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Abstract

Purpose: High-energy protons are generally used for neutron production by Pb, W, Li, Be, and Ta targets that are
used for the Born Neutron Capture Therapy (BNCT) technique. Neutron production targets are destroyed by
proton spallation (evaporation of nuclei). The purpose of this study is the investigation of neutron activation and
proton spallation damage of converter targets using the MCNPX code, which is based on the Monte Carlo method.

Materials and Methods: The MCNPX code was used to extract the activation and spallation information of
secondary particle production in Pb, W, Li, Be, and Ta targets. The neutron activation and proton spallation
damage, including radioactive elements production in converter targets, was extracted from data in the MCNPX
output file.

Results: Results showed that the highest probability of radioactive elements production by proton with low-level
energy in the Ta target are 180Hf, 179Hf, and 178Hf, and in the Li target is 7Be, respectively. In addition, the
most probable radioactive elements produced by 200, 800, and 1200 MeV proton spallation in lead target are
118TI and 78Pt, and in tungsten target are 98Hf, 110Ta, and 111Ta, respectively. The calculations showed that
the production of radioisotopes in reactions with neutrons is lower than the production in reactions with a proton
beam, and with increases in the energy of the proton beam, production of the radioactive elements was increased.

Conclusion: The results illustrated that the radioactive elements are produced in W, Pb, Li, Be, and Te targets in
the BNCT method, which should be avoided as radiation hazards.
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1. Introduction

In order to treatment of cancerous tumors, various
methods were applied such as surgery, laser radiation,
brachytherapy, radiation therapy, chemotherapy
Methods, etc. [1-3]. In radiation therapy, the neutron,
photon, electron, and heavy-ion beam was used for
cancer treatment [4-9]. A neutron beam has been used
in the treatment of brain tumors using the BNCT
technique [10, 11]. Neutron in the BNCT method is
produced in different ways [12-14], such as reactor
and spallation processes [15-18]. In neutron therapy,
the neutron source can be produced by proton
irradiation on special targets. These neutrons
converted to thermal energy by passing through
different materials for the BNCT method [19]. BNCT
treatment works by nuclear capture and fission of
nonradioactive materials such as 10B with low
thermal neutrons. This procedure produces the 7Li and
an alpha particle with high linear energy transfer that
deposits all energy in the tumor. By collision of
particles with high energy, the spallation process can
occur. In this reaction, the light particles were
produced with a smaller atomic number. A spallation
reaction is comparable to a glass being broken into
many pieces. Spallation can be described as a two-step
reaction; the target nucleus is heated in the first step,
and in the second step, the target is evaporated.
stimulated. The neutron beam can be produced by
proton spallation of Li, Be, and Ta targets [20-22]. In
the spallation process with high-energy particles, due
to the energy transfer to the nucleus in the target, the
evaporation process takes place and a wide range of
elements with a mass number less than the target
nucleus is produced [23]. The neutron beam can be
produced by proton spallation of Li, Be, and Ta targets
[35,36].

In this research, the proton spallation of Pb, W, Li,
Be, and Ta targets is investigated for neutron
production. In this paper, the MCNPX code which is
based on the Monte Carlo principles, is used for the
investigation of spallation processes. In fact, the
MCNPX code is a coupling of two previous
calculations, the MCNP and LAHET codes. This code
can transport the neutron and 32 atomic and nuclear
particles. Previously, neutron activation surveys on
patients following Boron Neutron Capture Therapy
(BNCT) were performed [37], but the radioactive
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elements production in converter targets that are built
by neutrons and protons has not been investigated by
researchers. Also, the spectrum of neutrons produced
by Pb, W, Li, Be, and Ta targets can interact activate
with these targets. In addition, the production of
radioactive elements is determined by using the
MCNPX code. The residual radioactivity in BNCT
facilities was studied by neutron activation processes
[38,39]. But residual radioactivity in targets is not
investigated by spallation processes. The aim and
innovation of this research is the calculation of the
radiation damage of the material that used for neutron
production in BNCT method. By using of the
production elements as radiation damage, the radiation
hazards caused by target for BNCT workers can be
investigated.

2. Materials and Methods

The investigation of the neutron activation process
and the spallation of protons in Pb, W, Li, Be, and Ta
targets has been performed. The radioactive elements
in Li, Be, and Ta targets can be produced by proton
spallation. The input file of the MCNPX code, written
in the first step, includes the geometry card, surface
card, and data card, which contain the following
components. The geometry of the cells used consists
of Pb, W, Li, Be, and Ta in the spallation and
activation mode, which is a sphere with a 2 cm radius.
In the data card section, information about the
elements' percentage of material, information about
proton and neutron sources, as well as how to extract
spallation data, and the spectrum of neutrons
produced, is given. Table 1 shows the information on
proton sources used in this project.

The MCNPX code was used to extract the
activation and spallation information. The unit of
spallation and activation damage (or spallation yield)
is the production mass of secondary particle(g) per one
gram(g) of target for a single particle of source(sp)
Therefore, the wunit of spallation damage is

g/(g.sp)=1/sp.

2.1. Validity of the Monte Carlo Simulation
Program

In a Monte Carlo simulation project, it is important
that the validity of the result is investigated by
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Table 1. Information onproton sources and high-energy ions [17, 28, 24,25]

ITon E(MeV/u) amu E(MeV) S;Z(r)ggfe Y Target 1 Density (g/cm?)
H 1.91-2.7 1 1.91-2.7 n Li 0.51

H 9-28 1 9-28 n Be 1.85

H 50 1 50 n Ta 19.6

H 178.5 1 200-1200 n Li 0.51

H 200-1200 1 200-1200 n Pb 11.34

H 200-1200 1 200-1200 n \ 19.3

comparing the result with other similar research. For
this matter, the produced neutron flux by 200 - 1200
MeV proton irradiation on W and Pb targets was
extracted by the MCNPX simulation code and was
compared with the practical result. The neutron flux
generated in W and Pb by 200,800 and 1200 MeV
proton irradiation was extracted and is shown in
Figures 1 and 2.
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Figures 3 and 4 show the neutron flux of Pb and W
target S by 1000 MeV proton beam that measured by
experimental method [26].

Comparison of Figures 3 and 4 with Figures 1 and
2 shows a good agreement between the results of this
paper and other works. Therefore, the validity of this
research is satisfied.
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Figure 1. The neutron flux of the W target by 200 - 1200 MeV Proton irradiation
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Figure 2. The neutron flux of Pb target by 200 - 1200 MeV proton irradiation
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Figure 3. Neutron flux of lead target by 1000 MeV proton beam irradiation [26]
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Figure 4. Neutron flux of Tungsten target by 1000 MeV proton beam irradiation [26]

proton spallation yield of W and Pb by 200,800 and
3. Results 1200 MeV Protons for neutron production was
investigated.
The results are presented in 2 steps. In the first step,
the proton spallation and activation yield of the Li, Be,
and Ta targets were calculated. In the second step, the
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3.1. Proton Spallation and Activation Yield of
the Li, Be, and Ta Targets

The spallation and activation yield of the Li, Be,
and Ta targets by proton irradiation was calculated
with 1.9-2.5 MeV, 9-28 MeV, and 50 MeV protons
that hit the targets, respectively. The radioactive
elements produced in the Li, Be, and Ta targets were
also calculated, and the major radioactive elements
with half-lives longer than a day in every target are
listed in Tables 2-5. In Table 2, Z and N are the atomic
and neutron numbers.

Table 2. Radioactive elements produced by Proton
activation in Li and Be

Element N Z Decay Mode
"Be 4 3 £

Half-life
53.12d

Table 2 shows that the "Be radioactive element with
a half-life d of 53.12 is produced as a result of proton
interaction with Li and Be targets.

Table 3 shows the radioactive elements produced in
the Ta target as a result of proton radiation with an
energy of 50 MeV.

Table 3. Radioactive elements produced by proton and
neutron activation in Ta

Element N Z Decay mode Half-Life
175Ta 73 102 e+p* 10.5h
176Ta 73 103 e+p* 8.09h
177Ta 73 104 e+p* 56.56 h
178Ta 73 105 e+p* 931 m

178mTq 73 105 e+p* 2.36h

I78m2Ta 73 105 IT 60 ms
179Ta 73 106 € 1.82y
180T 73 107 &p” 8.152 h
180mTq 73 107 B~ >1.2E+15y
3Hf 72 101 e+p* 23.6h
174Hf 72102 o 2.0E15y
SHf 72 103 € 70d
THE 72 105 IT 514 m
8Hf 72 106 IT 31y
19Hf 72107 IT 25.05d
180 72 108 IT, B~ 55h

3.2. Proton Spallation Yield of W and Pb
Target

Neutron spallation source facility for BNCT and

industrial application used the proton beam for
neutron generation that hit to the W and Pb targets. In
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the final step, the neutron production and spallation
yield of W and Pb by 200,800 and 1200 MeV proton
irradiation were calculated. The spallation yield of W
and Pb by 1200 MeV proton was shown in Figures 5
and 6.
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Figure 5. The spallation yield (1/sp) of W by 1200 MeV
proton irradiation
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Figure 6. The spallation yield (1/sp) of Pb by 1200 MeV

Proton

Figure 5 shows the spallation yield of the elements
produced in the tungsten target by proton irradiation
with 1200 MeV energy. All produced elements have
an atomic number less than 74. The yield of producing
elements decreases with decreasing atomic number.
The 45 - 74 atomic numbers interval has a higher
production yield than the 0-45 atomic numbers range.
Also, the spallation yield of elements in each atomic
number includes several different isotopes. For
example, for 60 atomic number, about 10 isotopes are
produced. Also, with the reduction of proton energy,
the spallation yield of the produced elements
decreases.
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Figure 6 shows that the produced elements have an
atomic number less than 82. This spectrum of
produced elements has two peaks. The first peak is in
the atomic number range of 0-50, and the second peak
is in the range of 50-82. By decreasing the atomic
number from 80 to 55, the production of elements
decreases. Also, by decreasing the atomic number
from 55 to 40, the yield of element production
increases and then decreases for the 0 — 40 interval.
With the reduction of proton energy, the yield of
element production due to proton spallation decreases.
At the same time, several isotopes are produced for
each atomic number. The number of isotopes
produced for larger atomic numbers is greater than
others.

4. Discussion

According of the result, the production yield of "Be
element is 0.16 that means 16% of the lithium target is
used to produce neutrons due to proton irradiation.
The "Be element produced is a beta-emitter and emits
beta radiation after the proton source is turned off.
Also, results showed that the !"°Ta, '3*™Ta radioactive
element and 174Hf with half-lives 1.2x10 y, 1.82'y,
and 2x10'7 year produced in the Ta target by a proton
beam that has a high half-life. Other radioactive
elements, such as 175Hf, have a shorter half-life of
less than 70d. Therefore, cooling of the target after
turning off is necessary, and radioactivity of the 7Be
and Ta targets is one of the radiation hazard problems
for staff and workers.

According to the Figures 5 and 6, the half-life of
radioactive elements produced in the lead and tungsten
spallation by 200- 1200 MeV proton irradiation for
neutron production was calculated and is shown in
Tables 4 and 5.

Table 4 shows the half-life of radioactive elements
produced in the proton spallation of a tungsten target.
About 150 radioactive elements were produced, of
which 37 have a half-life of more than a year, 65 have
a half-life of less than a day, and the rest have a half-
life of less than an hour. Table 5 shows the half-life of
the elements produced as a result of the proton
spallation process of lead targets. About 525
radioactive elements with a half-life longer than an
hour are listed in this Table. About 250 radioactive
clements have a half-life of less than a day, 103
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elements have a half-life of more than a year, and 372
radioactive elements have a half-life of less than a year
and more than a day. The results of Tables 5 and 6
show that the tungsten and lead targets, for neutron
production due to the proton spallation process, will
be activated by a wide range of radioactive elements.
After turning off the proton source, the radiation
emitted in tungsten and lead targets will pose serious
risks for the staff. Therefore, when changing targets,
this point should be taken into account, and the
occurrence of radiation risks should be prevented by
installing a suitable shield. If it is necessary to change
the target, the protection principles must be fully
obeyed. According to the Monte Carlo simulation
result, the spallation yield of radioactive production in
lead and tungsten by 200-1200 MeV proton was, and
the spallation yield of radioactive production in
tungsten for 1200 MeV is shown in Figure 7.
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Figure 7. Spallation yield (1/sp) of radioactive production
in tungsten by 1200 MeV proton irradiation

Figure 7 shows the benefit of producing radioactive
elements as a result of the spallation process with
protons with an energy of 1200 MeV in the tungsten
target. As it is clear in Figure 7, the radioactive
elements with the highest production yield are in the
45-74 atomic number range. It is also clear that the
radioactive elements with atomic numbers 15 to 45
have equal spallation yield. The most probable
spallation yield of radioactive production in tungsten
by 200,800 and 1200 MeV proton was extracted and
is shown in Table 6.

The most probable spallation yield of radioactive
production in lead by 200,800 and 1200 MeV proton
was extracted and is shown in Table 7.
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Table 4. Half-life of radioactive elements produced in tungsten spallation by high-energy proton irradiation for neutron

production
2z @ : 2 @ 2z @ : 2 @ 2 @ 2z @
38 &  3u 2 §=8 & Fa £ 3w GRS 1B
'20s  22.10h  169Yb  32.026d  96Zr >3.8E19y $Sm  340d 107Cd 6.50 h 70Zn  >SEl4y
18305 13.0h  175Yb  4.185d 97zt 1691h  'Sm  1.03E8y  101Pd 8.47h 7mZn  3.96h
BmOs  99h  176mLu  3.635h 85Y 268h  'Eu 13537y  103Pd  16991d  72Zn  465h
174Ta 1.05h 177Lu 6734d  85mY  486h  '™"Eu 93116h  107Pd  6.5E6y  61Cu  3.333h
177mLu 1604 d 86Y  1474h  '™Eu 8593y  109pd  13.7012h  64Cu  12.700h
175Ta 10.5h 179Lu 4.59h 87Y 798h  'PEu 47611y  112Pd 21.03h  67Cu  61.83h
7Ta  8.09h 128Ba 243d 87mY  1337h  Gd  4827d  99Rh 16.1d 56Ni 6.077d
TTa  5656h  123Xe 2.08h 88Y  106.65d 'Gd  3806h  99mRh 4.7h 55Fe 273y
78T 236h 124Xe  >1.6E+14y  90Y  6400h  'Gd 746y 100Rh 208 h 59Fe  44.503d
BmHf  55h 125Xe 169 h 90mY  3.19h  Gd  9.28d 101Rh 33y 60Fe  1.5E6y
BIHf  4239d  127Xe 36.4d 83Rb  86.2d  'Gd 1.79E6y 10lmRh  4.34d 52Mn  5.591d
'®Hf  9E6y  129mXe  8.88d 84Rb  3277d  P'Gd  124d 102Rh 207d  44mSc  58.6h
SHf  1.067 h 1211 2.12h 86Rb  18.631d  '°Gd 1.08El4y  99Tc  2.111ESy  46Sc  83.79d
La 48h2  121mTe 154d 87Rb  4.75E10y '$Gd  2404d  99mTc 6.01 h 47Sc  3.3492d
Bla  3912h  123Te  >IEI3y  76Kr 148h  'Tb 71y 90Mo 556 h 36C1  3.01ESy
“Nd  337d  123mTe  119.7d 79Kr  3504h  'Tb 180y 93Mo 4.0E3y 358 87.32d
“INd  249h  125mTe  57.40d 81Kr  229E5y '“Tb  723d  93mMo  6.85h 32 14262d
“INd  2.29El5y  127Te 9.35h 758 119.779d Dy  2.38h 99Mo 65.94 h 33P 2534d
Wpm o 265d 128Te  22E24y 79S¢  1.13E6y '“Dy  6.4h 100Mo  1.00E+19y  32Si 150y
“pm 363 d 117Sb 2.80h 82Se  1.08E20y 'Tm  9.25d 89Nb 1.9h 26A1  7.17E5y
“Pm 177y  118mSb  5.00h 71As  6528h  'Tm  93.1d 86Zr 16.5h 28Mg  2091h
“pm 553y 111In~ 2.8047d  72As  260h  '“Tm  128.6d 87Zr 1.68 h 22Na  2.6019y
“Pm 26234y  113mln 1.6582h  73As  8030d 'Tm 192y 88Zr 83.4d 24Na  14.9590 h
“Spm 5370d  114mIn 4951d  74As  17.77d  'Tm  63.6h 89Zr 78.41 h 14C 5730y
“Smpm 4129d  115In 441El4y  65Zn  24426d '®Tm  824h 93Zr 1.53E6y  10Be  L.51E6y
“Pm  5308h  115mIn  4486h  69mZn  13.76h  'Yb  56.7h 95Zr 64.02 d

Tables 6 and 7 show that with increasing proton
energy, the spallation yield of radioactive elements
increases. Also, the atomic and mass numbers of the
elements produced with the highest spallation yield
increase with increasing proton energy and reach
elements with higher mass and atomic numbers. For
the tungsten target, '"°Hf, '**Ta, and '®'Ta elements
have the highest spallation yield, and for the lead
target, Tl and '8Pt elements have the highest
spallation yield.

60

5. Conclusion

A neutron beam was produced by proton irradiation
of special targets that were used for the treatment of
internal tumors. The proton spallation of W, Li, Be,
Ta, Pb targets used in the BNCT therapy process can
produce the radioactive elements in these materials.
The proton-to-neutron spallation converter materials
for the neutron production process can be damaged by
this converter. The radioactive elements that exist in
proton spallation converters must be considered in the
BNCT method. The results showed that the
radioactive elements are produced in W, Pb, Li, Be,
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Table 5. Half-life of radioactive elements production in lead spallation by high energy proton irradiation for neutron
production

‘:52 2a} T 52 2a} T 52 = = é 53] = ’:52 53] jasi é Sa] T
202Bj 1.72h 8Sm  7E+15y 103pq 16.991d  '®Re 24.3h 129my e 8.88d MAs  17.77d
203Bj 11.76 h 9Sm  >2E+15y  '"Pd 6.5E6y 176w 25h Blmye  11.84d As  1.0778d
204Bj 11.22h 151Sm 90y 1pd  13.7012h W 21.6d 133Xe 5243 d As  38.83h
205Bj 1531d 19Sm  46.284h  ''mpd 55h 181y 1212d  mXe 2.19d 6Ge 2.26h
206Bj 6.243 d 156Sm 9.4h 112pq 21.03 h BW  >11E17y  Xe 9.14h 8Ge  270.8d
207Bj 31.55y 45Ey 5.93d %Rh 16.1d 6Xe  236E2ly  ®Ge  39.05h
MBj  368ESy  “Eu 4.61d %mRh 47h 8w >3El17y 121 2.12h Ge 11434
198pp, 2.40h 4Ry 24.1d 10Rh 20.8 h 185y 75.1d 1231 13.27h Ge  11.30h
200p 21.5h B o 54.5d 101Rh 33y 187W  23.72h 1241 4.1760d  %Ga 9.49 h
201pp 9.33h 149Ey 93.1d 101mR |y 434d 1883y 69.4 d 1251 59.408d  Ga  3.2612d
22pp  525E4y  'Eu 369y 12Rh 207d 173Ta 3.14h 1261 13.11d Ga  14.10h
202mppy 3.53h 150mEy 12.8h 102mR |y ~29y 174Ta 1.05h 1291 1.57E7y  7Ga 4.86h
25pp  51.873h  'SEu 13537y  '%Rh 3536 h 130] 12.36 h ®Zn  9.186h
24ph  >14El17y '¥™Eu  9.3116h %Ru 1.643 h 175Ta 10.5h I 8.02070d  ®Zn  244.26d
25pp  1.53E7y  'SEu 8.593 y 9Ru 2.9d 176Ta 8.09 h 1321 2295h  ®mZn 1376 h
19571 1.16h By 47611y  '®Ru 39.26 d "Ta 56.56 h 132my 1.387h NZn  >5El4y
19671 1.84h 156y 15.19d 105Ry 4.44h 178mT 2.36h 133 20.8 h m7Zn 3.96h
196m ] 1.41h 157Ey 15.18 h 06Ry  373.59d 1"9Ta 1.82y 1351 6.57h 72Zn 46.5h
19771 2.84h 146Gd 48.27d %Tc 2.75h 180Ta  8.152h 116Te 2.49h ®Cu  3.333h
19871 53h 41Gd 38.06 h 9T 20.0h mTa  >12E15y  "Te 6.00d #Cu  12.700 h
198mT] 1.87h 148Gd 74.6 y 95T 61d $2Ta  11443d  "Te 16.03 h “Cu  61.83h
19971 7.42h 199Gd 9.28d %Tc 428d 1OHf 1601 h  "9"Te 470d Ni - 6.077d
2001 26.1h 0Gd  1.79E6y IT¢ 2.6E6y T Hf 12.1h 121Te 16.78 d Ni  35.60h
201T] 72912h  Y'Gd 124d 9T 90.1d I2Hf 1.87y 12imTe 154 d Ni  7.6E4y
20011 12.234d 2Gd  1.08El4y  *Tc 42E6y IBHf 23.6h BTe  >1E+13y  ®Ni 100.1y
2041 3.78y 153Gd 2404 d PTc  2.111E5y  '™Hf  2.0E15y '2"Te 119.7d ®Ni  2.5172h
192Hg 4.85h 4Th 1.7h 9T 6.01h 175Hf 70d 125mTe  57.40d Ni 54.6h
19Hg 3.80h 149Th 4118 h %Mo 5.56h 1T8mELf 3ly 127Te 9.35h Co  17.53h
193mHg 11.8h 150Thb 3.48h %Mo 40E3y  'mHf  2505d  'Y™Te 109d %Co 77274
194Hg 444y 15ITh 17.609h  %"Mo 6.85h I2Hf 9E6 y 128Te  202E24y  Co  271.79d
19Hg 9.9h 192Th 17.5h %Mo 65.94h ISSHF 1.067h  'mTe 33.6d %Co  70.86d
195mHg 41.6h 153Th 2.34d 1Mo 1.00E19y  '4Hf 4.12h Te  79E20y  ®"Co  9.04h
19Hg 64.14h 154Th 21.5h $Nb 1.9h 1325 48h 13ImTe 30h 0Co 52714y
197mH g 23.8h 154m T 9.4h $9mMNb 1.18h 3La 3912 h 132Te 3.204d 61Co  1.650h
MWHg  46.612d  'M2Th 22.7h 9Nb 14.60 h 135La 19.5h 1178h 2.80h 2Fe 8.275h
191Au 3.18h 155Th 5.32d INb 680y 1¥La 6E4y 118mg 5.00h 55Fe 273y
19ImA Y 0.92s 156Th 535d 9ImMN 60.86 d La  1.05EIly  '"Sb 38.19h “Fe  44.503d
192Au 4.94h 156mTy 24.4h 2Nb 347E7y  La  1.6781d  '*Sp 576 d ®Fe  1.5E6y
193 Au 17.65h  156m2Tp 53h 92mNb 10.15d 4iLg 3.92h 22gh  27238d  ¥Mn  5.591d
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19ImQg 13.10h 129Cs 32.06 h 186mRe 2.0E+5y 124X 1.6E+14y  T'As 6528 h
1930s 30.11h BICs 9.689 d "Br 57.036 h 187Re 4.35E10y 125Xe 169h 2As 26.0h
1940 6.0y 132Cs 6.479d 80mBy 4.4205h 188Re 17.005 h 127X e 36.4d As 80.30d

18IRe 199h 134Cs 2.0648 y 82Br 3530h

Table 6. The most probable spallation yield of radioactive production (SPRP) in tungsten by 200,800 and 1200 MeV proton
(Ep) irradiation

SPRP for

7 N Ep=200 7 N SPRP for Er=800 7 N SPRP for Ep=1200
MeV MeV MeV
72 98 0.00409 73 111 0.018218 73 110 0.016805
72 100 0.003931 73 101 0.007474 64 82 0.005084
72 101 0.003341 73 103 0.007048 73 109 0.004973
72 102 0.003286 73 109 0.00589 73 102 0.00489
72 99 0.003263 73 105 0.005878 73 100 0.004855
72 103 0.002551 72 99 0.005794 73 104 0.00448
71 98 0.002075 73 100 0.005722 73 106 0.004398
72 106 0.001758 73 102 0.005659 66 86 0.004387
71 99 0.001485 71 98 0.005576 73 107 0.004053
71 100 0.001347 73 107 0.005507 60 78 0.003994
72 107 0.00112 71 99 0.005458 68 90 0.003958
72 108 0.000922 66 87 0.005139 73 101 0.003928
71 101 0.000906 73 104 0.005093 73 105 0.003896
71 102 0.000696 73 106 0.004884 63 82 0.003887
72 109 0.00049 73 110 0.004849 60 77 0.003718
70 96 0.000444 72 101 0.004471 72 98 0.003694
71 103 0.000409 64 83 0.004404 64 84 0.003586
72 110 0.000291 72 98 0.004395 73 103 0.003574
71 105 0.00016 68 90 0.004232 71 98 0.003517
70 99 0.000152 72 100 0.004107 64 83 0.003354
71 106 0.000145 69 94 0.003921 65 84 0.003175
69 94 0.000102 66 86 0.003789 72 100 0.00309

and Ta targets and must be avoided during radiation
hazards calculation. The simulation results show that
proton spallation of W and Pb targets produced the
(Y°Hf, '8%Ta, '8°Ta) and ('°TL'°Pt) radioactive
elements with high spallation yield, respectively,
which should be considered as radioactive hazards for
these targets. With increased energy of the proton
beam, the amount of production of the radioactive
elements was increased. Also, the Monte Carlo result
shows that the production of radioactive elements in
reactions with secondary neutrons is lower than in
reactions with the primary proton beam.
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Table 7. The most probable spallation yield of radioactive production in Lead by 200,800 and 1200 MeV protons

7 SPRP for SPRP for SPRP for
N Er=200 z N Er=800 V/ N Er=1200
MeV MeV MeV
81 118 0.012081 78 108 0.008673 78 108 0.005488
81 120 0.010675 78 109 0.006797 78 109 0.004507
81 116 0.010262 78 110 0.006741 78 110 0.004274
81 119 0.009813 80 114 0.00612 80 114 0.004019
81 117 0.00969 80 112 0.005897 81 118 0.003936
81 121 0.008471 81 118 0.005782 81 120 0.003922
81 115 0.007583 77 108 0.00567 77 108 0.003914
81 114 0.007011 81 116 0.005622 81 116 0.003731
81 123 0.00642 81 114 0.005378 81 123 0.00371
80 114 0.003784 81 120 0.005118 80 112 0.003481
80 115 0.002871 80 113 0.004956 81 121 0.00338
80 117 0.00266 81 117 0.004851 81 119 0.003366
80 113 0.002614 81 119 0.004749 81 114 0.003343
80 112 0.002609 81 115 0.004678 73 100 0.003225
80 123 0.001019 80 115 0.004343 81 117 0.003193
79 112 0.000697 81 121 0.004325 80 113 0.003098
79 114 0.000602 81 123 0.004239 81 115 0.002986
79 113 0.000555 78 111 0.004023 80 115 0.002823
79 115 0.000399 79 112 0.003958 78 111 0.002636
79 116 0.000368 73 100 0.003512 68 90 0.002618
78 110 0.000367 80 117 0.003351 79 112 0.00251
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