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Abstract 

Purpose: Magnetoencephalography is the recording of magnetic fields resulting from the activities of brain neurons 

and provides the possibility of direct measurement of their activity in a non-invasive manner. Despite its high spatial 

and temporal resolution, magnetoencephalography has a weak amplitude signal, drastically reducing the signal-to-

noise ratio in case of environmental noise. Therefore, signal reconstruction methods can be effective in recovering 

noisy and lost information.  

Materials and Methods: The magnetoencephalography signal of 11 healthy young subjects was recorded in a resting 

state. Each signal contains the data of 148 channels which were fixed on a helmet. The performance of three different 

reconstruction methods has been investigated by using the data of adjacent channels from the selected track to 

interpolate its information. These three methods are the surface reconstruction methods, partial differential equations 

algorithms, and finite element-based methods. Afterward to evaluate the performance of each method, R-square, 

root mean square error, and signal-to-noise ratio between the reconstructed signal and the original signal were 

calculated. The relation between these criteria was checked through proper statistical tests with a significance level 

of 0.05. 

Results: The mean method with the root mean square error of 0.016 ± 0.009 (mean ± SD) at the minimum time (3.5 

microseconds) could reconstruct an epoch. Also, the median method with a similar error but in 5.9 microseconds 

with a probability of 99.33% could reconstruct an epoch with an R-square greater than 0.7. 

Conclusion: The mean and median methods can reconstruct the noisy or lost signal in magnetoencephalography with 

a suitable percentage of similarity to the reference by using the signal of adjacent channels from the damaged sensor. 

Keywords: Data Inpainting; Data Quality Enhancement; Magnetoencephalography; Signal Reconstruction. 
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1. Introduction  

Investigating brain activity is important because it can 

provide valuable insights into various aspects of human 

cognition and behavior. Understanding how the brain 

functions can help in the development of effective 

interventions and treatments for neurological and 

psychological disorders [1]. Brain disorders that can be 

diagnosed by investigating brain activity include 

Obsessive-Compulsive Disorder (OCD) [2], stuttering [3], 

and psychiatric disorders [3]. Identifying activity 

imbalances in specific brain regions can help diagnose and 

treat psychiatric disorders. 

Electroencephalography (EEG) and 

Magnetoencephalography (MEG) are relevant to brain 

activity as they can be used to localize sources of brain 

electrical activity and evaluate the functional state of the 

sensorimotor cortex. EEG and MEG measurements 

provide spatial filtering techniques that enable the 

localization of closely positioned and possibly highly 

correlated sources of brain activity, even in low signal-to-

noise regimes [4-6]. Additionally, the ~20-Hz brain 

rhythm, which can be detected by both EEG and MEG, 

has been used to evaluate sensorimotor cortical functions. 

Furthermore, EEG and MEG can be used in Non-invasive 

Transcranial Brain Stimulation (NTBS) techniques to 

guide the timing and settings of NTBS based on the 

temporal patterns of ongoing neuronal activity [7]. 

MEG recordings have been found to produce signals 

with a higher signal-to-noise ratio with a higher temporal-

spatial resolution (1mm-1ms) compared to EEG, making 

MEG an optimal tool for studying sensorimotor cortical 

functions [5, 6]. By combining the magnetic field 

distribution recorded by Superconducting Quantum 

Interference Device (SQUID) sensors with images of 

brain anatomy, it is possible to create a reliable functional 

map of active brain neurons [8, 9]. 

MEG inverse source reconstruction is a method used to 

map sensor signals to cortical current sources to 

investigate brain activity. Several papers discuss different 

approaches to MEG inverse source reconstruction. Aydin 

et al. present a framework that combines the EEG and 

MEG information with a volume conductor model of the 

head to reconstruct the epileptogenic zone in epileptic 

patients [10]. Piastra et al. analyze the effects of brain 

lesions on MEG source estimates and recommend 

modeling lesions for accurate reconstruction [11]. Suzuki 

and Yamashita demonstrate the use of meta-analysis 

fMRI data to improve current source reconstruction in 

MEG [12]. O'Neill et al. show that incorporating a 

correlated hippocampal source model improves MEG 

source estimation [13]. 

Despite its high spatial resolution, in case of one or 

some sensor broken, it would be difficult to accurately 

localize the sources of activity, because of the volume 

conduction effect, which causes the magnetic fields 

produced by electrical currents in the brain to spread and 

overlap [9, 14]. Another limitation is the difficulty in 

detecting weak electromagnetic sources within the brain. 

Classical Beamformer, a commonly used MEG source 

imaging method, may struggle to locate weak sources, 

especially those that are ipsilateral to the stimulus [15]. 

Knowing that the number of active neurons is much larger 

than the number of sensors; therefore, one of the main 

problems is to determine how the sources are connected, 

and the spatial arrangement, the orientation, and the 

periods of neuronal activity are related. A common feature 

of all neural source reconstruction studies is the complete 

removal of noisy or low-quality channel data in the signal 

preprocessing phase [14, 16]. These limitations highlight 

the need for further advancements in MEG technology 

and analysis techniques to improve spatial resolution and 

sensitivity to overcome these challenges in brain imaging.  

The studies before did not consider the interpolation 

and reconstruction of the lost signal of some channels of 

the MEG signal. Reproducing this information is hence 

particularly important because noise reduction methods 

cannot reproduce the signal from these channels. The 

importance of this research disappears as the amount of 

information decreases. Reconstructing damaged or lost 

data can play an important role in better understanding of 

brain interactions and disorders. 

2. Materials and Methods 

In this study, a 4D-Neuroimaging device has been 

used to record the MEG signals. As shown in Figure 

1, a helmet with 148 fixed sensors with a 2.5 cm 

margin from each other has been located above the 

subjects’ heads. Eleven cases aged 30±12 (mean±SD) 

with no brain disorder at the Barcelona Children's 

Hospital have participated in the study. The protocol 

of recording the signal was continuous for a period of 

10 minutes with a sampling frequency of 678.17 Hz 

and without doing any special task. 
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2.1. Preprocessing 

The suitable frequency range for MEG signals 

varies depending on the specific study. One study 

found statistically significant intersubject correlations 

in MEG signals at frequencies below 10 Hz and a 

frame rate of 24 Hz [17]. In a study on Autism 

Spectrum Disorder (ASD), functional connectivity 

analysis revealed significant hyperconnectivity in the 

high gamma (50-100 Hz) frequency band [18]. 

Additionally, a deep learning approach using MEG 

signals achieved classification accuracy using relative 

powers of six frequency bands, including delta (1-4 

Hz), theta (4-8 Hz), low-alpha (8-10 Hz), high-alpha 

(10-13 Hz), beta (13-30 Hz), and low-gamma (30-50 

Hz) [19]. Overall, the suitable frequency range for 

MEG signals depends on the specific research 

question and the neural processes being investigated. 

Therefore, the combination of a band-pass and band-

stop filter was used to strengthen the suitable 

frequency band of 1 to 90 Hz and weaken the 

frequency of 50 Hz caused by the noise of city 

electricity 

2.2. Gold Standard  

The signal of each sensor was divided into non-

overlapping 500 ms epochs. Afterward, for each 

epoch, its R-square coefficient was calculated 

according to Equation 1 with the first and second 

neighboring sensors. According to the availability of 

information on the location of each sensor in three 

directions of X, Y, and Z relative to the reference 

sensor, to find the neighboring sensors of each sensor, 

the Euclidean distance of each sensor with all existing 

sensors was calculated, and based on these distances, 

the nearest neighbors were identified. If the mean of 

these coefficients was less than the threshold of 0.5, 

the signal of the mentioned epoch was removed from 

the data set as an outlier (Equation 1). 

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑓𝑖)

2
𝑖

∑ (𝑦𝑖 −  𝑦̅)2
𝑖

 (1) 

Where 𝑅2 is the R-square efficient of each epoch 

with another epoch. 𝑦𝑖 and 𝑦̅ are the time samples of 

each epoch and its average, respectively. 𝑓𝑖 is the time 

sample of the intended epoch’s neighbor. 

Epochs with a median R-square coefficient greater 

than 0.5 were considered as references in this data set. 

Data normalization was done on the remaining data 

set. 

2.3. Epoch Selection  

A set of epochs were randomly selected from the 

remaining epochs to investigate the performance of 

reconstruction methods using nearest-neighbor data. 

This process was done in two stages, once on about 

5% and the second on about 15% of all extant epochs. 

2.4. Repairing 

Four different data interpolating algorithms based 

on surface reconstruction and Partial Differential 

Equations (PDE) were utilized. Also, interpolation 

algorithms based on the Finite Element Method 

(FEM) were applied to reconstruct the epochs. In each 

method, the information of several adjacent channels 

was used in the corresponding time window. 

In the two surface reconstruction methods, the 13 

nearest neighbors of each sensor were chosen. Next, 

the mean and/or median of those elected neighbors 

 

Figure 1. Location of the sensors on the signal recording 

helmet above the subjects’ head (the number after the 

letter A is the number of each sensor, which ranges from 

1 to 148) 
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were taken using Equations 2 and 3, respectively to 

reconstruct each randomly selected epoch. 

𝑦̂𝑖 =
1

𝐾
∑ 𝑓𝑘𝑖

𝐾

𝑘=1

 (2) 

𝑦̂𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛
𝑘=1 𝑡𝑜 𝐾

(𝑓𝑘𝑖
) (3) 

Where 𝑦̂𝑖 is the 𝑖th time sample of the reconstructed 

epoch corresponding to 𝑦𝑖. 𝐾 is the number of selected 

neighbors (here is 13) and 𝑓𝑘𝑖
 is the  𝑖th time sample 

of 𝑘th nearest neighbor. 

In using the PDE method, at first, all the sensors had 

to be mapped from 3 dimensions to 2 dimensions. For 

this mapping, due to the three-dimensionality of the 

head shape, one of the spatial dimensions with less 

variance among the adjacent sensors was eliminated. 

Therefore, the Euclidean distance of two mapped 

sensors was calculated just by considering the two 

remaining dimension locations. Next, the modified 

Poisson equation according to Equations 4 to 6 used 

the information of the 8 nearest neighbors of each 

sensor. 

𝑔𝑘𝑖
= 𝑢𝑥𝑥 + 𝑢𝑦𝑦 (4) 

𝐼𝐶 =
1

𝐾
∑ 𝑔𝑘𝑖

𝐾

𝑘=1

 (5) 

𝑢̂𝑥𝑥 +  𝑢̂𝑦𝑦 = 𝐼𝐶 (6) 

Where 𝑔𝑘𝑖
 is the Laplace values of 𝑘th nearest 

neighbor at the  𝑖th time sample of an epoch. 𝑢𝑥𝑥 and 

𝑢𝑦𝑦 are the second-order derivatives of the neighbor 

signal. 𝐼𝐶 is the initial condition for each intended 

sensor. 𝑢̂𝑥𝑥 and 𝑢̂𝑦𝑦 are the second-order derivatives 

of the reconstructed epoch. 

In the FEM algorithm, four-node quadrilateral 

elements are applied using Equations 7 and 8 

considering the 4 nearest neighbors. 

𝐻𝑘 =
(𝑥. 𝑥𝑘 + 1)(𝑦. 𝑦𝑘 + 1)(𝑧. 𝑧𝑘 + 1)

4
 (7) 

𝑦̂𝑖 =  ∑ 𝐻𝑘 × 𝑉𝑘

𝑛

𝑖=1

 (8) 

Where 𝐻𝑘 is a linear matrix of the interpolation 

function. (𝑥, 𝑦, 𝑧) and (𝑥𝑘 , 𝑦𝑘 , 𝑦𝑘) are the coordinates 

of the selected sensor and its nearest neighbor 

coordinates, respectively. 𝑘 Could be in the range of 1 

to 4. 𝑉𝑘 is a linear matrix of 4 nearest neighbors’ 

values at 𝑖th time sample of the epoch 

2.5. Evaluation  

R-square coefficient, Root Mean Square Error 

(RMSE), and Signal-to-Noise Ratio (SNR) between 

the reference epoch and reconstructed epoch were 

calculated for each method separately. 

Also, to investigate the effect of spatial distribution 

of corrupted data the Average Nearest Neighbor 

(ANN) for both stages of randomly selecting epochs 

was computed. Local Image Contrast (LIC) was 

measured to examine the effect of the difference 

between the signal value of each epoch and its 

neighbors on the performance of each method. 

Another important factor in evaluating the 

performance of the reconstruction methods is to 

inspect the sensitivity of each method to the 

malfunctioning of the sensors at the borders; therefore, 

at each stage of choosing epochs for reconstruction, 

the Percentage of the Outlier Border (POB) was 

calculated. 

The significance of the relation between R-square, 

RMSE, and SNR criteria with ANN, LIC, and POB 

was evaluated by a statistical test with a P-value of 

0.05. 

All stages of data preprocessing and reconstruction 

algorithms using MATLAB software have been 

performed by a system with an Intel 7-core processor 

clocked at 2.6 GHz and 12 GB of RAM. 

3. Results  

The result of filtering all the channels from the 

existing data set to strengthen the frequency band 1 to 90 

Hz and weaken other frequency bands, especially city 

electricity noise (range 50 Hz) can be seen in Figure 2. 

Also, the mean and the standard deviation of SNR in the 

whole data before preprocessing and after filtering are 

shown in Figure 3. 

Considering that the number of selected epochs for 

reconstruction was determined in two separate stages 
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(once for 5% and another time for 15% of all windows), 

the relations between the percentage of low-quality 

epochs and the evaluation criteria of the R-square, 

RMSE, and SNR in each method using the bivariate 

Pearson correlation statistical test (significance level of 

P_value < 0.05) are reported in Table 1. 

Due to the lack of impact of the percentage of low-

quality epochs on the performance of reconstruction 

methods to reduce the time and complexity of 

calculations, the performance of these methods can be 

evaluated by only 5% of the epochs selected. 

The mean and standard deviation of the RMSE of the 

reconstructed epochs compared to the reference signal 

and the average required time of a 500-millisecond 

epoch reconstruction for the introduced methods are 

reported in Table 2. 

The ratio of reconstructed epochs with an R-square 

greater than 0.70 to all of the reconstructed epochs is 

reported in Table 3. 

The significance level of the relation between the R-

square coefficient and SNR with ANN and POB has 

been examined using the bivariate Pearson correlation 

statistical test with a significance level of 0.05 in Table 

4. 

The P-value in the bivariate Pearson correlation 

statistical test to analyze the relation between both R- 

square and SNR criteria with LIC for all methods was 

less than 0.05. 

Table 1. The bivariate Pearson correlation statistical 

test result to investigate the impact of the percentage 

of low-quality epochs 

Method 
P-Value 

R-square RMSE SNR 

Mean 0.39 0.56 0.47 

Median 0.52 0.55 0.48 

Modified Poisson 0.68 0.60 0.50 

FEM 0.46 0.51 0.53 

RMSE = Root Mean Square Error 

SNR = Signal-to-Noise Ratio 

 

Figure 1.  The frequency spectrum of the MEG channels’ 

signal after filtration 

 

 

Figure 3. The mean and standard deviation of the SNR 

of the data before and after pre-processing 

 

Table 2. The average error and required time for an 

epoch reconstruction by different reconstruction 

methods 

Method 
RMSE 

(Mean±SD) 
Time (μs) 

Mean 0.016±0.009 3.5 

Median 0.016±0.009 5.9 

Modified Poisson 0.021±0.005 665.9 

FEM 0.236±0.813 2.9 

 

Table 3. The percentage of reconstructed epochs with 

R-square≥0.70 of different reconstruction methods 

Method Percentage (%) 

Mean 97.09 

Median 99.33 

Modified Poisson 52.80 

FEM 59.29 
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4. Discussion 

MEG is a non-invasive brain imaging method to 

understand brain functions and disorders better with a 

high spatial-temporal resolution. In this method, the 

spatial-temporal distribution of brain magnetic activities 

is measured without connecting the sensor to the scalp. 

MEG can discover the brain's active areas during any 

brain function by using the methods of inverse 

reconstruction of neural sources [20, 21]. 

Although the quality of the results of inverse 

reconstruction is directly related to the increase in the 

number of sensors, according to the distribution of the 

magnetic field in the space around each active source, the 

increase in the number of sensors can lead to an increase 

in the correlation of sources in the sensors which reduce 

the accuracy of the known magnetic fields. Therefore, 

noise or a low signal-to-noise ratio of a channel of 

magnetoencephalography data leads to errors in the 

results of inverse reconstruction of the corresponding 

active nerve source. In recent years, MEG has been used 

in robotic devices to identify the imagined movement in 

people with limb paralysis to create a rehabilitation 

system [20, 21]. 

As shown in Figure 2, filtering the signal makes it 

possible to remove the effect of noise caused by the city 

electricity well, as well as sufficiently weaken the 

ineffective frequency components. This helps to increase 

the signal-to-noise ratio so that less noise is involved in 

signal reconstruction. Also, Figure 3 shows that the mean 

and standard deviation of the SNR for all channels of all 

data samples increased from 30.66 ± 9.15 to 34.13 ± 

10.67. 

After measuring the correlation coefficient and the 

level of significance of the relation between the criteria 

of R-square and SNR with the ANN and the POB using 

the bivariate Pearson correlation statistical test, the P-

value for all selected epochs in all methods was more 

than 0.05. Therefore, there was no significant 

relationship between these criteria. 

Then, to analyze the relation between the R-square 

and the SNR, with the LIC, using the bivariate Pearson 

correlation statistical test, the P-value for all the selected 

epochs in all methods was obtained as less than 0.05. As 

a result, it is proven that if the signal of the adjacent 

channels is noisy, the result of signal reconstruction will 

be affected. 

Among the 4 reconstruction methods introduced, the 

two methods of mean and median with the lowest 

average and standard deviation of RMSE equal to 

0.016±0.009 in the reconstructed epoch showed superior 

performance compared to the other two methods (on 

average 0.005 less than the modified Poisson and 0.22 

less than FEM). Besides, the highest error was recorded 

for the FEM method with an average and standard 

deviation of RMSE equal to 0.236 ± 0.813. 

Moreover, the Poisson method with the lowest degree 

of similarity of the reconstructed signal to the reference 

signal has taken the longest time (about 665.9 

microseconds on average) to reconstruct a 500-

millisecond epoch. 

The best performance in signal reconstruction is 

related to the median method from the 13 nearest 

neighbors of the desired sensor, which was able to 

reconstruct the signal of 99.33% of test epochs with a 

high R-square coefficient (greater than 0.7) with an 

average time of 5.9 microseconds for each one. 

After that, the mean method with 13 neighbors could 

reconstruct the signal of 97.09% (2.24% less than the 

median method) of the test epochs with an R-square 

greater than 0.7, with less time (2.4 microseconds) than 

the median. 

Table 4. The P-value of bivariate Pearson correlation 

statistical test result to investigate the relation 

between R-square and SNR with ANN and POB 

Method 

R-square SNR 

ANN POB ANN POB 

Mean 0.44 0.56 0.61 0.47 

Median 0.52 0.53 0.39 0.62 

Modified 

Poisson 
0.34 0.49 

0.45 0.59 

FEM 0.43 0.46 0.54 0.41 

ANN = Average Nearest Neighbor 

POB = Percentage of the Outlier Border 
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5. Conclusion 

Generally, in previous MEG studies using visual 

methods, they identify and remove the undesirable part 

of the signal (either only in the relevant channel or 

together with the nearby channels) to minimize the 

impact of any signal registration error. The performance 

of inverse neural source reconstruction methods in the 

presence of damaged channels is difficult or limited. 

Therefore, interpolating low-quality parts of the signal 

by considering high-quality signals from nearby 

channels can improve the performance of the mentioned 

methods. 

Applying the mean or median method from the first 

and second neighbors of each channel can reconstruct the 

signal of the mentioned channel with a detection 

coefficient of more than 0.7 compared to the reference 

signal with a probability of 99.33% and 97.09%, 

respectively. The time required to reconstruct the 500-

millisecond epoch using these two methods is about 3.5 

to 5.9 microseconds on average, which could be 

momentous if the reconstruction method turned to be 

online. The importance and innovation of this study is the 

damaged data reconstruction can be effective in reducing 

the elimination of data, and subsequently in increasing 

the results quality of neural sources inverse 

reconstruction. 

In future studies, it is necessary to investigate the 

effect of the reconstruction of low-quality data from the 

MEG signal in the inverse neural source reconstruction 

methods. Also, according to the application of MEG in 

brain-computer interfaces, it is vital to make the method 

of identifying and reconstructing the damaged signal 

online. Due to the automaticity of this study's low-quality 

signal detection method using similarity criteria such as 

R-square, the appropriate detection coefficient threshold 

should also be set automatically. In addition, it is 

necessary to evaluate the effect of reducing or increasing 

the number of neighboring sensors participating in the 

signal reconstruction of each channel on the inverse 

reconstruction methods. 
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