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Abstract

Purpose: Functional Near-Infrared Spectroscopy (fNIRS) is a relatively novel tool that measures local
hemodynamic changes, including oxygenated hemoglobin [Oxy-Hb], deoxygenated hemoglobin [Deoxy-Hb],
and total hemoglobin [ Tot-Hb]. Its safety, portability, non-invasiveness, and cost-effectiveness make it a preferred
technique for designing Brain-Computer Interfaces (BCls). This study aims to develop an accurate fNIRS-based
BCI module for classifying mental tasks and the resting state.

Materials and Methods: Rather than relying on conventional statistical features, our approach utilizes nonlinear
indices derived from a 2D Poincaré plot. These measures are computationally efficient and capable of revealing
the underlying dynamics of the system. Our primary innovation lies in the development of a novel feature and
selection method. We assessed mental task recognition in both subject-dependent and subject-independent
classification modes.

Results: Our findings demonstrated a maximum accuracy of 93.75% for subject-specific style and 91.67% for
subject-independent style.

Conclusion: In summary, the simplicity and high performance of the proposed framework suggest promising
future directions for designing online fNIRS-based BCI systems.

Keywords: Functional Near-Infrared Spectroscopy; Poincaré Plot; Feature/Channel Selection; Mental
Calculation; Classification.
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A Straightforward Approach to fNIRS Channel Selection for Distinguishing Mental States from Resting States

1. Introduction

Brain-computer interfaces

communication tools that

(BClIs)
facilitate

serve  as
interaction
between the human brain and external devices [1]. In
recent decades, these interfaces have been the subject
of extensive research, frequently by scientists. Rather
than relying on the brain's natural output pathways to
convey intentions, BCIs detect brain activity and
convert it into control commands. As a result, they
offer a potential means of communication with the
external environment for individuals with movement
disorders, such as paralysis or amyotrophic lateral
sclerosis [2].

Researchers have utilized various neuroimaging
technologies to assess cognitive load in a typical BCI
due to the diverse activities occurring within the
human brain. Functional Near-Infrared Spectroscopy
(fNIRS) is one of the more recent neuroimaging
techniques employed for functional neuroimaging.
This method measures local hemodynamic changes,
including levels of oxygenated hemoglobin [Oxy-Hb],
deoxygenated hemoglobin [Deoxy-Hb], and total
hemoglobin [Tot-Hb], by employing near-infrared
light within the wavelength range of 700 to 1300 nm
[3].

Although Electroencephalography (EEQG),
magnetoencephalography (MEG), and Event-Related
(ERPs) exhibit high temporal
resolution, they are limited by their spatial resolution.
In contrast, Single-Photon Emission Computed
Tomography (SPECT),
Tomography (PET), and functional
Resonance Imaging (fMRI) are constrained by their

brain Potentials

Positron Emission

Magnetic

temporal resolution. Additional limitations of these
methodologies include contraindications for pediatric
populations, high costs, susceptibility to movement
artifacts, and restrictions on continuous or frequent
fNIRS
advantages such as safety, portability, non-
invasiveness, and cost-effectiveness. Furthermore,

measurements [3]. Conversely, offers

fNIRS provides superior spatial resolution compared
to EEG, better temporal resolution than fMRI, and
greater resistance to electrical noise and motion
artifacts than EEG [3, 4]. These benefits render fNIRS
a preferred technique in the development of BCI.
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A typical BCI system can be influenced by various
types of mental loads to elicit brain activity. Some
mental tasks are more widely studied, such as motor
imagery [5-11] and mental calculations [7, 11-15],
while others, including the n-back task [16-18],
imagery [19], and singing a song [19], have been
explored in fewer studies [19-24]. Mental calculation
involves performing arithmetic operations mentally,
whereas motor imagery refers to the kinesthetic
visualization of one’s own body organs without the
engagement of muscle activity.

Recent advancements in BCI technology have been
achieved through the application of neuroimaging
techniques that employ a variety of protocols and
signal processing methodologies. A mixed linear
model for fNIRS data analysis was introduced to
investigate the relationship between task difficulty and
peak concentrations of [Oxy-Hb] during periods of
mental effort expectation [15]. Notably, increased
activity in the dorsolateral prefrontal cortex was
observed in anticipation of challenging tasks
compared to easier ones. However, the assessment of
cerebral cortex hemodynamics was limited due to the
exclusive use of frontal fNIRS channels. The system
developed by Holper and Wolf [25] utilized several
derived from fNIRS data,
including variance, mean amplitudes, kurtosis, and

statistical measures

skewness, linear

discriminant

in conjunction with Fisher’s
Their objective was to
distinguish between simple and complex tasks within

analysis.

motor imagery trials. Despite achieving an average
accuracy of 81%, the limited number of experimental
trials compromised the balance between accuracy
rates and the number of features or trials analyzed.

FNIRS statistical measures have been employed in
various studies [4, 7, 8, 10, 15, 21, 26, 27]. In their
research, Hong et al. [7] utilized Linear Discriminant
Analysis (LDA) and reported an average accuracy of
75.6% in classifying mental calculation, right-hand
motor imagery, and left-hand motor imagery.
However, the performance of this approach may be
limited by the application of electrodes in only two
specific regions of the cerebral cortex, thereby
neglecting the potential contributions of other areas. In
a separate study [8], the selected feature combinations
were input into a hybrid genetic-SVM to identify
motor imagery, achieving a subject-dependent
accuracy of approximately 91%. This investigation
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was constrained by the use of six statistical indices and
the evaluation of only two- and three-feature fusion.
Additionally, a hybrid EEG-fNIRS system [28]
employed LDA attained a maximum average accuracy
of 63.5% for imagery tasks and 83.6% for mental
calculation. The authors attributed the low recognition
rates to participants’ lack of concentration during the
simultaneous recording of both protocols. Aydin [27]
incorporated a subject-specific feature selection
algorithm within the fNIRS-BCI system, employing
stepwise regression methodology based on relief F and
sequential feature selection. Various machine learning
algorithms were tested, resulting in a maximum
accuracy of 88.67% for mental calculation using SVM
and 71.32% for imagery classification using LDA.
Conversely, the lowest -classification rate was
observed for the k-nearest neighbors (kNN) algorithm,
which the authors attributed to the use of a fixed
neighborhood value.

The nonlinear manifestations of brain function and
concurrent metabolic processes [11], coupled with the
limitations of statistical measures in adequately
characterizing these phenomena, have prompted some
researchers to adopt nonlinear signal analysis
techniques. The study conducted was primarily
exploratory and did not elucidate the neurobiological
mechanisms underlying this complication. Utilizing
Hilbert-based features of fNIRS in conjunction with
kNN vyielded a maximum accuracy of 84.94%, a
sensitivity of 85.51%, and a specificity of 84.36%
[29]. However, these findings were reported without a
thorough investigation into the influence of
classification parameters or feature selection on the
performance of the system. Additionally, an
independent decision path fusion methodology was
proposed within a hybrid EEG-fNIRS BCI [30].
Despite the inherent complexity and the time-
intensive nature of simultaneous bimodal brain data
recording, the maximum accuracy achieved was
70.32%.

Previous research has predominantly focused on
employing classifiers such as the hidden Markov
model (HMM), SVM, LDA, and Artificial Neural
Networks (ANN) [4, 7, 8, 10, 26]. Furthermore, the
literature indicates that additional components may be
integrated into the design of BCI systems, including
preprocessing [8-11, 14, 15, 24, 26], channel selection
[9, 26, 31], and feature selection [27, 32].
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Our previous study encompassed various modules
for a functional near-infrared spectroscopy-based
brain-computer interface [33]. Initially, we proposed a
subject-specific channel selection method that utilized
the fNIRS energy. Subsequently, we employed a time-
frequency analysis technique known as matching
pursuit for feature engineering. Following this, we
introduced a two-step feature selection approach that
combined cascade Principal Component Analysis
(PCA) with the Relief algorithm. After evaluating
several classifiers, including Naive Bayes (NB), kNN,
SVM, decision tree (DT), and AdaBoost, we achieved
a maximum accuracy of 86.2%. This study utilized the
same data and classifiers as our previous research. The
primary distinction between the current system and the
previous one lies in the methodologies employed for
feature engineering and channel/feature selection. Our
principal contributions are outlined as follows.

(1) From the perspective of feature engineering
methodologies, a majority of researchers have
employed statistical analyses of fNIRS. While the
computational demands of these indicators are
relatively low, they are inadequate in capturing the
dynamic and complex nature of brain activity.
Previous studies have proposed nonlinear feature
engineering techniques to address this limitation;
however, many of these methods are characterized by
high computational costs and complexity. In this
study, we utilized phase space indicators that
effectively represent system dynamics with both
simplicity and rapid computational efficiency. To the
best of our knowledge, no prior research has been
conducted on fNIRS-based BCI analysis using the
Poincaré plot.

(2) Channel and feature selection can significantly
reduce the computational demands of classifiers while
enhancing their performance. Previous studies have
employed these approaches [8, 9, 25-27, 31-33].
However, certain methods have proven to be
computationally intensive. This study proposes a
novel method that is computationally efficient and has
the potential to enhance the system's performance.

(3) In a limited number of studies, only subject-
dependent or subject-independent channel selection
methods have been implemented [8, 27, 33]. This
research aims to evaluate both channel selection
modes and to determine whether their outcomes are
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identical or exhibit

differences.

negligible or significant

The subsequent sections of this study encompass
the following components. The  proposed
methodology, which includes the fNIRS protocol and
dataset, as well as the features, feature/channel
selection methods, and classification techniques, is
detailed in the Materials and Methods section. The
Results section presents the findings, including a
comparative analysis of the performance of various
schemes. Finally, the Discussion and Conclusion
sections synthesize the insights derived from the
study.

2. Materials and Methods

Figure 1 presents a schematic representation of the
proposed procedure. The system comprises several
modules, including (1) fNIRS data, (2) segmentation,
(3) feature engineering, (4) feature and channel
selection, (5) normalization, and (6) classification.

INIRS Data

Segmentation

Each module is elaborated upon in the subsequent
sections.

2.1. fNIRS Data

This experiment used fNIRS data from BNCI-
Horizon 2020 databank, which is publicly accessible
at  http://bnci-horizon-2020.eu/database/data-sets.  The
signals were recorded while participants engaged in
mental arithmetic tasks. The study included five
female and three male participants, with a mean age of
26 + 2.8 years [12]. All participants were healthy
right-handed individuals, exhibiting antagonist
hemodynamic response patterns during the task [12].

The experiment commenced with a ten-second
baseline recording, which was subsequently followed
by a mental task. Participants were required to
sequentially subtract a one-digit number from a two-
digit integer as quickly as possible, while the initial
prompt was displayed on a video monitor. This task
duration was approximately 12 seconds. Following the
task, a black screen was presented for a resting period
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Figure 1. A schematic representation of the proposed system
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of 28 seconds, during which participants were
instructed to remain perfectly still and relaxed. The
total duration of each trial was 40 seconds, comprising
12 seconds for the subtraction task and 28 seconds for
the resting phase. Figure 2 illustrates the task
schematically. Each participant completed three or
four runs, encompassing a total of six trials. The
present study employed three runs for all participants.

Ethical approval for the study was granted by the
Institutional Review Board of the Medical University
of Graz. Written informed consent was obtained from
all participants after they were thoroughly informed
about the study's objective. Participants were required
to have no pre-existing medical conditions and were
instructed to refrain from caffeine consumption before
data collection. The recordings were conducted while
participants were seated in a comfortable armchair,
utilizing the Hitachi Medical Co. system (ETG-4000)
from Japan, which is equipped with 17 light emitters
and 16 photo-detectors. A 156-channel fNIRS setup
was employed to measure variations of [Tot-Hb],
[Oxy-Hb], and [Deoxy-Hb] expressed in millimolar x
millimeter across 52 channels. The data were digitized
at a sampling rate of 10 Hz.

97 -4

L]

)

2.2. Segmentation

Each data file is structured as a cell array with
dimensions of 1 by the number of runs (3x1). The file
contains the locations of the triggers in samples, labels
for groups (1 indicating the mental task and 2
indicating the resting state), as well as data from 156
channels. We organized the data according to the
trigger locations for each run.

2.3. Feature Engineering

A Poincaré plot serves as a straightforward method
for offering a geometric representation of data within
a Cartesian plane. Each point on the plot corresponds
to pairs of data samples, and the distance between
these points, measured in terms of the number of
samples, is referred to as the lag of the plot.

Let us consider an fNIRS time series represented as
Xo, X1, ..., Xn, and denotes the mean of the data. A
conventional lag-1 Poincaré plot is a two-dimensional
representation generated by plotting consecutive data
samples (Xi, Xi+1). This plot serves to graphically
depict the statistical correlation between successive
samples. Figure 3 presents a Poincaré plot of fNIRS
data, which includes 100 samples collected across two
trials.

Mental Arithmetic

e )
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Figure 2. The temporal progression of a single trial. Two seconds before the initiation of the task, a green bar
was presented. Following the cue (e.g., 97 - 4), participants were instructed to perform mental arithmetic for a
duration of 12 seconds, which was subsequently succeeded by a 28-second rest period
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Figure 3. A sample Poincaré plot of fNIRS data from Subject 1, comprising 100 samples across two trials

(top: Trial 1 and bottom: Trial 2)

A fitted ellipse is utilized in the plot to quantify the
map, with the minor axis (SD1) and major axis (SD2)
calculated mathematically as follows [34]:

N-13

1
SP1= |5 Z (Dimin) (1)
i=1
1 N-1
2
SDZ = mZ(Di'maj) (2)
i=

The distance of the i point on the plot from the
major and minor axes can be expressed as follows.

X+ Xy —2X

Xi — Xivq
Di,maj = \/E _%

» Yimin — \/z (3)

The area (Ar) of the fitted ellipse is subsequently
calculated according to Equation 4.

Ar = x SD1 X SD2 (4)
We also examined the ratio of SD1 to SD2

(SD1/SD2) as a quantitative measure for the plot.
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2.4. Feature and Channel Selection

This experiment proposed a dual approach to
channel selection, encompassing both subject-

dependent and subject-independent methodologies.

Initially, the range (R = max(Y) — min(Y)) for each
feature (Y) was computed across all channels under
the mental task (Rm) and rest (R;) conditions.
Subsequently, the absolute value of the differences
was calculated for each channel (SC; = [Rm— R|). The
channel exhibiting the maximum SC value was then
identified (see Figure 4). The foundational principle of
this methodology is predicated on the notion that
channels demonstrating greater variability in response
(i.e., broader ranges of values) are more likely to
convey distinguishable information between the
mental task and rest conditions. By evaluating the
range of each feature for both conditions, we can
determine the extent to which a channel can
effectively differentiate between these states. Our
approach is designed to be both subject-dependent and
subject-independent, enhancing  its
applicability — across individuals. By
concentrating on channels with significant disparities
in response ranges, we establish a flexible framework

thereby
diverse
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Figure 4. A typical scheme for the proposed channel selection process. The Feature values across 52 channels for each
sample are represented in the matrices. The number of samples corresponding to each matrix is contingent upon the
implementation of either a subject-dependent or subject-independent strategy. These matrices were generated for each of the
hemodynamic features: [Oxy-Hb], [Deoxy-Hb], and [Tot-Hb]. When considering all indices of the hemodynamic responses
([Oxy-Hb], [Deoxy-Hb], and [Tot-Hb]), the total number of channels, which corresponds to the number of columns in the
matrices, amounts to 156 (calculated as 52 multiplied by 3 features)

for feature selection that accommodates individual
variability while simultaneously strengthening the
overall analysis.

Figure Sa illustrates the selected channel from the
fNIRS channels for each participant, indicating a
subject-dependent selection. Conversely, Figure 5b
presents the selected channel from the fNIRS channels
applicable to all participants, reflecting a subject-
independent selection.

It is noteworthy that, in the subject-independent
mode, the selected channel for both [Oxy-Hb] and
[Deoxy-Hb] remained consistent, irrespective of the
type of feature utilized. In contrast, this consistency
was not observed in the subject-dependent mode.

2.5. Normalization

Prior to inputting the feature vector (FV) into the
classifier, it was normalized to a range of -1 to 1 using
the following method.

FV — FVpin

Normalized FV =2(———F—)—1 5
FVmax - FVmin ( )

he maximum and minimum values of the FV are
represented by Fax and Fmin, respectively.

123

Data normalization constitutes an essential
preprocessing step that entails the transformation of
features to a uniform range, thereby mitigating the
influence of larger numeric feature values on those
with smaller values. The principal aim of
normalization is to reduce the bias associated with
features that possess a greater numerical impact in
differentiating between pattern classes [35]. In the
absence of normalization, the performance of the
method may be negatively impacted. Features
characterized by larger scales may obscure those with
smaller scales, resulting in biased classification

results.

The hemodynamic response features, including
[Oxy-Hb], [Deoxy-Hb], and [Tot-Hb], as well as their
combinations, were incorporated into  the
classification module.

2.6. Classification

The objective of this study was to classify two
distinct conditions: "rest" and "task." We evaluated
several classification algorithms, including Support
Vector Machine (SVM) utilizing a radial basis
function (RBF) kernel, AdaBoost, Naive Bayes (NB),

FBT, Vol. 13, No. 1 (Winter 2026) 117-132
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Figure 5. Selected channels for measurements of [Oxy-Hb], [Deoxy-Hb], and [Tot-Hb] in (a) subject-dependent mode and
(b) subject-independent mode

Decision Tree (DT), and K-Nearest Neighbor (kNN)

with varying values of k ranging from 1 to 20.
TP +TN

The classifiers were assessed using several AC(%) = TP+ TN+ FP+ FN * 100 (6)
performance metrics, including accuracy (AC),
specificity (SP), sensitivity (SE), and F1-score (F1), SE(%) = % 100 (7)
employing a k-fold cross-validation (CV) approach TP +FN
with k values ranging from 2 to 10. The evaluation TN
criteria were computed based on the definitions of true SP(%) = TN+ FP > 100 ®)
positive (TP), true negative (TN), false positive (FP),
and false negative (FN)as follows: Fy (%) = T ¥ 100 (9)

FBT, Vol. 13, No. 1 (Winter 2026) 117-132 124



A. Goshvarpour

3. Results

Poincaré quantifiers were computed for two
conditions: mental tasks and rest. Following the
confirmation of normal distribution of the features via
the Anderson-Darling test, we evaluated significant
differences between the groups using the t-test. Table
1 presents the mean and standard deviation of the
Poincaré measures, along with the corresponding
statistical results.

A notable increase in the parameters SD1, SD2, and
the ratio SD1/SD2 is observed in response to [Oxy-
Hb] and [Deoxy-Hb], with statistical significance
indicated by p < 0.05. Furthermore, all Poincaré
indices demonstrate significant differences (p < 0.05)
for [Tot-Hb].

Table 2 presents the highest classification results
for each hemodynamic response and feature in a
subject-independent mode. Furthermore, it details the
classification performance when all hemodynamic
responses are simultaneously input into the classifier.
Specifically, the table delineates the classification
outcomes for various hemodynamic responses,
including Oxy-Hb, Deoxy-Hb, and Tot-Hb, utilizing
different Poincaré measures such as SDI1, SD2,
SD1/SD2, and Area, in conjunction with high-
performance classifiers. The metrics reported include
Accuracy (AC), Sensitivity (SE), Specificity (SP), and
F1 score (F1). Sensitivity (SE) quantifies the
proportion of actual positives (task-related responses)
that are correctly identified by the classifier, whereas
Specificity (SP) assesses the proportion of actual

negatives (rest-related responses) that are correctly
recognized.

The table highlights the effectiveness of the
measures, revealing that the combination of [Oxy-Hb]
with the SD1/SD2 Poincaré measure using the Naive
Bayes classifier achieved the highest accuracy
(85.71%) and a remarkable sensitivity of 100%,
indicating that all task-related responses were
correctly identified. Similarly, for [Deoxy-Hb], the
SD1/SD2 measure also yielded a high accuracy of
87.50% with perfect specificity. In contrast, [Tot-Hb]
showed the best performance with the SD1/SD2
measure utilizing the Naive Bayes classifier,
achieving an impressive accuracy of 91.67%, a
sensitivity of 100%, a specificity of 94.12%, and an F1
score of 91.89%. Furthermore, when assessing the
classification performance across all hemodynamic
responses, the results indicated a slight decline in
accuracy and sensitivity, with the SD2 measure still
maintaining a commendable performance with an
accuracy of 85.71% and a sensitivity of 81.25%. The
specificity remained notably high across various
classifiers and hemodynamic responses, particularly
for the [Deoxy-Hb], [Tot-Hb], and all measures, which
reached 100% in several instances.

Table 2 also indicates that Naive Bayes and kNN

classifiers outperformed the other classifiers,
achieving the highest performance metrics. It is
important to note that the classification results were
significantly influenced by the choice of k-value for

both the kNN and the k-fold CV.

Table 3 presents the optimal classification

performance for each hemodynamic response and

Table 1. The average and standard deviation (Mean + STD) of the features, along with the results of the t-test
conducted between the two groups for various hemodynamic responses

Hemodynamic response Poincare Task Rest p-value
measures
SD1 0.0028+0.0049 0.0017+0.001 0.009*
[Oxy-Hb] SD2 0.098+0.15 0.062+0.065 0.0014%*
SD1/SD2 0.098+0.147 0.062+0.065 0.0014%*
Area 0.0024+0.015 0.0003+0.0005 0.08
SD1 0.00174+0.0024 0.0012+0.0009 0.004*
[Deoxy-Hb] SD2 0.062+0.08 0.031+0.028 1.13x107*
SD1/SD2 0.062+0.08 0.031+0.028 1.13x107*
Area 0.0007+0.003 0.00015+0.0003 0.05
SD1 0.0037+£0.0072 0.0022+0.0017 0.008*
[Tot-Hb] SD2 0.065+0.083 0.036+0.024 2.43x107*
SD1/SD2 0.065+0.083 0.036+0.025 2.52x107*
Area 0.0039+0.02 0.00056%0.001 0.04*
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Table 2. Classification results for a subject-independent model

High-

Hemodynamic Poincare performance K for k- AC SE SP F1
response measures classifier fold CV
SD1 18NN 2 78.13 80 76.47 77.42
[Oxy-Hb] SD2 Naive Bayes 6 80.49 100 88.89 80.95
SD1/SD2 Naive Bayes 9 85.71 100 91.67 86.67
Area 19NN 8 86.21 92.31 100 85.71
SD1 17NN 6 84.38 87.50 82.35 83.87
[Deoxy-Hbl SD2 16NN 1 83.33 87.50 100 82.35
SD1/SD2 11NN 5 87.50 87.50 100 87.50
Area 20NN 6 86.21 91.67 82.35 84.62
SD1 17NN 8 84.38 86.67 100 83.87
[Tot-Hb] SD2 19NN 6 82.76 81.82 100 85.71
SD1/SD2 Naive Bayes 7 91.67 100 94.12 91.89
Area 16NN 2 83.33 100 100 80
SD1 14NN 8 83.33 87.50 80 82.35
All SD2 19NN 5 85.71 81.25 100 86.67
SD1/SD2 17 2 84.38 86.67 100 83.87
Area 19NN 2 82.14 76.47 100 83.87
Table 3. Classification results for a subject-dependent model
Hemodynamic Poincare perfI;)I :‘gnll:nce K for k- AC SE SP F1
response measures classifier fold CV
SD1 11NN 2 75 73.08 77.27 76
[Oxy-Hb] SD2 20NN 7 93.10 87.50 100 93.33
SD1/SD2 17NN 8 93.75 100 88.89 93.33
Area AdaBoost 7 83.33 92.86 77.27 81.25
SD1 20NN 3 75.86 70 88.89 80
[Deoxy-Hb] SD2 14NN 2 85.37 100 76.92 83.33
SD1/SD2 20NN 8 85.71 85.71 85.71 85.71
Area 19NN 4 86.21 82.35 91.67 87.50
SD1 18NN 7 71.88 73.33 70.59 70.97
[Tot-Hb] SD2 20NN 8 93.10 92.86 93.33 92.86
SD1/SD2 19NN 3 89.66 88.89 92.86 89.66
Area 18NN 6 84.38 92.31 78.95 82.76
SD1 20NN 6 79.31 75 84.62 80
All SD2 18NN 2 90.63 100 93.33 90.91
SD1/SD2 20NN 6 89.66 100 83.33 88
Area 17NN 8 84.38 86.67 82.35 83.87

feature within a subject-dependent framework.
Additionally, it provides classification outcomes when
all hemodynamic responses are concurrently input

into the classifier.

Table 3 indicates that the kNN classifier
outperformed the other classifiers, achieving the
highest performance metrics. However, the results
were significantly influenced by the choice of the k-
value for kNN and the k-value utilized for k-fold CV.
When employing the [Oxy-Hb] variable, the accuracy

FBT, Vol. 13, No. 1 (Winter 2026) 117-132

rates attained were 93.75% and 93.1%, with an 8-fold
CV applied for the SD1/SD2, and a 7-fold CV
implemented for the SD2. The sensitivity, specificity,
and F-score were recorded at 100%, 88.89%, and
93.33%, respectively. Furthermore, an accuracy of
93.1% was achieved when the SD2 of the Total
Hemoglobin ([Tot-Hb]) was input into the 20-Nearest
Neighbors (20NN) model. Among the Poincaré
measures, SD2 demonstrated the highest performance,
while the second-best Poincaré measure was identified
as SD1/SD2.
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A comparison of the results from the subject-
independent (Table 2) and the subject-dependent
(Table 3) indicates that the subject-dependent strategy
demonstrates superior performance in classifying rest
and task states.

The study employed an Intel(R) Core(TM) i7-
14650HX processor with a clock speed of 2.20 GHz.
The time required for subject-dependent channel
selection was recorded at 0.621456 seconds, whereas
the time for subject-independent channel selection
was noted to be 0.560980 seconds. These findings
indicate that the proposed method exhibits
computational efficiency, rendering it appropriate for
real-time applications. Furthermore, the
straightforward nature of the channel selection
algorithm reduces computational complexity, thereby
enhancing its suitability for incorporation into
wearable fNIRS devices.

4. Discussion

This study aims to propose an accurate fNIRS
system for the classification of mental tasks and
resting conditions. The primary focus is on presenting
a novel and straightforward approach for channel
selection, as well as evaluating the outcomes in both
subject-dependent and subject-independent modes.
We employed Poincaré-based indices to analyze the
various hemodynamic responses. Subsequently, a
channel-selection  algorithm  was  developed,
emphasizing the most significant changes in
characteristics between the two states. Following the
normalization of the feature vector, a decision-making
module was implemented, wherein NB, DT, SVM,
kNN, and AdaBoost were assessed for mental task
recognition. The maximum accuracy achieved was
93.75% using a subject-specific channel selection
procedure. Furthermore, our findings indicate the
superiority of the kNN algorithm, particularly
highlighting the importance of the k values and k-fold
CV on recognition rates.

We conducted a comparative analysis of the
performance of the proposed system against
previously established systems, as summarized in
Table 4.
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Table 4 demonstrates the superiority of the current
system, as evidenced by its higher classification rates
in comparison to other existing models.

Most of the scientists referenced have employed
conventional methodologies for statistical signal
analysis [7, 8, 17, 24, 25, 27, 28, 37, 38]. In contrast,
this study adopts a non-linear feature engineering
approach. The methodology is based on the principles
of non-linear dynamics and deterministic chaos, with
a focus on characterizing system attractors and their
invariant parameters [39]. The non-linear features are
designed to capture complex relationships and
interactions that may not be sufficiently represented
by linear models [39]. This approach facilitates a more
nuanced understanding of how various cognitive tasks
are encoded by neural populations. Furthermore, LDA
has been utilized as a classifier in the majority of the
studies reviewed [7, 12, 25, 27, 28, 37, 38], yielding
accuracy rates ranging from approximately 63% to
89%. However, none of these studies have provided
alternative  criteria  for  evaluating  classifier
performance. Additionally, our proposed system
demonstrates superiority over the non-linear feature
engineering system presented by Ergiin and Aydemir
[29]. Their study examined Hilbert-based features in
conjunction with kNN, achieving maximum
accuracies of 84.94% for [Oxy-Hb] and 82.87% for
[Deoxy-Hb]. A self-governing decision path fusion
methodology was introduced by Jiang et al. [30] for a
hybrid EEG and fNIRS BCI, resulting in a maximum
accuracy of 70.32%, which is significantly lower than
the performance of our system. Another hybrid EEG-
fNIRS system proposed by Li et al. [9] achieved the
highest accuracy of 91.02%; however, this accuracy
decreased to 85.55% when utilizing fNIRS alone.
Recent literature has suggested the implementation of
channel selection and cascade feature selection for
fNIRS task recognition [33], reporting a maximum
accuracy of 86.2% using matching pursuit-based
indices. Although the data and classifiers employed in
the present study are identical to those in previous
research, our system has enhanced the maximum
accuracy rate by approximately 7%.
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Table 4. A comparison of the performance of the proposed system with previously presented schemes

No. of . . Classification and other Maximum accuracy
Study Task subjects Feature Engineering procedures (%)
Skewness, kurtosis, . y 1 L
. . Fisher’s linear discriminant
[25] Imagery 12 variance, and mean signal . 81
. analysis
amplitudes
The task-related
Mental concentration changes of
[12] . 8 [oxy-HDb] referred to a 10-  LDA, three regions of interest 79.7
calculation o
s baseline interval before
the task
Average of [Oxy-Hb], and
[21] Mental workload 12 spectral indices of heart ANOVA test -
rate
Mental
[7] calculation, 10 Mean and slope of the LDA 75.6
. signal
imagery
3D fNIRS imaging by
Mental bundled-optode
[31] : 5 _ i
calculation arrangement, average of
[Oxy-Hb]
80.7[Deoxy-
Mean and slope of Hb]/83.6[Oxy-Hb] for
Mental . .
[28] calculation 29 concentration changes of LDA mental calculation
imace ’ [Deoxy-Hb] and [Oxy- ) 66.5[Deoxy-
gery Hb] Hb]/63.5[Oxy-Hb] for
imagery
A general linear model
and temporal features, a 91.02 (hybrid)
[9] Motor task 1 hybrid EEG-fNIRS SVM 85.55 (INIRS)
scheme
Slope, mean, kurtosis,
peak, variance, and Hybrid genetic algorithm- 91% (subject-
[8] Imagery 3 skewness from the [Oxy- SVM dependent)
Hb]
Mental Hilbert-based indices of 82.87 [Deoxy-Hb]
[29] . 29 [Oxy-Hb] and [Deoxy- kNN 84.94 [Oxy-Hb]
calculation
Hb]
Mental ..
. Independent decision path
(301 caleulation, 29 - fusion of EEG and fNIRS 70:3
imagery
77.01[Deoxy-
Mental Mean, slope, peak, LDA, kNN, and SVM, Hb]/71.32[Oxy-Hb] for
[27] calculation, 29 skewness and kurtosis, of  sequential feature selection and  imagery 88.67[Deoxy-
imagery fNIRS reliefF Hb]/86.43[Oxy-Hb] for
mental calculation
Concentration changes in o
[24] Mental workload 20 [Oxy-Hb] and [Deoxy- ANOVA, Principal -
Hb] Component Analysis
Mental General linear model to
[36] . 8 identify the active areas of - -
calculation .
the brain
[17] N-back task 25 Traditional measures ANOVA, topographic maps, -
Mental Average, minimum,
[37] . 8 maximum, variance, and LDA, QDA, and SVM 89.73 by QDA
calculation
slope
mean, slope, maximum of
[38] Imagery 20 [Oxy-Hb] and minimum  Fisher score, SVM, LDA, kNN 69.6
of [Deoxy-Hb]
. . AdaBoost, kNN, SVM, NB,
[33] Mentgl 8 Matchmg pgrsult—based DT, channel selection, cascade 86.2 by DT
calculation indices .
feature selection
Subje':ct-d.ependent and 93.75 (subject-
subject-independent
Current Mental . . dependent)
stud calculation 8 Poincare plot measures feature/channel selection, 91.67 (subject-
udy u AdaBoost, kNN, SVM, NB, 07 (sub)
independent)
DT
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The proposed system demonstrated -effective
performance in both subject-dependent and subject-
independent  feature/channel  selection  modes,
indicating its potential for the advancement of {NIRS-
BCI systems in future applications.

The methodology employed in this paper is
characterized by its simplicity in terms of feature
engineering and feature/channel selection, while being
efficient in distinguishing between mental tasks and
rest conditions. The straightforward nature of our
approach presents a significant advantage for potential
integration into wearable fNIRS devices. The
implementation of a basic
algorithm, alongside the application of fundamental
statistical

channel-selection
measures, minimizes computational
demands, thus rendering the approach suitable for
real-time applications within wearable technology
contexts. The capacity for real-time classification of
mental tasks and rest conditions facilitates diverse
practical applications, including neurofeedback,
brain-computer interfaces, and cognitive state
monitoring. This simplicity further enhances the
adaptability of our method to lower-resolution
systems. Even with diminished spatial resolution, our
channel-selection strategy remains capable of
effectively identifying the most informative channels,

ensuring consistent classification performance.

Nevertheless, the study is not without its
limitations. The restricted number of database samples
poses challenges to the generalizability of the
proposed algorithm. Addressing this limitation
necessitates the evaluation of a broader array of fNIRS
recordings. Our process of feature/channel selection
was conducted to feature engineering. Future
investigations might consider incorporating this step
before feature extraction to enhance computational
efficiency. This study establishes a straightforward
feature selection criterion, utilizing the maximum
range difference as the primary metric. Other metrics
could yield supplementary insights; for instance,
identifying channels with features highly correlated to
task performance may enhance the selection of those
channels that best reflect the cognitive demands of the
mental task, potentially resulting in improved
classification accuracy. Furthermore, by examining
the spatial patterns of hemodynamic responses, it may
be possible to pinpoint regions of interest consistently
activated during mental tasks. Such an approach could
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bolster the interpretability and relevance of the
selected channels, particularly in studies focusing on
specific cognitive tasks. Future research should
consider the exploration of alternative metrics, such as
correlation with task performance or the spatial
distribution of brain activity. In our analysis, we opted
to utilize a singular time lag for the computation of the
Poincaré plot [41]. However, the application of
multiple time lags could facilitate a more nuanced
understanding of data dynamics. Therefore, future
investigations are warranted to systematically
examine the optimal time lag for fNIRS data,
potentially yielding more refined measurements of
temporal variability.

Additionally, this study adhered to a binary
classification framework, distinguishing between
mental task and resting condition. This constraint
arises from the dataset, which only provides "rest" and
"task" labels, thereby limiting our exploration of
multi-class classification scenarios. Further research
should involve the collection of more extensive
datasets that encompass multiple mental tasks or
varying levels of task difficulty. Moreover, the feature
selection methodology, which relies on the range and
absolute differences of characteristics between the two
states, would necessitate adaptation for multi-class
settings. Identifying the most discriminative features
across multiple classes in such scenarios could prove
more complex and may require the implementation of
advanced feature selection algorithms.

In our study, the kNN classifier exhibited superior
performance compared to other methods, such as
SVM. This variation in performance can be attributed
to several factors, including the inherent
characteristics of the data, the underlying assumptions
associated with each classifier, and the influence of
hyperparameters. For example, the choice of the k-
value is critical in the kNN algorithm; a lower k-value
may render the classifier susceptible to noise, whereas
a higher k-value could smooth the decision boundary,
possibly obscuring finer distinctions between classes
[40]. Future work should incorporate a more
comprehensive hyperparameter optimization strategy
for the classifiers. Additionally, exploring ensemble
methods that amalgamate multiple classifiers may
further enhance performance by capitalizing on the

strengths of each approach.
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5. Conclusion

Recent advancements in the development of fNIRS-
based BCI systems have led to a significant increase
in interest aimed at creating user-friendly and
naturalistic communication schemes. In this context,
we have proposed a novel and straightforward tool for
the classification of mental arithmetic tasks. Contrary
to conventional methodologies that primarily utilize
statistical features, our approach employs nonlinear
indices derived from two-dimensional phase space.
These features, while computationally simple,
effectively elucidate the dynamics of the system. A
key innovation of our procedure is the introduction of
a new feature/channel selection strategy, which we
evaluated in both subject-dependent and subject-
independent classification modes. Despite the
computational simplicity of our method, the results
obtained in both modes were notably impressive. The
rapid and uncomplicated calculations offered by the
proposed algorithm, along with its high performance
in differentiating between mental states, position it as
a promising candidate model for the development of
online fNIRS-BCI systems.
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