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Abstract 

Purpose: Lung cancer is a deadly disease that has high occurrence and death rates, worldwide. Clinicians are 

widely using computed tomography imaging for the detection of lung cancer. Radiomics extracted from medical 

images together with a machine learning platform has given encouraging results in lung cancer diagnosis. 

Therefore, this study is proposed with the aim of efficiently applying and evaluating radiomics and ML techniques 

to classify pulmonary nodules in CT images.  

Materials and Methods: Lung Image Data Consortium is utilized in which nodules are given malignancy scores 

1 through 5 i.e. benign through malignant. Three scenarios are created using these scores: G54 Vs G12, G543 Vs 

G12, and G54 Vs G123. Radiomics is extracted using Shape, Gray Level Co-occurrence Method, Gray Level 

Difference Method, and Gray Level Run Length Matrix along with Wavelet Packet Transform. To select a 

relevant set of features, four techniques i.e. Chi-square test, Analysis of variance, boosted ensemble classification 

tree and bagged ensemble classification tree are applied. The classification of nodules into benign or malignant 

is evaluated by using six models of support vector machine. 

Results: The results, in Scenario 1, show that CGSVM+Chi-square yields the best sensitivity of 81.4%. In 

Scenario 2, LSVM+ANOVA yields the best sensitivity of 80.5% compared to the rest of the models, and in 

Scenario 3, FGSVM+BACET gives the best sensitivity of 72.3% compared to the rest of the models. 

Conclusion: Overall, the study demonstrates that the radiomics and feature selection methods employed in 

combination with the different support vector classifiers performed significantly and achieved decent results for 

the classification of CT pulmonary nodules. The outcome thus can help the clinicians to diagnose, and make better 

decisions and treatments. 

Keywords: Lung Cancer; Lung Image Data Consortium; Radiomics; Support Vector Machine; Feature Selection; 

Machine Learning. 
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1. Introduction  

Lung Cancer (LC) is a disease impacting both male and 

female populations worldwide. It has occupied the second 

most places among all the types of cancers, having 2.21 

million cases and the rate is gradually increasing. The 

condition in which there is an uncontrollable abnormal 

growth of the cells in lung tissues is referred to as nodule 

and slowly it spreads to other organs, too. Many factors 

including smoking, drug intake, and inhalation of harmful 

substances produced by industries and vehicles are the 

main cause of LC [1]. The major impact of LC is seen in 

people with age over 70 years while a small number of 

people detected with this disease age less than 45 [2]. In a 

report provided by the World Health Organization (WHO) 

[3], about 1.80 million deaths are caused just because of 

LC. A report on USA statistics from the period (2011-

2015) revealed that 439.2 per 100,000 cases, on average, 

were recognized and 163.5 per 100,000 persons lost their 

lives each year due to LC. In the UK also, every year, 

approximately, 44,500 cases are diagnosed with LC [4]. 

For early detection of LC, Pulmonary Nodules (PNs) 

are primarily focused as they provide a direct picture of 

cancer spread. A lung nodule comprises a round lesion 

having a diameter of ≥ 3 cm. It can be benign which is 

non-cancerous or malignant which is often referred to as 

cancerous [2]. High mortality increases dramatically in the 

presence of malignant lung nodules whereas the patient’s 

survival rate is high with benign lung nodules. The early 

and accurate diagnosis of LC requires proper 

differentiation between benign and malignant nodules [5]. 

One of the crucial hurdles in the detection of LC is that it 

doesn’t show any symptoms in the early stages. Many of 

the cases come into knowledge or are discovered by 

doctors when LC reaches its advanced stage and curing 

the disease becomes very difficult at that time. Several 

clinical techniques are available to detect LC such as 

radiology and blood tests, endoscopy, biopsies, X-ray 

imaging, etc. Among these, the Computed Tomography 

(CT) technique is a highly adopted modality used for LC 

diagnosis as it provides fast results without any pain and 

provides in-depth details about tumor location, size, shape, 

etc. [4]. However, these clinical measures are effective but 

perform only subjective analysis and have a high risk of 

occurrence of human error due to manual evaluation by 

radiologists [6]. Hence, using the capabilities of 

Computer-Aided Diagnosis (CAD) is crucial in assisting 

medical practitioners with the detection of tumors and the 

proper classification of lung nodules as either benign or 

malignant. 

The utilization of radiomics has proven its efficacy in 

LC diagnosis as it can extract a large number of 

quantitative image features [7]. Radiomics is a 

quantitative approach that applies data-characterization 

algorithms whose purpose is to improve the already 

available data using mathematical analysis [5, 8]. 

Radiomics and advanced learning approaches can be used 

in combination to perform an accurate diagnosis of LC. 

The introduction of Machine Learning (ML) in healthcare 

has changed the face of disease diagnosis. ML algorithms 

have the greater capability to deal with different types of 

data and produce classification output with high accuracy. 

Parmatasari et al. [9] applied a Support Vector Machine 

(SVM) to classify LC and yielded an accuracy of 85.63%. 

In another study, Abbas et al. [10] proposed an automated 

system to classify LC into benign and malignant and the 

implication of SVM achieved the highest accuracy.  

In radiomics, we can get features from 2D Regions of 

Interest (ROI) and/or 3D Voxels of Interest (VOI). The 

proposed study aims to evaluate the performance of 

diagnostic systems by applying 2D radiomics and ML 

approaches for the diagnosis of cancer from lung nodules 

using CT images. The approach employs the selection of 

the most suitable radiomics features for classification. 

Various versions of SVM are evaluated through various 

feature selection methods under different scenarios. The 

performance of the model is evaluated using metrics to 

find the best one. The presented framework is useful and 

reliable in the successful classification of lung tumors as 

benign or malignant. 

1.1. Related Work 

Shakir et al. [8] developed radiomics-driven models 

to classify lung, colon, neck, and head cancer using CT 

images. Analytical radiomics signatures from lung 

nodules were extracted and derived from 105 3-D 

features. These signatures were incorporated into the 

regression model for tumor classification. Validation 

on 265 public datasets demonstrated high 

classification rates, indicating the robustness of the 

models. The study suggested the successful 

development of diagnostic mathematical functions for 

cancer diagnosis based on general tumor phenotype. 

Belfiore et al. [11] examined Non-Small Cell Lung 

Cancer (NSCLC) CT scan radiomics characteristics' 
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resilience among segmentation approaches. Expert 

radiologists segmented three 3D-ROIs to analyze 

radiomics characteristics in 48 NSCLC patients. The 

Intra-class Correlation Coefficient (ICC) measured 

feature agreement and calculation parameter 

sensitivity. 'Shape' characteristics demonstrated good 

agreement (ICC>0.9) and little parameter sensitivity. 

A subset of 'first-order' and 'second-order' 

characteristics showed good agreement. The study 

found that certain radiomics properties can 

significantly improve NSCLC CT scan repeatability. 

Padmakumari et al. [12] tested CT radiomics for its 

ability to discriminate LC from Tuberculosis (TB) in 

low-income nations without lung biopsies. Radiomics 

characteristics were derived from 3D segmented CT 

images of histologically proven TB or LC patients' 

chests. Clinical and radiomics differences between LC 

and TB were significant. Radiomics may enhance 

resource-limited oncological patient treatment by 

identifying these illnesses non-invasively. However, 

prospective studies are needed to confirm these 

findings. 

Radiomics [5] was used in cancer diagnosis, 

prognosis, and therapy response prediction by Chen et 

al. A 4-feature signature was used to classify lung 

nodules using radiomics and CT images. In 72 

individuals with 75 PNs, benign and malignant lesions 

differed in 76 out of 750 imaging characteristics. The 

radiomics signature classified benign or malignant 

nodules with 84% accuracy, 92.85% sensitivity, and 

72.73% specificity. The study found that radiomics 

can enhance lung nodule categorization non-

invasively. The study in [13] developed a radiomics 

nomogram using wavelet characteristics to 

differentiate between malignant and benign early-

stage lung nodules for high-risk screening purposes. 

The training set (N = 70) and validation set (N = 46) 

of 116 patients were considered with early-stage 

solitary PNs of size 3 cm. Standard CT pictures were 

used to extract each patient's radiomics characteristics. 

Using a multivariate logistic regression model, the 

researchers generated a radiomics nomogram with an 

Area Under the Curve (AUC) of 0.9406, accuracy 

of 95%, and Confidence Interval (CI) of (0.8831-

0.9982) in the training set, and an AUC of 0.8454, 

accuracy of 95% CI: 0.7196-0.9712) in the validation 

set. Donga et al. [3] used modified gradient boosting 

ML to classify pulmonary nodules in CT images.  

They preprocess CT images, segment nodule borders, 

extract intensity and texture data, and train/test the 

modified gradient boost classifier to discriminate 

benign from malignant nodules. The suggested 

framework achieves good precision, recall, F1 score, 

and validation accuracy on the LIDC-IDRI dataset 

(0.957%, 0.91, 0.941, and 95.67%). Comparative 

research shows that suggested technique classifies 

benign or malignant lung nodules better. 

The study in [14] designed a computerized system 

trained on samples of Colorectal Cancer (CRC) tissue 

to distinguish between eight distinct types of CRC. 

Visual descriptors such as local binary patterns, 

wavelet transforms, and Gabor filters were used to 

generate 532 pathomics characteristics incorporated 

into the system. Scale affects CRC tissue 

differentiation, as shown by a thorough analysis of 

wavelet families and characteristics. With tenfold 

cross-validation, the model outperformed previous 

research with an accuracy of 95.3%. Importantly, the 

research confirmed that classification performance 

was preserved when applying wavelet approximations 

at the first and second levels. Khehrah et al. [6] 

automate lung nodule identification using CT scans. 

Grayscale histograms and morphological techniques 

isolate lung regions and extract interior features. A 

threshold-based method isolates candidate nodules. 

Statistical and shape-based characteristics from 

nodule candidates produce feature vectors categorized 

by SVM. The method's 93.75% sensitivity on a large 

lung CT dataset (LIDC) outperforms comparable 

approaches. The framework improved lung nodule 

identification and diagnosis. SVM classification using 

GLCM and RLM features is used to identify lung 

cancer by Permatasari et al. [8]. The study classifies 

500 Cancer Imaging Archive Database CT pictures 

into normal and LC clusters. The study 

investigated image preprocessing, region of interest 

(ROI) segmentation, and feature extraction. Default 

SVM classification accuracy is 85.63%. 

Torres et al. [15] experimented Feed forward 

networks generalized radiomic CT scan nodule 

features. They suggested incorporating statistically 

important radiomic features for malignancy detection 

to improve repeatability with limited training data. 

The best model identified malignancies with 100% 

sensitivity and 83% specificity (AUC = 0.94) in an 

independent patient population. Alzubaidi et al. [4] 

developed a comprehensive and comparative 
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methodology for LC diagnosis utilizing CT scan 

images, covering global and local aspects. 1000 CT 

scan pictures were preprocessed by warping and 

cropping. Global and local features' training and 

testing make up the framework. Global features from 

ten image feature categories are extracted to provide 

feature vectors for six machine-learning algorithm 

detection models. Gabor Filter, Haar Wavelet feature, 

and Histogram of Oriented Gradients (HOG) 

outperform others, while SVM outperforms learning 

techniques. SVM with Haar Wavelet, HOG, and 

Gabor Filter features achieves 90% accuracy, 88% 

sensitivity, and 97% specificity, outperforming global 

approaches. 

2. Materials and Methods  

2.1. Data Set 

This research work is proposed to execute the 

classification of lung nodules in CT images as benign 

or malignant using radiomics, feature selection, and 

SVM. The strategy comprises different stages 

including dataset collection, feature extraction, feature 

selection, classification, and performance assessment. 

Firstly, the dataset is acquired from an online 

repository of CT images, and preprocessing is done to 

improve the quality of the image. Then the features are 

extracted from images using shape and texture 

analysis on images directly and on multi-spectral 

images as well. Fourthly, filter and embedded-type 

feature selection methods are employed to select 

relevant features. At last, classifiers are used and the 

performance of each model is analyzed using various 

evaluation measures. 

A dataset plays a vital role in the diagnostic system. 

In this work, CT images from the Lung Image Data 

Consortium (LIDC) database are utilized. This LIDC 

database has 1018 CT patient cases along with four 

experienced radiologists' ground truth reports. The 

Malignancy Score (MS), 1 through 5, of nodules ≥ 

3mm and the annotations accorded by radiologists are 

described in detail in [16, 17, 18]. In this study, 

random 160 cases were used. The slice count varied in 

the range of 110-388. A total of 4157 DICOM slices 

of CT scans were hence collected and considered. The 

nodules in these CT slices with different MS i.e. score 

1 indicating benign, score 2 likely benign, score 3 

indeterminate, score 4 likely to be malignant, and 

score 5 highly likely to be malignant were separated. 

(Table 1a). 

Three scenarios were created: Scenario 1 (G54 Vs 

G12), Scenario 2 (G543 Vs G12), and Scenario 3 (G54 

Vs G123). In Scenario 1, nodules with MS 5 and 4 

were taken as malignant and that of 3 and 4 were taken 

as benign. We discarded lung nodules with MS 3 to 

lessen the consequences of an indeterminate 

assessment of nodule malignancy. Thus there are 1703 

malignant and 1265 benign nodules. Again, Scenario 

2 and 3 were created so that indeterminate and 

uncertain nodules are grouped as malignant and 

benign ones, respectively, to assess the effect of 

nodules with malignancy suspicion on the proposed 

model’s performance. Accordingly, 2892 malignant 

and 1265 benign nodules are grouped in Scenario 2, 

and 1703 malignant and 2454 benign nodules are 

categorized in Scenario 3 (Table 1b). Some of the 

samples from the LIDC dataset with different MS are 

shown in Figure 1.  

 

 

Table 1a. Lung cancer score with respective meaning [18] 

and number of ROI’s considered 

Malignancy 

Score 
Meaning # of nodule ROIs 

1 Benign 324 

2 Likely Benign 941 

3 Intermediate 1189 
4 Likely Malignant 820 

5 Malignant 883 

 

Table 1b. Distribution of nodules with malignancy scores 

in 3 different Scenarios 

Dataset Malignant Benign 

Senario 1 

Malinancy 

Score 

# of nodules 

 

Aggregate 

5           4 

883    820 

 

1703 

1         2 

324     941 

 

1265 

Senario 2 

Malinancy 

Score 

# of nodules 

 

Aggregate 

5         4          

3 

883     820    

1189 

 

2892 

 

1         2 

324     941 

 

1265 

Senario 3 

Malinancy 

Score 

# of nodules 

 

Aggregate 

5         4 

883     820 

 

1703 

1         2         

3 

324     941   

1189 

 

2454 
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In this work, median filtering is performed as the 

pre-processing step to remove redundant noise from 

the data. A median filter is a non-linear filter and is 

widely used to remove noise from images. The 

framework of the proposed methodology is illustrated 

in Figure 2. 

2.2. Feature Extraction 

Feature extraction is performed on the entire 

dataset. In this work, radiomics based on texture and 

shape features are extracted using statistical 

techniques. Initially, from annotations of the 

radiologist, the ROI of nodules is obtained. Shape 

features of all nodules are extracted. A sub-image of 

11×11 pixels is selected around the centroid of each 

nodule and texture analysis is carried out. An 

overview of these features is briefly described as: 

2.2.1. Shape Features 

The classification process relies significantly on 

several shape factors. These characteristics are critical 

since they are directly related to the identification and 

prognosis of cancer [19]. Seven such features are 

extracted namely Area, Perimeter, Major-axis-Length, 

Minor-axis-Length, Max-Intensity, Mean-Intensity, 

and Min-Intensity. The list of these extracted features 

is given in Table 2. 

2.2.2. Texture Features 

Texture analysis is a method for image analysis and 

classification [20]. It is a way of describing the spatial 

distribution of intensities [21] hence enabling the 

description of tissue heterogeneity, a property 

believed to influence the outcome of cancer treatment 

[22]. In this work, Haralick’s texture features are 

calculated as per the equations given in [20] from 

GLCM, GLDM, and GLRLM [6, 9, 10, 20, 23]. The 

second-order statistical method counts the relationship 

between two surrounding pixels in GLCM and GLDM 

whereas high-order features employ a run-length 

matrix such as GLRLM [20]. 88, 20, 44 features are 

extracted using GLCM, GLDM, and GLRLM, 

respectively, taking 4 directions (θ) and inter-pixel 

distance (d) of one into consideration. Using GLCM 

twenty-two texture features are computed viz. 

Autocorrelation (ACOR), Contrast (CON), 

Correlation 1 (COR1), Correlation 2 (COR2), Cluster  

 

Figure 1. LIDC dataset sample images with ROI’s 

having malignancy score: 1 to 5 

 

Figure 2. Proposed framework to diagnose lung cancer 

 

PROOF



Evaluation of Radiomics and Machine Learning for Classifying Pulmonary Nodules in CT Images   

XX  FBT, Vol. 11, No. 4 (Autumn 2024) XX-XX 

 

Prominence (CP), Cluster Shade (CS), Dissimilarity 

(DS), Energy (ENR), Entropy (ENT), Homogeneity 1 

(HMG1), Homogeneity 2 (HMG2), Maximum 

Probability (MP), Sum of Squares: Variance (SOS), 

Sum Average (SA), Sum Variance (SV), Sum Entropy 

(SENT), Difference Variance (DV), Difference 

Entropy (DENT), Information Measure of 

Correlation1 (IMC1), Information Measure of 

Correlation 2 (IMC2), Inverse Difference Moment 

(IDM), Inverse Difference Moment Normalized 

(IDMN). 

Five texture features; Contrast (CON), Angular 

Second Moment (ASM), Entropy (ENT), Mean (M), 

Inverse Difference Moment (IDM) are computed from 

GLDM.  

Also, using GLRLM eleven features are computed 

namely Short Run Emphasis (SRE), Long Run 

Emphasis (LRE), Gray Level Non-uniformity (GLN), 

Run Length Non-uniformity (RLN), Run Percentage 

(RP), Low Gray-Level Run Emphasis (LGRE), High 

Gray-Level Run Emphasis (HGRE), Short Run Low 

Gray-Level Emphasis (SGLGE), Short Run High 

Gray-Level Emphasis (SRHGE), Long Run Low 

Gray-Level Emphasis (LRLGE), Long Run High 

Gray-Level Emphasis (LRHGE). The list of features 

extracted is given in Table 2 and the list of feature 

classes along with the no of features extracted in each 

class is provided in Table 3. 

2.2.3. WPT Features 

The discrete wavelet transform (DWT) is a multi-

leveled sub-band framework which decomposes an 

image into the approximation image (LL) and details 

images (LH, LV, LD). The approximation sub-band, 

LL is then decomposed further into a second level of  

 

approximation and details, and so on. WPT is an 

extension of Discrete Wavelet Transform (DWT) 

where decomposition is carried on both 

approximations and details into a further level of 

approximations and details [24, 25]. In this proposed 

scheme, a two-level WPT is performed, as shown in 

Figure 3. There is no need to perform a deeper 

decomposition because, after the second level, the size 

of the image becomes too small, and no more valuable 

information is obtained [24]. The second level of 

decomposition provides one image of approximation 

and 15 images of details which are displayed in Figure 

3. A comprehensive description of realization and 

equations used are provided in [24- 26]. In this work, 

Daubechies wavelet family, db1, db2, and db3, 

introduced by Daubechies [27], are applied to 

implicate WPT on each of the sub-images. As 

discussed, this step generates 16 sub-images whose 

 

Figure 3. Block diagram of WPT  

 

Table 2. List of features per class 

GLCM 

Autocorrelation (ACOR), Contrast (CON), Correlation1 (COR1), Correlation2 (COR2), Cluster Prominence (CP), Cluster Shade 

(CS),Dissimilarity (DS), Energy (ENR), Entropy(ENT), Homogeneity1 (HMG1), Homogeneity2 (HMG2),  Maximum Probability 

(MP), Sum of Squares: Variance(SOS), Sum Average (SA), Sum Variance (SV), Sum Entropy (SE), Difference Variance (DV), 

Difference Entropy (DE), Information Measure of Correlation1 (IMC1), Information Measure of Correlation2 (IMC2), Inverse 

Difference Moment(IDM), Inverse Difference Moment Normalized (IDMN) 

GLDM Contrast (CON), Angular Second Moment (ASM), Entropy (ENT), Mean, Inverse Difference Moment (IDM) 

GLRLM 

Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray Level Non-uniformity (GLN), 
Run Length Non-uniformity (RLN), Run Percentage (RP), Low Gray-Level Run Emphasis (LGRE), High Gray-Level Run 

Emphasis (HGRE), Short Run Low Gray-Level Emphasis (SGLGE), Short Run High Gray-Level Emphasis (SRHGE), Long Run 

Low Gray-Level Emphasis (LRLGE), Long Run High Gray-Level Emphasis (LRHGE) 

Shape 

Features 
Area, Perimeter, MajorAxisLength, MinorAxisLength, Max_Intensity, Mean_Intensity,Min_Intensity 
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texture was re-analyzed using texture analysis 

techniques (3.2.2) and are denoted as WPT-GLCM, 

WPT-GLDM, and WPT- GLRLM. The list of features 

extracted is given in Table 2 and the list of feature 

classes along with the no of features extracted in each 

class is provided in Table 3.  

2.3. Feature Selection 

ML models benefit from Feature Selection (FS), 

which aims to extract only the most informative 

features and remove noisy non-informative irrelevant, 

and redundant features [28]. The FS that are routinely 

used are grouped into three methodological 

categories: Filter Type FS (FTFS), Wrapper Type FS, 

and Embedded Type FS (ETFS) methods. FTFS 

methods use feature ranking as the evaluation metric 

for FS. In this work, four algorithms were used for all 

three scenarios. Two FTFS methods, Chi-square tests 

and the Analysis of Variance (ANOVA), which have 

proven significant to the detection of lung nodules 

using radiomics and ML [29] are used. Also, two 

ETFS methods, Boosted Classification Ensemble Tree 

(BOCET) and Bagged Classification Ensemble Tree 

(BACET) are used. The ETFS entails integrating the 

feature selection process directly into the model 

training process [30]. 

2.3.1. Chi-Square (χ²) Test 

χ² tests are statistical tests used to determine if 

categorical variables are significantly associated. The 

calculated χ² statistic can be compared against a 

critical value from the chi-square distribution with 

degrees of freedom determined by the number of 

categories in the feature and target variables. If the 

calculated χ² value exceeds the critical value, it 

indicates a significant association between the feature 

and the target, suggesting that the feature is relevant 

for classification or prediction [31]. Features with a 

high χ² value and a low p-value are selected for further 

analysis because they are deemed more pertinent to the 

task. The mathematical formula for calculating the χ² 

statistic for a single cell is as follows (Equation 1): 

𝜒² =
((𝑂 −  𝐸)2)

𝐸
 (1) 

where χ² is the Chi-Square statistic for a specific 

cell. ‘O’ is the observed frequency in the cell 

(intersection of a feature category and a target 

category). ‘E’ is the expected frequency in the cell 

under the assumption of independence. The expected 

frequency E is calculated using the following formula 

(Equation 2): 

Table 3. List of feature classes and feature count per class 

Feature class No of the features extracted Total 

Shape 7 

7455 

GLCM 

D
ir

ec
ti

o
n

s 
(θ

) 

00 22 

88 

152 

450 22 
900 22 

1350 22 

GLDM 

00 5 

20 
450 5 

900 5 

1350 5 

GLRLM 

00 11 

44 
450 11 

900 11 
1350 11 

WPT-GLCM 

W
P

T
 f

am
il

y
 

(L
ev

el
=

2
) 

db1 88*16 1408 

4224 db2 88*16 1408 

db3 88*16 1408 

WPT-GLDM 

db1 20*16 320 

960 db2 20*16 320 

db3 20*16 320 

WPT-GLRLM 

db1 44*16 704 

2112 db2 44*16 704 

db3 44*16 704 
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𝐸 =
𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙 ∗  𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙

𝑇𝑜𝑡𝑎𝑙 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 (2) 

Higher Chi-Square values suggest a stronger 

association between the feature and the target, which 

can indicate the relevance of the feature for 

classification or prediction tasks. For detecting lung 

nodules, this technique identifies which radiomic 

characteristics have a significant correlation with the 

presence or absence of cancer. 

2.3.2. Analysis of Variance (ANOVA) 

Analysis of Variance (ANOVA) is a statistical 

technique used to examine the differences between 

group means in a dataset [32]. In the context of lung 

nodule detection using radiomics and ML, ANOVA 

assists in evaluating the variability of radiomics 

features across distinct classes or groups, such as 

nodules and non-nodules. Features that demonstrate 

significant variability between these categories are 

regarded essential for differentiating them and thus are 

selected for further analysis as shown in Table 4. The 

variations between the sample mean, as well as the 

variation within each of the samples, are computed. 

Higher F-statistic values indicate greater variation 

between groups and suggest that the feature is relevant 

for differentiating the groups. Thus, features with 

higher F-statistic values are typically selected for 

further analysis or model building. 

Radiomic characteristics that demonstrate the most 

significant associations or variations concerning the 

presence or absence of LC may be systematically 

recognized and retained. This improves the precision 

as well as the efficacy of predictive ML for lung 

nodule detection by ensuring that only the most 

relevant and discriminatory features are taken into 

account during the model-building stage. 

2.3.3. Boosted Classification Ensemble Tree 

(BOCET) 

Boosted Classification Ensemble Tree [33] is a 

robust ML approach that constructs a highly accurate 

predictive model by aggregating predictions from 

numerous weak models such that decision trees as 

shown in Figure 4. In FS, the boosting technique 

entails the sequential training of decision trees on 

distinct subsets of the data, with a heightened 

emphasis on misclassified occurrences throughout 

each iteration. The method prioritizes characteristics 

that significantly contribute to proper classification, 

resulting in the automated inclusion of important 

features throughout the constructing process of the 

model. This guarantees that the most informative 

characteristics are highlighted and employed in the 

ultimate ensemble model. Table 4. The basic mathematical equation for performing 

ANOVA  

Calculate the group means 

For each group i; 

(where i = 1 to m), 

calculate the mean of the 

numeric feature Y 

Mean(i) = Σ(Xij) / ni 

Yij is the value of feature Y for 

the jth observation 

in group i, and 

ni is the number of 

observations in group i 

Calculate the overall mean 

of all values of the numeric 

feature Y across all groups 

Overall Mean = Σ(Σ(Yij)) / N 

Where, N is the total number 

of observations 

Calculate the between-group 

sum of squares (SSB) 

SSB = Σ(ni * (Mean(i) - 

Overall Mean)^2) 

Calculate the within-group 

sum of squares (SSW) 
SSW(i) = Σ((Xij - Mean(i))^2) 

Then, sum up the SSW(l) 

values for all groups 
SSW = Σ(SSW(i)) 

Calculate the degrees of 

freedom (df) 

Between-group df (dfB) = m-1 

Within-group df (dfW) = N -m 

Calculate the mean squares 

(MS) 

Mean Square Between (MSB) 

= SSB / dfB 

Mean Square Within (MSW) = 

SSW / dfW 

Calculate the F-statistic F = MSB / MSW 

 

 

Figure 4. Boosted Classification Ensemble Tree 
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2.3.4. Bagged Classification Ensemble Tree 

(BACET)  

The Bagged Classification Ensemble Trees, also 

referred to as bagging, is an ensemble learning 

approach that seeks to enhance the accuracy of a 

model by creating numerous models trained on 

distinct subsets of the training data [34]. Subsequently, 

each model is employed to generate predictions, and 

the outcomes derived from these models are 

aggregated to yield a conclusive forecast. During FS, 

the bagging technique entails the random picking of 

subsets from the dataset, followed by the training of 

separate decision trees on each of these subsets as 

depicted in Figure 5. Features that regularly manifest 

in the highest-performing trees are deemed significant 

and are preserved for subsequent study. Both 

approaches dynamically detect and prioritize pertinent 

characteristics while constructing intricate models. 

This phenomenon facilitates the development of more 

precise and robust prediction models for the 

identification of lung nodules. The algorithms for 

decision tree-based BOCET and BACET are 

presented in Algorithm 1 and Algorithm 2. 

2.4. Classification and Performance 

Evaluation 

Once the relevant features are selected using 

approaches explained in the above section, the 

classification of LC into 2 classes (i.e. benign and 

malignant) is then performed using a robust approach 

namely the SVM (Figure 6). SVM has emerged as a 

significant classifier in the domain of medical image 

analysis as it requires less training and is easy to 

implement [35]. SVM can be extended to handle 

nonlinearly independent data by transforming the 

input features into a higher-dimensional space using a 

kernel function. This allows for finding a non-linear 

decision boundary in the original feature space. The 

decision function with a kernel can be represented as 

(Equation 3):  

𝑓(𝑥) =  ∑ 𝛂𝑖  
𝑛
𝑖=1 𝑦𝑖 k (𝑥𝑖 , 𝑥) + b (3) 

Where k(𝑥𝑖, x) is the kernel function that computes 

the similarity between data points 𝑥𝑖 and x, and α𝑖 are 

the learned coefficients. k can be Linear Kernel, 

Polynomial Kernel, and Radial Basis Function (RBF) 

Kernel [35, 36] also known as Gaussian SVM is given 

in the following equations (Equations 4-6):  

𝑘(𝑥𝑖 , 𝑥) =  𝑥𝑖 . 𝑥 (4) 

𝑘(𝑥𝑖 , 𝑥) =   (𝑥𝑖 . 𝑥 + 𝑐)2 (5) 

𝑘(𝑥𝑖 , 𝑥) =  𝑒|𝑥𝑖.𝑥+𝑐)2
 (6) 

 

 

 

Figure 5. Bagging Classification Ensemble Tree 
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D1 D2 Dt-1 Dt

C2 Ct-1 Ct
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Algorithm : Boosting 

Input: Training Sample , Classifier L, iterations I  

Output: Result LE 

 

Training: 

normalize the weights and make the total weight equal to m 

Si = Sample from S according to the distribution 

Li = Train a classifier on Si via L 

 

   ei =  
1

𝑚
 ∑ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑥𝑖)𝑥𝑖 ∈ 𝑆𝑖; 𝐿𝑖(𝑥)=𝑦  

 

   βi  = 
𝑒𝑖

1−𝑒𝑖
 

 

weight(xi) = weight(xi) βi, for all xi, where Li(xi)=yi 

end for 

        LE =arg max ∑ log(1/𝛽𝑖)𝐿𝑖(𝑥)=𝑦  

 

 

Algorithm : Bagging 

Input: Training Sample S, Classifier L, iterations I 

Output: Result LE 

Training: 

 

for i = 1 to I 

Si = bootstrap sample from S 

Li = train classifier on S, via L 

end for 

 

LE =arg max ∑ 1𝐿𝑖(𝑥)=𝑦  
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The training of SVM involves solving a constrained 

optimization problem to find the optimal hyperplane 

or decision boundary [37]. The kernel trick is 

employed to transform the feature space, enabling the 

algorithm to capture complex decision boundaries. 

The training process involves solving an optimization 

problem with the help of Lagrange multipliers and 

dual problem formulation. Hence, SVM offers a 

versatile framework for classification tasks, with 

different kernel functions enabling the modeling of 

complex decision boundaries [38]. 

To evaluate a model, it is necessary to check its 

performance using some metrics called performance 

evaluation metrics like Accuracy, Sensitivity, 

Specificity, and Area under Curve (AUC) [37]. 

Accuracy is simply the ability of the model to compute 

many accurate predictions to the total figure of 

predictions. Sensitivity, also known as Recall, is used 

to compute the number of true positives (tp) and 

Specificity refers to the ability of the model to predict 

true negatives (tn). For all these metrics, a value close 

to 1 indicates a good classification result and vice-

versa. The Receiver Operating Curve (ROC) tells how 

well a model performs. The data is divided into ‘k’= 5 

folds and the model is trained using ‘k-1’ folds. The 

AUC is computed and the process is repeated until all 

the 5 folds are utilized as test sets [37, 39]. In the end, 

‘k’ AUC values are averaged to get cross-validated 

AUC. The mathematical equations used to calculate 

the evaluation metrics are provided as follows 

(Equations 7-9):  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑌𝑡𝑝 + 𝑌𝑡𝑛

𝑌𝑡𝑝 + 𝑌𝑡𝑛 + 𝑌𝑓𝑝 + 𝑌𝑓𝑛

 (7) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/ 𝑅𝑒 𝑐 𝑎𝑙𝑙 =
𝑌𝑡𝑝

𝑌𝑡𝑝 + 𝑌𝑓𝑛

 (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑌𝑡𝑛

𝑌𝑡𝑛 + 𝑌𝑓𝑝

 (9) 

Here, Ytp, Ytn, Yfp, and Yfn denote true-positive, 

true-negative, false-positive, and false-negative. 

Within the framework of this investigation, a 

thorough examination was performed utilizing SVM 

on CT images taken from the LIDC database. We 

experimented with different kernels of SVM such as 

Linear, Quadratic, Cubic, Fine Gaussian, Medium 

Gaussian, and Coarse Gaussian. The Linear SVM 

(LSVM) employs a straightforward linear kernel, ideal 

for data separable by a straight line. Quadratic SVM 

(QSVM) enhances this by introducing quadratic 

kernels, accommodating more intricate separations. 

QSVM may be preferable to linear SVM when the 

border does not comprise a straight line but rather a 

curved boundary. Cubic SVM (CSVM) goes further, 

leveraging cubic kernels to capture even more 

complex relationships. A more precise classification 

model may be generated using a cubic SVM when the 

lung cancer data reveals very complicated and curved 

correlations among its components. Fine Gaussian 

SVM (FGSVM), featuring a narrow Gaussian kernel, 

excels in intricate pattern recognition, while Medium 

Gaussian SVM (MGSVM) finds the balance between 

detail and generalization. It works by projecting data 

into an infinite-dimensional space using Gaussian 

functions. On the other hand, Coarse Gaussian SVM 

   

                           a                                                    b                                                              c 

Figure 6. SVM for classification; (a) illustrates the feature space of data points and their decision boundary. (b) and 

(c) illustrate the non-linear data points and their transformation into higher space using a kernel function 
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(CGSVM) employs a wider Gaussian kernel, focusing 

on broader data trends. These diverse SVM kernels 

empower data scientists to tailor their approach, 

matching the kernel's complexity to the underlying 

data distribution, thereby optimizing classification 

accuracy and robustness. All the above six SVM 

models are used for classification, in all the 3 

scenarios, and are evaluated for different performance 

metrics. 

3. Results  

In this proposed work, the LIDC database is used to 

diagnose LC. The whole process of implementation 

has been performed using MATLAB 2017b and 

2021a. A 64-bit computer system with 16 GB RAM 

was utilized for the purpose. A total of 4157 slices of 

CT images are used.  

ROI of nodules for every slice was obtained using 

the radiologists' annotations. The shape features of 

every nodule are retrieved (Section 2.2.1). To compute 

all 152 of Haralick's texture characteristics (Section 

2.2.2), a sub-image consisting of 11×11 pixels is 

chosen around the centroid of every nodule. Using all 

four spatial directions at θ = 0o, 45o, 90o, and 135o, 

the GLCM, GLDM, and GLRLM matrices are created, 

keeping inter-pixel distance ‘d’=1, which can have 

major implications. Moreover, WPT is applied up to 

level 2 for each sub-image, producing 16 multi-scaled 

mini-images. Daubechies wavelet family db1, db2, 

and db3 were used as the basis functions and the WPT 

texture features (Section 2.2.3) were evaluated in all 4 

directions as above. A total of 4224 WPT-GLCM 

features, 960 WPT-GLDM features, and 2112 WPT-

GLRLM features were retrieved. Hence, a cohort of 

7455 features was computed (Table 3). Feature scaling 

(min-max normalization) is employed to normalize 

the feature range in preparation for further evaluation.  

FS is done to obtain the most discriminative 

features using two FTFS techniques, Chi-square tests 

and ANOVA, and two ETFS techniques, BOCET and 

BACET. Based upon the ranking established 

individually by four FS techniques, four different 

radiomics feature sub-sets, each consisting of only 

eight relevant features, were selected to discriminate 

between benign and malignant nodules. We restricted 

the use of the first 8 features only for classification 

because the use of more than 8 features did not help 

the classifier to improve its accuracy any further. 

Subsequently, four distinct sets of relevant features are 

available for classification in the next phase.  

In this study, six types of ML classifiers were used: 

LSVM, QSVM, CSVM, FGSVM, MGSVM, and 

CGSVM. All were evaluated to check the efficacy of 

four different sets of selected shapes and radiomic 

features in detecting lung nodules. For classification, 

to get cross-validated AUC for all classifiers, a 

fivefold cross-validation approach was used and 

evaluated around 50 times. All are evaluated and 

compared for AUC, accuracy, sensitivity, precision, 

and specificity. Each scenario, i.e. Scenario 1 (G54 Vs 

G12), Scenario 2 (G543 Vs G12), and Scenario 3 (G54 

Vs G123) is evaluated one by one. A comprehensive 

analysis of the above metrics w.r.t. different classifiers 

as well as the ranking algorithms in three scenarios is 

presented in Table 5, Table 6, and Table 7, 

respectively. 

Table 5. Results for Scenario 1(G54 Vs G12) 

Feature 

Selection 

method 

Classifier 

Scenario 1 (G54 Vs G12) 

AUC Acc.% Senst.% Spec.% 

W
it

h
o
u

t 

F
ea

tu
re

 

S
el

ec
ti

o
n

 

LSVM 0.74 63.2 62.5 66.4 

QSVM 0.67 60.8 61.3 58.7 
CSVM 0.68 61.5 61.8 60.1 

FGSVM 0.65 59.8 59.4 63.7 

MGSVM 0.69 58.5 58.1 73.2 
CGSVM 0.63 58.4 58.1 73.8 

A
N

O
V

A
 

LSVM 0.79 72.8 80.1 65.4 
QSVM 0.79 74.7 77.6 70.7 

CSVM 0.78 73.8 76.5 69.9 
FGSVM 0.74 71.9 72.8 70.2 

MGSVM 0.79 75.0 77.2 71.7 

CGSVM 0.78 73.9 80.1 67.2 

C
h
i-

S
q
u

ar
e 

te
st

 

LSVM 0.80 73.7 81.4 67.0 

QSVM 0.80 75.0 77.8 70.8 
CSVM 0.66 57.2 68.9 49.2 

FGSVM 0.78 75.2 77.2 72.2 

MGSVM 0.80 75.3 77.9 71.5 
CGSVM 0.79 74.4 81.4 67.0 

B
O

C
E

T
 

LSVM 0.79 66.7 66.6 67.3 

QSVM 0.81 67.6 66.5 71.4 

CSVM 0.77 66.2 65.7 68.1 
FGSVM 0.78 67.4 66.1 72.5 

MGSVM 0.80 67.9 66.7 72.4 

CGSVM 0.79 67.1 67.0 67.2 

B
A

C
E

T
 

LSVM 0.80 62.8 62.4 65.1 

QSVM 0.79 62.8 62.1 68.0 
CSVM 0.79 63.3 62.4 70.0 

FGSVM 0.75 62.2 61.6 66.8 

MGSVM 0.80 63.3 62.4 69.1 
CGSVM 0.80 62.4 62.3 62.7 
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4. Discussion 

Recent studies and related literature have 

consistently highlighted the possible significance of 

shape and radiomics in the characterization of lung 

nodules. In our work, the shape and selected radiomics 

based on Daubechies db1, db2, and db3 WPT were 

examined with nine ML classifier models to determine 

the effectiveness of selected features and the model 

pair. 

Based on the values obtained from evaluation 

metrics, in Scenario 1 (G54 Vs G12), it can be 

analyzed that the features selected using each FS 

method, ANOVA, Chi-square, BOCET, and BACET 

give good classification results when combined with 

the various ML models. The detailed results obtained 

are provided in Table 5. It is seen that Chi-Square 

gives overall best sensitivity /recall (81.4%) with 

CGSVM and LSVM. However, ANOVA gives the 

best values among the rest of the different classifier 

metrics and sensitivity is also reasonably very good 

with FGSVM (80.1%). The best values for AUC, 

accuracy, and specificity are given by QSVM +  

 

BOCET (81%), MGSVM + Chi-Square (75.3%), and 

QSVM + BOCET (71.4%), respectively. FTFS 

techniques give better performance results than ETFS. 

Similarly, in Scenario 2 (G543 Vs G12), where G543 

is the malignant group and G12 is the benign group, 

all SVMs are evaluated as per the calculated 

performance metrics. The values obtained for 

evaluation parameters revealed that the overall best 

sensitivity (80.5%) with LSVM. The best values for 

AUC, accuracy and specificity are given by QSVM + 

BACET (80%), QSVM + Chi-Square (74.7%), and 

QSVM + BACET (76.6%), respectively. Finally, in 

the last scenario, i.e. Scenario 3 (G54 Vs G123), where 

G54 is the malignant group and G12 is the benign 

group, the evaluation metrics obtained demonstrate 

that the best results for sensitivity are given by 

FGSVM+BACET (72.3%) in comparison to other 

models. The best values for AUC, accuracy and 

specificity are given by CGSVM + BACET (67%), 

CSVM + Chi-Square (70.3%), and MGSVM + 

BOCET (63%), respectively. 

Table 6. Results for Scenario 2 (G543 Vs G12) 

Feature 

Selection 

method 

Classifier 

Scenario 2 (G543 Vs G12) 

AUC Acc.% Senst. 

% 

Spec. 

% 

W
it

h
o
u

t 

F
ea

tu
re

 

S
el

ec
ti

o
n

 

LSVM 0.772 65.7 73.4 64.4 

QSVM 0.683 62.6 59.8 63.3 
CSVM 0.679 62.5 59.1 63.4 

FGSVM 0.646 60.8 61.0 60.8 

MGSVM 0.730 59.2 87.5 59.1 
CGSVM Failed 

A
N

O
V

A
 

LSVM 0.78 72.2 80.5 64.4 

QSVM 0.79 74.3 77.5 70.0 

CSVM 0.72 68.8 71.4 63.8 
FGSVM 0.76 73.3 74.7 71.1 

MGSVM 0.79 74.3 76.7 70.8 

CGSVM 0.79 73.4 80.2 66.4 

C
h
i-

S
q
u

ar
e 

te
st

 

LSVM 0.79 72.6 71.3 73.2 
QSVM 0.79 74.7 70.3 77.4 

CSVM 0.68 65.7 61.4 67.4 

FGSVM 0.77 73.1 68.4 76.1 
MGSVM 0.79 73.6 69.9 75.8 

CGSVM 0.79 72.5 70.6 73.5 

B
O

C
E

T
 

LSVM 0.79 72.5 71.2 73.1 

QSVM 0.79 73.9 69.7 76.5 

CSVM 0.74 70.5 70.0 70.7 
FGSVM 0.75 72.0 67.2 75.0 

MGSVM 0.78 73.4 69.5 75.6 

CGSVM 0.79 72.4 70.8 73.1 

B
A

C
E

T
 

LSVM 0.79 72.8 72.0 73.1 
QSVM 0.80 74.2 70.2 76.6 

CSVM 0.75 71.1 70.4 71.5 

FGSVM 0.75 70.7 66.6 73.0 
MGSVM 0.79 73.8 70.8 75.4 

CGSVM 0.79 72.6 71.4 73.1 

 

Table 7. Results for Scenario 3 (G54 Vs G123)  

Feature 

Selection 

method 

Classifier 

Scenario 3 (G54 Vs G123) 

AUC 
Acc. 

% 

Senst. 

% 

Spec. 

% 

W
it

h
o
u

t 

F
ea

tu
re

 

S
el

ec
ti

o
n

 

LSVM 0.67 69.6 70.0 25.0 

QSVM Failed 
CSVM 0.60 68.2 71.7 44.8 

FGSVM Failed 

MGSVM 0.65 69.9 69.9 70.4 
CGSVM 0.68 69.6 69.6 62.01 

A
N

O
V

A
 

LSVM 0.64 69.6 70.0 25.0 

QSVM 0.63 69.6 69.6 41.6 

CSVM 0.64 70.0 71.0 53.7 
FGSVM 0.60 68.9 71.8 47.1 

MGSVM 0.64 70.0 70.4 58.1 

CGSVM 0.62 69.6 69.6 33.5 

C
h
i-

S
q
u

ar
e 

te
st

 

LSVM 0.56 69.8 69.6 31.8 
QSVM 0.60 69.6 69.4 51.7 

CSVM 0.63 70.3 70.6 62.1 

FGSVM 0.59 69.2 71.9 48.5 
MGSVM 0.61 69.7 69.9 56.0 

CGSVM 0.59 67.6 70.6 27.6 

B
O

C
E

T
 

LSVM 0.51 69.9 69.6 42.8 

QSVM 0.63 69.9 69.6 50.1 

CSVM 0.54 64.3 40.1 33.1 
FGSVM 0.61 69.5 71.9 49.8 

MGSVM 0.63 70.1 70.2 63.0 

CGSVM 0.56 69.6 69.0 46.1 

B
A

C
E

T
 

LSVM 0.55 68.1 69.6 55.3 
QSVM 0.64 69.6 70.6 50.0 

CSVM 0.66 70.3 72.0 54.1 

FGSVM 0.61 70.7 72.3 55.8 
MGSVM 0.66 70.1 70.4 60.2 

CGSVM 0.67 69.6 69.6 56.0 

 

PROOF



 A. Nissar, et al.  

FBT, Vol. 11, No. 4 (Autumn 2024) XX-XX XX 

If we analyze the results achieved, it is clear that the 

FTFS method showed the best results by yielding the 

best sensitivity and other parameter values. Further, it 

can’t be denied that many among the rest of the 

classification models also achieved good results with 

comparable metrics. However, it is worth mentioning 

that the results attained in Scenario 1 are better than 

Scenario 2, and Scenario 3. The rationale for this could 

be the incorporation of indeterminate nodules with MS 

3 in Scenario 2, and Scenario 3. Furthermore, the 

outcomes of Scenarios 2 and 3 reveal that classifying 

indeterminate lung nodules into the malignant 

category results in a higher classification accuracy 

than classifying them into the benign category, 

suggesting a greater degree of similarity between 

those indeterminate nodules and malignant nodules. 

Therefore, the central finding from the sum total of 

results shows the implications of utilizing predictive 

radiomics features in conjunction with SVM models 

that can be reliable for LC prediction 

5. Conclusion 

Lung cancer stands as the prevailing and most fatal 

form of cancer, accounting for 2.21 million fresh cases 

and resulting in 1.80 million fatalities. The key to 

fighting lung cancer is early diagnosis of pulmonary 

lesions and nodules. In recent years, radiomics has 

received considerable attention and investigation for 

lung nodule identification. But so far it is murky and 

unclear which radiomics feature(s) to use for the 

prediction of pulmonary nodules. In this study, an 

attempt has been made towards evaluation of CT 

radiomics extracted using shape, texture analysis, and 

WPT features in amalgamation with ML algorithms. 

The results are quite promising in the prediction of 

pulmonary lung nodules. 

In this study, the LIDC dataset consisting of 4157 

CT images is used. Shape features were extracted. A 

sub-image of 11 by 11 pixels, around the nodule 

centroid, was analyzed for its texture. Three statistical 

texture analysis approaches, i.e. GLCM, GLDM, and 

GLRLM were then employed to extract texture 

features. Further, Daubechies wavelet family (db1, 

db2, and db3) was used to apply WPT on each of the 

sub-images, up to decomposition level 2. The texture 

analysis techniques were applied again on 16 sub-

images. FTFS methods, Chi-square test, ANOVA, and 

ETFS algorithms (BOCET and BACET) were used to 

determine relevant features. Finally, the classification 

of cancer into benign or malignant was performed in 

three scenarios. Pairing of nodules based upon 

malignancy scores, 1(benign) through 5(malignant), 

accordingly three scenarios were created: Scenario1 

(G45 Vs G12), Scenario 2 (G453 Vs G12), and 

Scenario 3 (G45 Vs G123). Six different SVM models, 

LSVM, QSVM, CSVM, FGSVM, MGSVM, and 

CGSVM kernels were used for classification. The 

intricate framework of this approach showed how the 

SVM algorithm with six different kernel approaches 

works efficiently to extract information from CT 

images.  

In Scenario 1, the best sensitivity of 81.4% was 

achieved by the MGSVM+Chi-Square model. The 

best sensitivity of 80.5% was achieved in Scenario 2 

using the LSVM+ANOVA model. The third 

scenario's best sensitivity, 72.3%, was achieved by the 

FGSVM+BACET. Overall, the study demonstrates 

that the radiomics-based shape and WPT texture 

achieve decent results for the classification of CT 

pulmonary nodules. The outcome thus can help the 

clinicians to diagnose, and make better decisions and 

treatments. 

In future work, the study can be extended by 

applying different ML algorithms, and/or Deep 

Learning (DL) techniques, nature-inspired 

optimization approaches, and considering different 

lung cancer datasets for better lung cancer outcomes. 
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