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Abstract 

Purpose: Dental caries can emerge anywhere in the mouth, particularly in the interior of the cheeks and the gums. 

Some of the indications are patches on the inner lining of the mouth, along with bleeding, toothache, numbness, 

and an unusual red and white staining. Hence, it is important to predict the presence of a cavity at an early stage. 

The currently available manual method is inefficient and hence we provide an advanced method by using the 

deep learning concepts.  

Materials and Methods: In this work, different types of algorithms such as Res Net, Deeper Google Net, and 

mini VGG Net are to be used to predict the class of cavity at an early stage. 

Results: A comparison between the accuracy of three different algorithms is given in this paper. Thus, by using 

efficient deep learning algorithms, it will be able to predict the presence of the cavity and the class of the cavity 

at an early stage and take the necessary steps to overcome it. 

Conclusion: In this work, a comparison between three different algorithms is given and proved that the efficient 

algorithm is the inception algorithm among the other algorithms that achieves an accuracy of about 98%, which 

is suitable for use in hospitals. 
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1. Introduction  

Dental caries, sugar-driven tooth decay, is a 

common health issue that leads to oral pain and tooth 

loss with considerable economic and quality-of-life 

burdens. It continues to be a major public oral threat 

among all age groups despite significant 

advancements in the dental healthcare of the 

population in the world [1]. The facultative anaerobic 

bacteria, Mutants Streptococci (MS), was found to be 

the chief causative agent of dental caries. It aggregates 

on the dental surface breaking down the sugars giving 

rise to an acidic environment. This leads to the 

demineralization of the tooth enamel thereby forming 

dental caries [2]. The tooth, bacteria causing dental 

plaque (Streptococcus Mutants), and the eating habits 

that deposit sugar in the teeth are the key factors 

contributing to dental caries [3]. According to the 

report by the American Dental Association, dental 

caries can be classified as normal, initial, moderate, or 

extensive based on the lesion extent detected in the 

patients [4]. Patients with dental caries suffer not only 

from toothache and difficulty in chewing food but also 

have trouble communicating with others due to 

discolorations and missing of the tooth [5]. If the 

dental caries is allowed to progress without proper 

treatment, it may be life-threatening. It results in 

odontogenic infections such as Sepsi and Ludwig 

angina. There is also a chance for deep neck abscesses 

as reported in a study for 49.1% of cases [6]. The 

earlier the spotting of initial tooth decay, the lesser the 

burden of invasive treatment and dental healthcare 

costs. Dentists utilize a diagnostic tool, oral panoramic 

radiographs (X-rays), for the earlier diagnosis of 

dental caries. It plays a central role in the detection of 

masked dental structures, cavities, and malignant or 

benign masses that cannot be explored under visual 

checkup. Adequate decalcification of tooth structures 

allows examining dental caries using radiography [7, 

8]. In most cases, Dental X-rays are performed yearly. 

However, they can be more frequent depending on the 

severity of a dental problem or treatment [9, 10]. In the 

last few years, with the rapid progress of artificial 

intelligence, researchers have analyzed deep learning 

with Convolutional Neural Network (CNN) to extract 

a promising variety of medical images to greatly 

alleviate the burden of clinical doctors in dental 

healthcare. CNN algorithm is a fully connected 

network and requires little pre-processing which is a 

major advantage of CNN [11]. The utilization of deep 

learning for the diagnosis of dental issues has shown 

greatly improved clinical outcomes [12]. Deep 

learning (computer software) is a sub-group of 

machine learning that imitates the neural networks in 

a brain. Deep learning has its name from the usage of 

deep neural networks [13]. The first deep learning 

model was initiated in [14] for semantic segmentation. 

The SegNet model that offers improvements through 

the adoption of asymmetric auto-encoder architecture 

[15] follows this. The U-Net model is another model 

that takes inspiration from auto-encoders but 

introduces skip connections between corresponding 

layers in the encoding and decoding path, thereby 

leading to further betterments in accuracy [16]. Some 

other oral diseases are also diagnosed and treated 

using machine learning techniques along with imaging 

techniques. Inflammations on gingival surfaces were 

detected using intraoral fluorescence imaging [17] and 

plaque classification used quantitative light-induced 

fluorescence imaging [18]. These software measures 

allow the diagnosing of products, processes, and 

projects, and also check whether there is an 

unexpected deviation of the values of measures or they 

are within the expected norm [19]. Efforts were made 

in recent years to develop a computerized dental X-ray 

image analysis system for clinical usage like image 

segmentation, anatomical landmark identification, 

diagnosis, and treatment [20-23]. 

2. Materials and Methods  

The X-ray images of the dental cavity of different 

classes and normal dental X-ray images are collected 

and pre-processed to reduce the size of images so that 

they can be directly trained and tested. Around 150 

images have been utilized for the work. The data has 

been collected from Kaggle. Figure 1 represents a 

sample image of dental X-rays with the classes of 

caries. 

The software used is python-anaconda power shell 

prompt. 

One Filter Module: VGG16 architecture 

The VGG network was established to classify CT 

slices, which can avoid the failure of CT slice 

segmentation without MS [24]. 

Two Filter Module: ResNet architecture 
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Following the victory of AlexNet [25] at the 

ILSVRC2012 classification contest, deep Residual 

Network [26] was found to be the most cutting edge in 

the computer vision/deep learning community in the 

last few years. 

Inception Module: Deeper GoogleNet  

The main purpose of the GoogLeNet model is to 

employ a number of smaller convolution kernels to 

restrict the number of neurons and parameters, and it 

wins the championship in the challenge of Imagenet 

2014 [27, 28]. 

3. Results  

Comparison of images is done with the help of three 

architectures (VGG Net, Deeper Googlenet, and 

Resnet 50). Results are compared using accuracy, 

recall, precision, and F measures values for all the 

normal and classes of the cavity. The validation 

accuracy is found running for 20 epochs, respectively 

and increased gradually to find the state of accuracy. 

Classification is done using the 3 architectures. We 

have compared VGGNet, ResNet 50, and Deeper 

Googlenet and classified to which category the dental 

caries class belongs to. In this work, the dental cavity 

is determined by using three different algorithms and 

gives a comparison with achieving the maximum 

efficient accuracy with the inception module. Initially, 

the anaconda navigator is started which is used to 

perform all the required execution of the work. As the 

execution is completed, the accuracy is been plotted 

for the training obtained which is around 67%. 

The graphs plotted for the number of epochs used can be 

seen in Figures 2, 3, and 4, which are a comparison between 

the accuracy of the model trained and the loss of the model. 

Tables 1, 2, and 3 depict the parameter values obtained after 

the images of different classes are tested using the VGG 

Net, Res Net, and Deeper Googlenet. 

 

Figure 1. Images of Classes of dental caries 

 

 

Figure 2. Graphical Output of Single Filter Graph 

Architecture 

 

 

Figure 3. Graphical Output of Two Filter Architecture 

 

 

Figure 4. Graphical Output of Inception Module 

Architecture 
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Table 4 represents a comparison of the three algorithms 

in terms of accuracy. 

4. Conclusion 

This work gives a comparative analysis between 3 

different types of architectures in deep learning and 

analyzes which algorithm serves the best in automated 

detection of the class of cavity. Different types of 

classification algorithms are applied to the dataset 

containing the X-ray images of teeth and their efficiency 

is studied. The performance of classification was 

validated based on accuracy, precision, and recall, and 

the F-score gave better accuracy in deeper Google net 

than the other networks. The accuracy value for deeper 

google Net was calculated as 98%. The accuracy value 

for Resnet 50 was calculated as 92%. The accuracy value 

for VGGnet was calculated as 52%. Hence, the 

classification method compared with Deeper Google Net 

provided higher accuracy than VGGnet and Resnet 50. 

The proposed method helps even the junior doctors to 

treat the patient in the absence of the senior doctor since 

everything is generated automatically. Only a few are 

fully automatic among the methods that are proposed, the 

manual dependent on X-ray results could lead to time 

delay, which can be avoided if the following is 

incorporated. The proposed system helps to 

automatically differentiate between the types of cavity 

from the normal, future it can be improved to analyze the 

depth of the cavity and segment the cavity region, which 

will be more useful in the treatment. A few more sectors 

of artificial intelligence can also be incorporated along 

with the proposed system to increase the standard of the 

proposed system [29]. 
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