, studies found that sleep-wake 

disturbances are widespread following a TBI based on 

Electroencephalogram (EEG) patterns [7]. Quick 

radiation scans are also a potential health risk for 

patients, which is a concern [8]. 

Magnetoencephalography (MEG), among numerous 

electrophysiological techniques, has produced 

impressive outcomes. They demand specialized 

operators, are expensive, and take time. They may 

delay the performance of scans and put patients in 

danger of delayed treatment due to inadequate 

resources [9]. The advantages of EEG over CT, MRI, 

and MEG are speed, cost, and portability. 

Furthermore, whereas EEG has a poorer spatial 

resolution, it has a high temporal resolution [10, 11]. 

In addition, EEG data has high inter-subject 

variability, which diminishes its utility. Physiological 

differences between individuals are the cause of this 

issue [12]. It is also challenging to distinguish between 

activities in closely related locations because 

numerous nearby channels can pick up exceptionally 

high electrical activity [13]. But now, more advanced 

technologies, such as machine learning, are available 

for estimating EEG data from a single source. Lai et 

al. [14] applied Long-Short-Term-Memory (LSTM) 

for the automatic feature extraction, and to classify 

mTBI, a "Support Vector Machine (SVM)" was used, 

where SVM achieved 100.00% accuracy. Also, Lai et 

al. [15] applied a Convolutional Neural Network 

(CNN) for automatic feature extraction, and an SVM 

was utilized for the classification of mTBI, where the 

SVM got 99.76% accuracy. Dhillon et al. [5], the EEG 

output from a single channel is used in this study to 

describe a mobile, real-time data gathering and 

automated processing system based on the Raspberry 

Pi that efficiently grades the different stages of sleep 

and leverages machine learning to detect TBI. Where 

average power and alpha: theta ratio are extracted and 

given into the XGBoost classifier. "Real-time EEG 

epochs" were divided by CNN and XGBoost into four 

pre-established categories: sham waking, sham 

sleeping, mTBI wake, and mTBI sleep. XGBoost 

achieved 98.00% accuracy due to its scalability, which 

enables parallel and distributed computation while 

speeding up training and model exploration, whereas 

CNN only achieved 80.00%. Vishwanath et al. [16] 

examine a variety of machine learning techniques, 

namely K-Neighbors Neighbor (KNN), Random 

Forest (RF), XGBoost, Neural Network (NN), 

Decision Tree (DT), and SVM, where the average 

power of EEG, and alpha: theta ratio, two features are 

extracted as a feature for mTBI detection. Here, KNN, 

RF, XGBoost, NN, DT, and SVM attained an accuracy 

of 87.00%, 86.00%, 86.48%, 84.85%, 82.90%, and 

86.15%. In another study, Vishwanath et al. [17] 

investigated several machine learning methods, KNN, 

RF, DT, SVM, CNN, and NN where the average 

power of EEG is extracted as a feature for mTBI 

investigation. Here KNN, RF, DT, SVM, CNN, and 

NN attained respective accuracy of 74.30%, 75.60%, 

71.00%, 75.60%, 92.03%, and 73.80%. Thanjavur et 

al. [18] utilized RNN only once, although it achieved 

encouraging results of 88.90% classification accuracy. 

Where LSTM-based Conc-Net is applied for 

automatic feature extraction, ConcNet 1 accurately 

identified 11 segment pairs, achieving a Consistency 

score of 91.70%.  
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Researchers have consistently shown that people with 

mTBI have trouble with their working memory (WM). 

The oscillatory strength of frontal-medial theta (FMT, 4-

8Hz) over the Frontal-Medial Cortex (FMC) or 

Supplementary Motor Area (SMA) and the medial-

Sensory Motor Cortex (mSMC) is systematically 

associated with efficient WM performance. Working 

Memory (WM) is a short-term information storage and 

manipulation capacity [19]. The oscillatory strength of 

FMT increases over the FMC or SMA by WM activities 

[20, 21, 22]. The FMT has been associated with behavioral 

WM effectiveness [23] and individual WM capability 

[24]. This study emphasizes the importance of suitable 

electrodes for FMT-based mTBI verification. The format 

of the research article is as follows: (a) The methodology, 

(b) the mTBI EEG-dataset collection and the workstation 

and software details, (c) the preprocessing of the mTBI 

EEG-data, (d) Multi-level Discrete Wavelet 

Transformation (MDWT) of FCz and Cz signals for 

separation of FMT rhythms, (e) the importance of 

statistical features measurements, (f) results, (g) 

discussion, and (h) the conclusion. 

2. Materials and Methods  

The proposed "Intelligence System (IS)" for 

studying mTBI using frontal-medial theta (FMT, 4-

8Hz) EEG rhythm is depicted in Figure 1. In 

subsections 2.1-2.4, the proposed methodology (The 

Model) is described step-by-step. The critical steps of 

the essential parts of the proposed approach: (2.1) 

obtaining the mTBI EEG-dataset and its analysis, (2.2) 

preprocessing of the EEG-dataset, (2.3) Multi-level 

Discrete Wavelet Transformation (MDWT) of EEG 

signals of FCz and Cz electrodes for the separation of 

its FMT rhythm, (2.4). For the FMT of FCz and Cz 

electrodes, eight statistical features are derived. 

Finally, four machine learning classifiers, namely 

"Bagging Classifier," "XGB Classifier," "Decision 

Trees (DT) Classifier," and "Random Forest (RF) 

Classifier," are ensembled together and applied with 

different split ratios to classify the calculated 1768 

features [712 features of healthy subjects + 1056 

features of mTBI patients] for the FMT of FCz and Cz 

electrodes, respectively. 

 

Figure 1. The FMT-based Intelligence System (IS) for verifying the mTBI 
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2.1. Data Set & System and Software 

James F Cavanagh is the dataset's author, and the 

disclosed information is available in this section [25]. 

The "Human Research Protections Office" at the 

"University of New Mexico Health Sciences Center 

(UNMHSC)" approved the research, and each subject 

gave signed consent. All individuals were English 

natives and ranged in age from 18 to 55. None of the 

patients had any severe underlying medical or 

psychological conditions, and none currently or in the 

past used drugs. They weren't taking any medications 

that impacted their ability to think at the study's time, 

except selective serotonin reuptake inhibitors (SSRIs). 

SSRIs were taken by three control subjects and four 

subjects with mild traumatic brain injury (mTBI). 

Patients with subacute mTBI were admitted to the 

"UNMHSC's Neurosurgery and Emergency Medicine 

Departments" two weeks after their accident. Patients 

with subacute TBI had Glasgow Coma Scale (GCS) 

scores between 13 and 15 and had lost consciousness 

during the first 30 minutes following the injury. Three 

assessment sessions were held with both subacute 

mTBI and control clients. The first session covered the 

first three to fourteen days after the injury. Session 2 

was about 1.5 to 3 months after Session 1, and Session 

3 was about 3 to 5 months after that. This research only 

discusses the first session (pre-treatment session) of 

the patients with chronic TBI chosen from a 

comparable diagnostic trial. All chronic patients had 

lost consciousness within 24 hours. Multiple TBIs 

were confirmed by many (15 to 23) chronic clients. 

The EEGs are recorded for 25 to 30 minutes, 

according to the severity of the patients. Due to the 

varying severity of the most recent TBI (17-mild TBI 

and 6-moderate TBI), we categorized these chronic 

clients as having "chronic mild and moderate TBI 

(chronic mm-TBI)." Table 1 contains more specific 

information about the participant's group, and Table 2 

provides information about mTBI clients. 

The workstation Dell G15-5515-AMD-Ryzen-7 is 

used for designing the Intelligence System (IS) for 

mTBI investigation via FMT-EEG rhythm. It has 

RAM-16GB, VRAM-6GB. Its processor speed is 

3.2GHz, and its memory clock speed is 3200MHz. 

The following software and libraries are used for 

performing the presented research: Python, Jupyter 

Notebook, SK-Learn (Scikit-Learn) Python, Spyder 

IDE, MNE-Python, and Anaconda Packages. 

2.2. EEG Dataset Preprocessing 

Researchers have consistently shown that people 

with "mild Traumatic Brain Injury (mTBI)" have 

trouble with their working memory (WM). 

The oscillatory strength of frontal-medial theta 

(FMT, 4-8Hz) over the Supplementary Motor Area 

(SMA) or frontal-medial cortex (FMC) and the 

medial-sensory motor cortex (mSMC) is 

systematically associated with efficient WM 

performance. Figure 2 shows the placement of FCz 

and Cz electrodes in SMA/FMC and mSMC, 

respectively, in the brain architecture's 10-20 electrode 

system. The sampling frequency of the recorded EEG 

of FCz and Cz channels was 250Hz. It was resampled 

into 128.001Hz to satisfy the Nyquist-Criteria for the 

band-pass filter (4-64Hz) and to reduce the 

computational cost of the proposed Intelligence 

System (IS). Then, we needed to perform only a 3-

stage Multi-level Discrete Wavelet Transformation 

(MDWT) to extract the Frontal-Medial Theta (FMT) 

of the FCz and Cz electrodes. 

 

 

Table 1. Specific information about the participants 

Study Group Values 

Total Clients 
91 (52 Males, 39 Females) [34 Control Clients (17 Males, 17 Females), 57 mTBI Clients (34 

Males, 23 Females)] 

Total mTBI Clients 
57 [34 Subacute mTBI Clients (21 Males, 13 Females), 23 Chronic mm-TBI Clients (13 

Males, 10 Females)] 

Age of Control 

Clients 

The average age of all control clients: 30.23. 

The average age of all male control clients: 30.05. 

The average age of all female control clients: 30.41. 

Age of mTBI Clients 

The average age of all mTBI clients: 29.74. 

The average age of all male mTBI clients: 28.62. 

The average age of all female mTBI clients: 30.86. 
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Nyquist-Criteria for EEG signal: Sampling 

Frequency > 2 FMax, where 2 FMax is the Nyquist rate, 

and FMax is the upper frequency of the band-pass filter. 

In the proposed work, FMax is 64Hz. That's why we are 

setting the sampling frequency at 128.001Hz, which is 

slickly greater than the Nyquist rate (2 FMax = 2 x 64 = 

128Hz). The Nyquist frequency is 128.001/2Hz.  

Delta rhythm 0-4Hz (associated with deep sleep) 

and high-frequency noise over 64Hz are removed 

using a band-pass filter (4-64Hz). The line frequency 

of 60Hz is eliminated via a 60Hz notch-filter.  

The non-filtered and filtered raw data of mTBI 

patients are shown in Figures 3 & 4, where the 

sampling rate is 128.001Hz. The unwanted variation 

in the EEG signal of FCz and Cz electrodes is settled 

in Figure 4 compared to Figure 3. The FMT recorded 

by FCz and Cz is associated with the degree of WM 

deficits, visible in Figure 3 at around 2 sec. The 

positive effect of a 4-64Hz band-pass and 60Hz notch 

filter is visual in Figure 4, and the 4-64Hz band-pass 

and 60Hz notch filter response for the Cz and FCz 

channels are shown in Figure 5 & Figure 6, 

respectively.   

 

 

 

Table 2. Information of mTBI clients 

Study Group Values 

GCS (13-15) 
13 (2), 14 (1), 15 (38), Not 

Applicable (16) 

Time since 

injury 

mTBI Clients [10 (5) days], Chronic 

mm-TBI Clients [2 (3) years] 

Loss of 

Consciousness 

in Minutes 

4.5 (13.25) 

Loss of 

Memory 

Yes (27), No (23), Not Applicable 

(7) 

Motor Vehicle 52% 

Accident/Fall 17% 

Sport 15% 

Assault 15% 

 

 

Figure 2. The placement of FCz and Cz electrodes 

in SMA/FMC and mSMC, respectively, to 

investigate mTBI 

 

Figure 3. Non-filtered raw data of mTBI 
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Figure 4. Filtered raw data of mTBI 

 

Figure 5. The 4-64Hz band-pass and 60Hz notch filter response for the Cz electrode of mTBI 

 

Figure 6. The 4-64Hz band-pass and 60Hz notch filter response for the FCz electrode of mTBI 

PROOF



 P. Kumar Sahu, et al.  

FBT, Vol. 12, No. 2 (Spring 2025) XX-XX XX 

2.3. Multi-Level Discrete Wavelet 

Transformation (MDWT) 

The EEG Rhythms are categorized through the 3-

level Multi-level Discrete Wavelet Transformation 

(MDWT), as shown in Figure 7. The Daubechies 

wavelet of order 2 (db2) aids in analyzing the mental 

state of mild traumatic brain injury (mTBI) patients 

since it is particularly adept at detecting changes in 

EEG [26]. Therefore, MDWT is carried out with db2-

wavelet. Mallat's Structure of MDWT [27], commonly 

referred to as the Fast Wavelet Transform, is depicted 

in Figure 7. The MDWT uses a downsampling rate of 

2 and employs sequential time-frequency highpass 

and lowpass filtering. The highpass filter [a(n)] and 

lowpass filter [b(n)], respectively, represent the 

discrete "mother" wavelet and its mirror image. 

"Detailed (cD1)" and "approximations (cA1)," 

respectively, are the names of the first highpass and 

lowpass filter outputs. The cA1 is destroyed 

identically when the required number of 

decomposition levels has been reached. 

The wavelet function is defined by Equation 1&2, 

at time t [28] wherein t = 0, 1.......Z-1, Z = Signal 

Length, p = 0, 1,…..2q – 1, q = 0, 1,……Q – 1, Q = 

log2(t), and set j0 = 2 & k0 = 1.  

∫ 𝜓(𝑡)𝑑𝑡
∞

−∞

= 0 (1) 

𝛹q,p (t) = 𝑗0
−𝑞/2

 𝜓 (𝑗0
𝑞
t – p 𝑘0) (2) 

Equations 3 & 4 represent the wavelet and scaling 

functions required to calculate the detailed 

coefficients (cD) and approximation coefficients (cA).  

ɷ𝑞, 𝑝 (𝑡)  =  2𝑞/2 𝑎 (2𝑞 𝑡 –  𝑝) (3) 

𝜙𝑞, 𝑝 (𝑡)  =  2𝑞/2 𝑏 (2𝑞 𝑡 –  𝑝) (4) 

The ith-level calculations of detailed coefficients 

cDi and approximation coefficients cAi are shown in 

Equations 5 and 6, respectively. 

𝑐𝐷𝑖 =  
1

√𝑍
 ∑ 𝑓(𝑡)

𝑡

 ɷ𝑞, 𝑝 (𝑡) (5) 

𝑐𝐴𝑖 =  
1

√𝑍
 ∑ 𝑓(𝑡)

𝑡

 𝜙𝑞, 𝑝 (𝑡) (6) 

Table 3 provides the Daubechies (db2) wavelet 

coefficients of the 3-level MDWT for the EEG, and 

Table 4 presents the filter coefficients. 

2.4. Significance of Statistical Features 

The Frontal-Medial Theta (FMT) is one of the most 

crucial factors in mild Traumatic Brain Injury (mTBI) 

verification. Statistical features are critical for verifying 

 

Figure 7. The MDWT Mallat's Structure uses a db2 wavelet (128.001Hz sampling rate) 

 

Table 3. The Daubechies (db2) wavelet coefficients of an 

EEG signal after 3-level MDWT 

EEG sub-

band 

Frequency 

Interval (Hz) 

Decomposition 

Level 

Bandwidth 

(Hz) 

θ 4-8 Hz cA3 4 Hz 

α 8-16 Hz cD3 8 Hz 

β 16-32 Hz cD2 16 Hz 

γ 32-64 Hz cD1 32 Hz 

 

Table 4. The wavelet filter coefficient for an EEG signal's 

Daubechies (db2) decomposition 

Tap 
Lowpass filter 

coefficient 

Highpass filter 

coefficient 

0 -0.1294095 -0.4829629 

1 0.2241439 0.8365163 

2 0.8365163 -0.2241439 

3 0.4829629 -0.1294095 
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mTBI because they can distinguish between spikes and 

variations in the EEG of individuals with mTBI and 

individuals in good health [29, 30]. Eight statistical features 

are determined for the FMT of both the FCz and Cz 

electrodes, including mean, variance, root mean squared, 

standard deviation, minima, maxima, peak to peak, and 

absolute difference of signals. A total of 1768 features [712 

features of healthy subjects + 1056 features of mTBI 

patients] were calculated for the FMT-FCz and FMT-Cz. 

To classify mTBI, all the statistical characteristics examined 

positively affected the classifier's accuracy. 

Features Set of FCz Channel: 

Total No. of Features of FCz for Healthy Persons = No. 

of Electrodes × [(No. of Persons × No. of Sessions) + (No. 

of Persons × No. of Sessions) + (No. of Persons × No. of 

Sessions)] × No. of Features  

=  1 ×  [(25 ×  3) +  (5 ×  2)  + (4 ×  1)] ×  8 =  1 ×

 89 ×  8 =  712. 

Total No. of Features of FCz for mTBI Patients = No. of 

Electrodes × [(No. of Patients × No. of Sessions) + (No. of 

Patients × No. of Sessions) + (No. of Patients × No. of 

Sessions)] × No. of Features  

=  1 ×  [(31 ×  3) +  (13 ×  2) + (13 ×  1)] ×  8 =  1 ×

 132 ×  8 =  1056. 

Features Set of Cz Channel: 

Total No. of Features of Cz for Healthy Persons = No. of 

Electrodes × [(No. of Persons × No. of Sessions) + (No. of 

Persons × No. of Sessions) + (No. of Persons × No. of 

Sessions)] × No. of Features  

=  1 ×  [(25 ×  3) + ( 5 ×  2) + (4 ×  1)]  ×  8 = 1 ×

89 ×  8 =  712. 

Total No. of Features of Cz for mTBI Patients = No. of 

Electrodes × [(No. of Patients × No. of Sessions) + (No. of 

Patients × No. of Sessions) + (No. of Patients × No. of 

Sessions)] × No. of Features  

=  1 ×  [(31 ×  3) + (13 ×  2) +  (13 ×  1)] ×  8 = 1 ×
 132 ×  8 = 1056. 

The computational expression of the statistical features 

is illustrated in Table 5.  

The heatmap of eight statistical features of the 

FMT-FCz and FMT-Cz are shown in Figures 8 and 9, 

respectively. 

 

 

3. Results 

 

 

 

  

The performance of the FMT of FCz and Cz with 

different classifiers and splits is shown in Table 6.  

Table 5. The Eight Statistical Features are expressed 

computationally 

Different 

Features 
Notation Algebraic Explanation 

Mean µ µ = 
1

E
∑ z[e]

E

e=1
 

Standard 

Deviation 
σ σ =√

1

E
∑ z[e] ׀ − µ ׀

E

e=1

2 

Variance VAR=σ2 
VAR = 

1

E
∑ z[e] ׀ −

E

e=1

µ 2׀ 

Root Mean 

Squared YRMS YRMS = √
1

E
∑ ׀ z[e] ׀

E

e=1

2
 

Maxima MAX 
MAX = max[z(e)] 

 

Minima MINI MINI = min[z(e)] 

Absolute 

Difference of 

Signals 

(Average Curve 

Length) 

ADS 
ADS = 

1

E
∑ z[e] ׀ −

E

e=2

z[e −  ׀ [1

Peak to Peak PTP 

PTP = MAX – MINI 

PTP = max[z(e)] – 

min[z(e)] 

 

PROOF
The  research  proved  (a)  The  Frontal  Medial  Theta

(FMT)  strength  of  FCz  and  Cz  electrodes  is
approximately  the  same,  and  both  the  electrodes  are

equally crucial for the investigation of mild Traumatic

Brain  Injury  (mTBI),  (b)  The  Random-Forest

Classifier achieved 75.00% accuracy with the  5% split

for  both  FCz  and  Cz  electrodes,  (c)  The  Random-

Forest  Classifier  achieved  65.2174%  accuracy  with

the  10% split  for  both  FCz  and  Cz  electrodes, (d)

The Bagging Classifier achieved 83.3333% accuracy

with the  5% split  for the FCz electrode.
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4.  Discussion 

The EEG features of the examination formed the basis 

for comparing and discussing the work done by 

researchers to diagnose mild Traumatic Brain Injury 

(mTBI). The performed research extracts the frontal 

medial theta (FMT) of FCz and Cz channels by applying 

Multi-level Discrete Wavelet Transformation (MDWT). 

Then, eight statistical features were computed from 

FMT-FCz and FMT-Cz. To verify mTBI, the FMT is 

one of the most critical aspects. The oscillatory strength 

of frontal-medial theta (FMT, 4-8Hz) over the 

Supplementary Motor Area (SMA) or Frontal-Medial 

Cortex (FMC) and the medial-sensory motor cortex 

(mSMC) is systematically associated with efficient 

 

Figure 8. The heatmap of the FMT-FCz for its eight statistical features 

 

Figure 9. The heatmap of the FMT-Cz for its eight statistical features 
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Working Memory (WM) performance. The oscillatory 

strength of the FMT-FCz and FMT-Cz are the same, and 

both have an identical influence on machine learning 

classifiers. Table 7 highlights the current research and 

earlier studies on mTBI. 

Our research surpasses Lewine et al. [6] and 

Vishwanath et al. [17]. We established that in EEG 

analysis, the "Multi-level Discrete Wavelet 

Transformation (MDWT)" remains superior to the 

"Discrete Fourier Transform" and the "Fast Fourier 

Transform." Additionally, the FMT-FCz and FMT-Cz 

are crucial in verifying mTBI compared to the other 

features used to verify mTBI, as shown in Table 6. 

Dhillon et al. [5], average power and alpha: theta ratio, 

two features are extracted via single-channel EEG, 

classified by CNN and XGBoost, where XGBoost 

achieved 98.00% accuracy due to its scalability, whereas 

CNN only reached 80.00%. Lai et al. [14] LSTM for the 

automatic feature extraction and SVM used to classify 

mTBI, where SVM achieved 100.00% accuracy. Also, 

Lai et al. [15] applied CNN for automated feature 

extraction, and SVM was used to classify mTBI, where 

the SVM got 99.76% accuracy. 

5. Conclusion 

The oscillatory strength of the Frontal Medial Theta 

(FMT, 4-8Hz) over the "Supplementary Motor Area 

(SMA)" or "Frontal Medial Cortex (FMC)," and medial-

sensory motor cortex (mSMC) has been systematically 

associated with efficient working memory (WM) 

performance. The FCz and Cz electrodes are placed into 

the FMC/SMA and mSMC to take EEG because the 

FMT rhythm (extracted via MDWT) is crucial for 

verifying mTBI. The strength of the FMT-FCz and 

FMT-Cz electrodes is approximately the same, and both 

are equally crucial to investigating mild Traumatic Brain 

Injury. The primary benefit of the developed Intelligence 

System (IS) is that the implantation of electrodes into the 

FMC/SMA and mSMC directly verifies the mTBI. 

 

Table 6. The performance of the Classifiers with FMT of FCz and Cz channels with various splits (5% and 10%) 

Split ratio  
Electrodes and their 

features 

Ensemble 

Classifiers 

Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

0.05  

FCz and their eight 

statistical features of 

FMT 

Bagging 

Classifier 
83.3333 80.00 80.00 

XGB Classifier 66.6667 60.00 60.00 

Decision Trees 50.0000 40.00 40.00 

Random Forest 75.0000 40.00 100.00 

Cz and their eight 

statistical features of 

FMT 

Bagging Classifier 66.6667 20.00 100.00 

XGB Classifier 50.0000 20.00 33.33 

Decision Trees 75.0000 60.00 75.00 

Random Forest 75.0000 60.00 75.00 

0.10  

FCz and their eight 

statistical features of 

FMT 

Bagging Classifier 60.8696 30.00 60.00 

XGB Classifier 60.8696 30.00 60.00 

Decision Trees 52.1739 50.00 45.45 

Random Forest 65.2174 30.00 75.00 

Cz and their eight 

statistical features of 

FMT 

Bagging Classifier 56.5217 30.00 50.00 

XGB Classifier 47.8261 30.00 37.50 

Decision Trees 52.1739 40.00 44.44 

Random Forest 65.2174 40.00 66.67 
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