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Abstract 

Purpose: Functional Near-Infrared Spectroscopy (fNIRS) is a relatively novel tool that measures local 

hemodynamic changes, including oxygenated hemoglobin [Oxy-Hb], deoxygenated hemoglobin [Deoxy-Hb], 

and total hemoglobin [Tot-Hb]. Its safety, portability, non-invasiveness, and cost-effectiveness make it a preferred 

technique for designing Brain-Computer Interfaces (BCIs). This study aims to develop an accurate fNIRS-based 

BCI module for classifying mental tasks and the resting state.  

Materials and Methods: Rather than relying on conventional statistical features, our approach utilizes nonlinear 

indices derived from a 2D Poincaré plot. These measures are computationally efficient and capable of revealing 

the underlying dynamics of the system. Our primary innovation lies in the development of a novel feature and 

selection method. We assessed mental task recognition in both subject-dependent and subject-independent 

classification modes. 

Results: Our findings demonstrated a maximum accuracy of 93.75% for subject-specific style and 91.67% for 

subject-independent style. 

Conclusion: In summary, the simplicity and high performance of the proposed framework suggest promising 

future directions for designing online fNIRS-based BCI systems. 

Keywords: Functional Near-Infrared Spectroscopy; Poincaré Plot; Feature/Channel Selection; Mental 

Calculation; Classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL ARTICLE 

https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.18502/fbt.v13i1.20780
https://orcid.org/0000-0002-5185-5645


 A Straightforward Approach to fNIRS Channel Selection for Distinguishing Mental States from Resting States   

FBT, Vol. 13, No. 1 (Winter 2026) 117-132 118 

1. Introduction  

Brain-computer interfaces (BCIs) serve as 

communication tools that facilitate interaction 

between the human brain and external devices [1]. In 

recent decades, these interfaces have been the subject 

of extensive research, frequently by scientists. Rather 

than relying on the brain's natural output pathways to 

convey intentions, BCIs detect brain activity and 

convert it into control commands. As a result, they 

offer a potential means of communication with the 

external environment for individuals with movement 

disorders, such as paralysis or amyotrophic lateral 

sclerosis [2]. 

Researchers have utilized various neuroimaging 

technologies to assess cognitive load in a typical BCI 

due to the diverse activities occurring within the 

human brain. Functional Near-Infrared Spectroscopy 

(fNIRS) is one of the more recent neuroimaging 

techniques employed for functional neuroimaging. 

This method measures local hemodynamic changes, 

including levels of oxygenated hemoglobin [Oxy-Hb], 

deoxygenated hemoglobin [Deoxy-Hb], and total 

hemoglobin [Tot-Hb], by employing near-infrared 

light within the wavelength range of 700 to 1300 nm 

[3].  

Although Electroencephalography (EEG), 

magnetoencephalography (MEG), and Event-Related 

brain Potentials (ERPs) exhibit high temporal 

resolution, they are limited by their spatial resolution. 

In contrast, Single-Photon Emission Computed 

Tomography (SPECT), Positron Emission 

Tomography (PET), and functional Magnetic 

Resonance Imaging (fMRI) are constrained by their 

temporal resolution. Additional limitations of these 

methodologies include contraindications for pediatric 

populations, high costs, susceptibility to movement 

artifacts, and restrictions on continuous or frequent 

measurements [3]. Conversely, fNIRS offers 

advantages such as safety, portability, non-

invasiveness, and cost-effectiveness. Furthermore, 

fNIRS provides superior spatial resolution compared 

to EEG, better temporal resolution than fMRI, and 

greater resistance to electrical noise and motion 

artifacts than EEG [3, 4]. These benefits render fNIRS 

a preferred technique in the development of BCI. 

A typical BCI system can be influenced by various 

types of mental loads to elicit brain activity. Some 

mental tasks are more widely studied, such as motor 

imagery [5-11] and mental calculations [7, 11-15], 

while others, including the n-back task [16-18], 

imagery [19], and singing a song [19], have been 

explored in fewer studies [19-24]. Mental calculation 

involves performing arithmetic operations mentally, 

whereas motor imagery refers to the kinesthetic 

visualization of one’s own body organs without the 

engagement of muscle activity. 

Recent advancements in BCI technology have been 

achieved through the application of neuroimaging 

techniques that employ a variety of protocols and 

signal processing methodologies. A mixed linear 

model for fNIRS data analysis was introduced to 

investigate the relationship between task difficulty and 

peak concentrations of [Oxy-Hb] during periods of 

mental effort expectation [15]. Notably, increased 

activity in the dorsolateral prefrontal cortex was 

observed in anticipation of challenging tasks 

compared to easier ones. However, the assessment of 

cerebral cortex hemodynamics was limited due to the 

exclusive use of frontal fNIRS channels. The system 

developed by Holper and Wolf [25] utilized several 

statistical measures derived from fNIRS data, 

including variance, mean amplitudes, kurtosis, and 

skewness, in conjunction with Fisher’s linear 

discriminant analysis. Their objective was to 

distinguish between simple and complex tasks within 

motor imagery trials. Despite achieving an average 

accuracy of 81%, the limited number of experimental 

trials compromised the balance between accuracy 

rates and the number of features or trials analyzed.  

FNIRS statistical measures have been employed in 

various studies [4, 7, 8, 10, 15, 21, 26, 27]. In their 

research, Hong et al. [7] utilized Linear Discriminant 

Analysis (LDA) and reported an average accuracy of 

75.6% in classifying mental calculation, right-hand 

motor imagery, and left-hand motor imagery. 

However, the performance of this approach may be 

limited by the application of electrodes in only two 

specific regions of the cerebral cortex, thereby 

neglecting the potential contributions of other areas. In 

a separate study [8], the selected feature combinations 

were input into a hybrid genetic-SVM to identify 

motor imagery, achieving a subject-dependent 

accuracy of approximately 91%. This investigation 
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was constrained by the use of six statistical indices and 

the evaluation of only two- and three-feature fusion. 

Additionally, a hybrid EEG-fNIRS system [28] 

employed LDA attained a maximum average accuracy 

of 63.5% for imagery tasks and 83.6% for mental 

calculation. The authors attributed the low recognition 

rates to participants’ lack of concentration during the 

simultaneous recording of both protocols. Aydin [27] 

incorporated a subject-specific feature selection 

algorithm within the fNIRS-BCI system, employing 

stepwise regression methodology based on relief F and 

sequential feature selection. Various machine learning 

algorithms were tested, resulting in a maximum 

accuracy of 88.67% for mental calculation using SVM 

and 71.32% for imagery classification using LDA. 

Conversely, the lowest classification rate was 

observed for the k-nearest neighbors (kNN) algorithm, 

which the authors attributed to the use of a fixed 

neighborhood value. 

The nonlinear manifestations of brain function and 

concurrent metabolic processes [11], coupled with the 

limitations of statistical measures in adequately 

characterizing these phenomena, have prompted some 

researchers to adopt nonlinear signal analysis 

techniques. The study conducted was primarily 

exploratory and did not elucidate the neurobiological 

mechanisms underlying this complication. Utilizing 

Hilbert-based features of fNIRS in conjunction with 

kNN yielded a maximum accuracy of 84.94%, a 

sensitivity of 85.51%, and a specificity of 84.36% 

[29]. However, these findings were reported without a 

thorough investigation into the influence of 

classification parameters or feature selection on the 

performance of the system. Additionally, an 

independent decision path fusion methodology was 

proposed within a hybrid EEG-fNIRS BCI [30]. 

Despite the inherent complexity and the time-

intensive nature of simultaneous bimodal brain data 

recording, the maximum accuracy achieved was 

70.32%. 

Previous research has predominantly focused on 

employing classifiers such as the hidden Markov 

model (HMM), SVM, LDA, and Artificial Neural 

Networks (ANN) [4, 7, 8, 10, 26]. Furthermore, the 

literature indicates that additional components may be 

integrated into the design of BCI systems, including 

preprocessing [8-11, 14, 15, 24, 26], channel selection 

[9, 26, 31], and feature selection [27, 32]. 

Our previous study encompassed various modules 

for a functional near-infrared spectroscopy-based 

brain-computer interface [33]. Initially, we proposed a 

subject-specific channel selection method that utilized 

the fNIRS energy. Subsequently, we employed a time-

frequency analysis technique known as matching 

pursuit for feature engineering. Following this, we 

introduced a two-step feature selection approach that 

combined cascade Principal Component Analysis 

(PCA) with the Relief algorithm. After evaluating 

several classifiers, including Naïve Bayes (NB), kNN, 

SVM, decision tree (DT), and AdaBoost, we achieved 

a maximum accuracy of 86.2%. This study utilized the 

same data and classifiers as our previous research. The 

primary distinction between the current system and the 

previous one lies in the methodologies employed for 

feature engineering and channel/feature selection. Our 

principal contributions are outlined as follows. 

(1) From the perspective of feature engineering 

methodologies, a majority of researchers have 

employed statistical analyses of fNIRS. While the 

computational demands of these indicators are 

relatively low, they are inadequate in capturing the 

dynamic and complex nature of brain activity. 

Previous studies have proposed nonlinear feature 

engineering techniques to address this limitation; 

however, many of these methods are characterized by 

high computational costs and complexity. In this 

study, we utilized phase space indicators that 

effectively represent system dynamics with both 

simplicity and rapid computational efficiency. To the 

best of our knowledge, no prior research has been 

conducted on fNIRS-based BCI analysis using the 

Poincaré plot. 

(2) Channel and feature selection can significantly 

reduce the computational demands of classifiers while 

enhancing their performance. Previous studies have 

employed these approaches [8, 9, 25-27, 31-33]. 

However, certain methods have proven to be 

computationally intensive. This study proposes a 

novel method that is computationally efficient and has 

the potential to enhance the system's performance. 

(3) In a limited number of studies, only subject-

dependent or subject-independent channel selection 

methods have been implemented [8, 27, 33]. This 

research aims to evaluate both channel selection 

modes and to determine whether their outcomes are 
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identical or exhibit negligible or significant 

differences. 

The subsequent sections of this study encompass 

the following components. The proposed 

methodology, which includes the fNIRS protocol and 

dataset, as well as the features, feature/channel 

selection methods, and classification techniques, is 

detailed in the Materials and Methods section. The 

Results section presents the findings, including a 

comparative analysis of the performance of various 

schemes. Finally, the Discussion and Conclusion 

sections synthesize the insights derived from the 

study. 

2. Materials and Methods  

Figure 1 presents a schematic representation of the 

proposed procedure. The system comprises several 

modules, including (1) fNIRS data, (2) segmentation, 

(3) feature engineering, (4) feature and channel 

selection, (5) normalization, and (6) classification. 

Each module is elaborated upon in the subsequent 

sections. 

2.1. fNIRS Data 

This experiment used fNIRS data from BNCI-

Horizon 2020 databank, which is publicly accessible 

at http://bnci-horizon-2020.eu/database/data-sets. The 

signals were recorded while participants engaged in 

mental arithmetic tasks. The study included five 

female and three male participants, with a mean age of 

26 ± 2.8 years [12]. All participants were healthy 

right-handed individuals, exhibiting antagonist 

hemodynamic response patterns during the task [12].  

The experiment commenced with a ten-second 

baseline recording, which was subsequently followed 

by a mental task. Participants were required to 

sequentially subtract a one-digit number from a two-

digit integer as quickly as possible, while the initial 

prompt was displayed on a video monitor. This task 

duration was approximately 12 seconds. Following the 

task, a black screen was presented for a resting period 

 

Figure 1. A schematic representation of the proposed system 

http://bnci-horizon-2020.eu/database/data-sets
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of 28 seconds, during which participants were 

instructed to remain perfectly still and relaxed. The 

total duration of each trial was 40 seconds, comprising 

12 seconds for the subtraction task and 28 seconds for 

the resting phase. Figure 2 illustrates the task 

schematically. Each participant completed three or 

four runs, encompassing a total of six trials. The 

present study employed three runs for all participants. 

Ethical approval for the study was granted by the 

Institutional Review Board of the Medical University 

of Graz. Written informed consent was obtained from 

all participants after they were thoroughly informed 

about the study's objective. Participants were required 

to have no pre-existing medical conditions and were 

instructed to refrain from caffeine consumption before 

data collection. The recordings were conducted while 

participants were seated in a comfortable armchair, 

utilizing the Hitachi Medical Co. system (ETG-4000) 

from Japan, which is equipped with 17 light emitters 

and 16 photo-detectors. A 156-channel fNIRS setup 

was employed to measure variations of [Tot-Hb], 

[Oxy-Hb], and [Deoxy-Hb] expressed in millimolar × 

millimeter across 52 channels. The data were digitized 

at a sampling rate of 10 Hz. 

2.2. Segmentation 

Each data file is structured as a cell array with 

dimensions of 1 by the number of runs (3x1). The file 

contains the locations of the triggers in samples, labels 

for groups (1 indicating the mental task and 2 

indicating the resting state), as well as data from 156 

channels. We organized the data according to the 

trigger locations for each run. 

2.3. Feature Engineering 

A Poincaré plot serves as a straightforward method 

for offering a geometric representation of data within 

a Cartesian plane. Each point on the plot corresponds 

to pairs of data samples, and the distance between 

these points, measured in terms of the number of 

samples, is referred to as the lag of the plot.  

Let us consider an fNIRS time series represented as 

X0, X1, …, XN, and denotes the mean of the data. A 

conventional lag-1 Poincaré plot is a two-dimensional 

representation generated by plotting consecutive data 

samples (Xi, Xi+1). This plot serves to graphically 

depict the statistical correlation between successive 

samples. Figure 3 presents a Poincaré plot of fNIRS 

data, which includes 100 samples collected across two 

trials. 

 

 

Figure 2. The temporal progression of a single trial. Two seconds before the initiation of the task, a green bar 

was presented. Following the cue (e.g., 97 - 4), participants were instructed to perform mental arithmetic for a 

duration of 12 seconds, which was subsequently succeeded by a 28-second rest period 



 A Straightforward Approach to fNIRS Channel Selection for Distinguishing Mental States from Resting States   

FBT, Vol. 13, No. 1 (Winter 2026) 117-132 122 

A fitted ellipse is utilized in the plot to quantify the 

map, with the minor axis (SD1) and major axis (SD2) 

calculated mathematically as follows [34]: 

𝑆𝐷1 = √
1

𝑁 − 1
∑ (𝐷𝑖,𝑚𝑖𝑛)

2

𝑁−1∑

𝑖=1

 (1) 

𝑆𝐷2 = √
1

𝑁 − 1
∑(𝐷𝑖,𝑚𝑎𝑗)

2
𝑁−1

𝑖=1

 (2) 

The distance of the ith point on the plot from the 

major and minor axes can be expressed as follows. 

𝐷𝑖,𝑚𝑎𝑗 =
𝑋𝑖 + 𝑋𝑖+1 − 2𝑋̄

√2̅̅̅̅
, 𝐷𝑖,𝑚𝑖𝑛 =

𝑋𝑖 − 𝑋𝑖+1

√2̅̅̅̅
 (3) 

The area (Ar) of the fitted ellipse is subsequently 

calculated according to Equation 4. 

𝐴𝑟 = 𝜋 × 𝑆𝐷1 × 𝑆𝐷2 (4) 

We also examined the ratio of SD1 to SD2 

(SD1/SD2) as a quantitative measure for the plot. 

2.4. Feature and Channel Selection 

This experiment proposed a dual approach to 

channel selection, encompassing both subject-

dependent and subject-independent methodologies.  

Initially, the range (R = max(Y) – min(Y)) for each 

feature (Y) was computed across all channels under 

the mental task (Rm) and rest (Rr) conditions. 

Subsequently, the absolute value of the differences 

was calculated for each channel (SCi = |Rm – Rr|). The 

channel exhibiting the maximum SC value was then 

identified (see Figure 4). The foundational principle of 

this methodology is predicated on the notion that 

channels demonstrating greater variability in response 

(i.e., broader ranges of values) are more likely to 

convey distinguishable information between the 

mental task and rest conditions. By evaluating the 

range of each feature for both conditions, we can 

determine the extent to which a channel can 

effectively differentiate between these states. Our 

approach is designed to be both subject-dependent and 

subject-independent, thereby enhancing its 

applicability across diverse individuals. By 

concentrating on channels with significant disparities 

in response ranges, we establish a flexible framework 

 

Figure 3. A sample Poincaré plot of fNIRS data from Subject 1, comprising 100 samples across two trials 

(top: Trial 1 and bottom: Trial 2) 
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for feature selection that accommodates individual 

variability while simultaneously strengthening the 

overall analysis. 

Figure 5a illustrates the selected channel from the 

fNIRS channels for each participant, indicating a 

subject-dependent selection. Conversely, Figure 5b 

presents the selected channel from the fNIRS channels 

applicable to all participants, reflecting a subject-

independent selection. 

It is noteworthy that, in the subject-independent 

mode, the selected channel for both [Oxy-Hb] and 

[Deoxy-Hb] remained consistent, irrespective of the 

type of feature utilized. In contrast, this consistency 

was not observed in the subject-dependent mode. 

2.5. Normalization 

Prior to inputting the feature vector (FV) into the 

classifier, it was normalized to a range of -1 to 1 using 

the following method. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑉 = 2(
𝐹𝑉 − 𝐹𝑉𝑚𝑖𝑛

𝐹𝑉𝑚𝑎𝑥 − 𝐹𝑉𝑚𝑖𝑛

) − 1 (5) 

he maximum and minimum values of the FV are 

represented by Fmax and Fmin, respectively.  

Data normalization constitutes an essential 

preprocessing step that entails the transformation of 

features to a uniform range, thereby mitigating the 

influence of larger numeric feature values on those 

with smaller values. The principal aim of 

normalization is to reduce the bias associated with 

features that possess a greater numerical impact in 

differentiating between pattern classes [35]. In the 

absence of normalization, the performance of the 

method may be negatively impacted. Features 

characterized by larger scales may obscure those with 

smaller scales, resulting in biased classification 

results. 

The hemodynamic response features, including 

[Oxy-Hb], [Deoxy-Hb], and [Tot-Hb], as well as their 

combinations, were incorporated into the 

classification module. 

2.6. Classification 

The objective of this study was to classify two 

distinct conditions: "rest" and "task." We evaluated 

several classification algorithms, including Support 

Vector Machine (SVM) utilizing a radial basis 

function (RBF) kernel, AdaBoost, Naïve Bayes (NB), 

 

Figure 4. A typical scheme for the proposed channel selection process. The Feature values across 52 channels for each 

sample are represented in the matrices. The number of samples corresponding to each matrix is contingent upon the 

implementation of either a subject-dependent or subject-independent strategy. These matrices were generated for each of the 

hemodynamic features: [Oxy-Hb], [Deoxy-Hb], and [Tot-Hb]. When considering all indices of the hemodynamic responses 

([Oxy-Hb], [Deoxy-Hb], and [Tot-Hb]), the total number of channels, which corresponds to the number of columns in the 

matrices, amounts to 156 (calculated as 52 multiplied by 3 features) 
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Decision Tree (DT), and K-Nearest Neighbor (kNN) 

with varying values of k ranging from 1 to 20.  

The classifiers were assessed using several 

performance metrics, including accuracy (AC), 

specificity (SP), sensitivity (SE), and F1-score (F1), 

employing a k-fold cross-validation (CV) approach 

with k values ranging from 2 to 10. The evaluation 

criteria were computed based on the definitions of true 

positive (TP), true negative (TN), false positive (FP), 

and false negative (FN)as follows: 

 

 

𝐴𝐶(%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (6) 

𝑆𝐸(%) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (7) 

𝑆𝑃(%) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 (8) 

𝐹1(%) =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
× 100 (9) 

 

Figure 5. Selected channels for measurements of [Oxy-Hb], [Deoxy-Hb], and [Tot-Hb] in (a) subject-dependent mode and 

(b) subject-independent mode 
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3. Results  

Poincaré quantifiers were computed for two 

conditions: mental tasks and rest. Following the 

confirmation of normal distribution of the features via 

the Anderson-Darling test, we evaluated significant 

differences between the groups using the t-test. Table 

1 presents the mean and standard deviation of the 

Poincaré measures, along with the corresponding 

statistical results. 

A notable increase in the parameters SD1, SD2, and 

the ratio SD1/SD2 is observed in response to [Oxy-

Hb] and [Deoxy-Hb], with statistical significance 

indicated by p < 0.05. Furthermore, all Poincaré 

indices demonstrate significant differences (p < 0.05) 

for [Tot-Hb]. 

Table 2 presents the highest classification results 

for each hemodynamic response and feature in a 

subject-independent mode. Furthermore, it details the 

classification performance when all hemodynamic 

responses are simultaneously input into the classifier. 

Specifically, the table delineates the classification 

outcomes for various hemodynamic responses, 

including Oxy-Hb, Deoxy-Hb, and Tot-Hb, utilizing 

different Poincaré measures such as SD1, SD2, 

SD1/SD2, and Area, in conjunction with high-

performance classifiers. The metrics reported include 

Accuracy (AC), Sensitivity (SE), Specificity (SP), and 

F1 score (F1). Sensitivity (SE) quantifies the 

proportion of actual positives (task-related responses) 

that are correctly identified by the classifier, whereas 

Specificity (SP) assesses the proportion of actual 

negatives (rest-related responses) that are correctly 

recognized.  

The table highlights the effectiveness of the 

measures, revealing that the combination of [Oxy-Hb] 

with the SD1/SD2 Poincaré measure using the Naïve 

Bayes classifier achieved the highest accuracy 

(85.71%) and a remarkable sensitivity of 100%, 

indicating that all task-related responses were 

correctly identified. Similarly, for [Deoxy-Hb], the 

SD1/SD2 measure also yielded a high accuracy of 

87.50% with perfect specificity. In contrast, [Tot-Hb] 

showed the best performance with the SD1/SD2 

measure utilizing the Naïve Bayes classifier, 

achieving an impressive accuracy of 91.67%, a 

sensitivity of 100%, a specificity of 94.12%, and an F1 

score of 91.89%. Furthermore, when assessing the 

classification performance across all hemodynamic 

responses, the results indicated a slight decline in 

accuracy and sensitivity, with the SD2 measure still 

maintaining a commendable performance with an 

accuracy of 85.71% and a sensitivity of 81.25%. The 

specificity remained notably high across various 

classifiers and hemodynamic responses, particularly 

for the [Deoxy-Hb], [Tot-Hb], and all measures, which 

reached 100% in several instances.  

Table 2 also indicates that Naïve Bayes and kNN 

classifiers outperformed the other classifiers, 

achieving the highest performance metrics. It is 

important to note that the classification results were 

significantly influenced by the choice of k-value for 

both the kNN and the k-fold CV. 

Table 3 presents the optimal classification 

performance for each hemodynamic response and  

Table 1. The average and standard deviation (Mean ± STD) of the features, along with the results of the t-test 

conducted between the two groups for various hemodynamic responses 

Hemodynamic response 
Poincare 

measures 
Task Rest p-value 

[Oxy-Hb] 

SD1 0.0028±0.0049 0.0017±0.001 0.009* 

SD2 0.098±0.15 0.062±0.065 0.0014* 

SD1/SD2 0.098±0.147 0.062±0.065 0.0014* 

Area 0.0024±0.015 0.0003±0.0005 0.08 

[Deoxy-Hb] 

SD1 0.0017±0.0024 0.0012±0.0009 0.004* 

SD2 0.062±0.08 0.031±0.028 1.13×10-7* 

SD1/SD2 0.062±0.08 0.031±0.028 1.13×10-7* 

Area 0.0007±0.003 0.00015±0.0003 0.05 

[Tot-Hb] 

SD1 0.0037±0.0072 0.0022±0.0017 0.008* 

SD2 0.065±0.083 0.036±0.024 2.43×10-5* 

SD1/SD2 0.065±0.083 0.036±0.025 2.52×10-5* 

Area 0.0039±0.02 0.00056±0.001 0.04* 
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feature within a subject-dependent framework. 

Additionally, it provides classification outcomes when 

all hemodynamic responses are concurrently input 

into the classifier. 

Table 3 indicates that the kNN classifier 

outperformed the other classifiers, achieving the 

highest performance metrics. However, the results 

were significantly influenced by the choice of the k-

value for kNN and the k-value utilized for k-fold CV. 

When employing the [Oxy-Hb] variable, the accuracy 

rates attained were 93.75% and 93.1%, with an 8-fold 

CV applied for the SD1/SD2, and a 7-fold CV 

implemented for the SD2. The sensitivity, specificity, 

and F-score were recorded at 100%, 88.89%, and 

93.33%, respectively. Furthermore, an accuracy of 

93.1% was achieved when the SD2 of the Total 

Hemoglobin ([Tot-Hb]) was input into the 20-Nearest 

Neighbors (20NN) model. Among the Poincaré 

measures, SD2 demonstrated the highest performance, 

while the second-best Poincaré measure was identified 

as SD1/SD2. 

Table 2. Classification results for a subject-independent model 

Hemodynamic 

response 

Poincare 

measures 

High-

performance 

classifier 

K for k-

fold CV 
AC SE SP F1 

[Oxy-Hb] 

SD1 18NN 2 78.13 80 76.47 77.42 

SD2 Naïve Bayes 6 80.49 100 88.89 80.95 

SD1/SD2 Naïve Bayes 9 85.71 100 91.67 86.67 

Area 19NN 8 86.21 92.31 100 85.71 

[Deoxy-Hb] 

SD1 17NN 6 84.38 87.50 82.35 83.87 

SD2 16NN 1 83.33 87.50 100 82.35 

SD1/SD2 11NN 5 87.50 87.50 100 87.50 

Area 20NN 6 86.21 91.67 82.35 84.62 

[Tot-Hb] 

SD1 17NN 8 84.38 86.67 100 83.87 

SD2 19NN 6 82.76 81.82 100 85.71 

SD1/SD2 Naïve Bayes 7 91.67 100 94.12 91.89 

Area 16NN 2 83.33 100 100 80 

All 

SD1 14NN 8 83.33 87.50 80 82.35 

SD2 19NN 5 85.71 81.25 100 86.67 

SD1/SD2 17 2 84.38 86.67 100 83.87 

Area 19NN 2 82.14 76.47 100 83.87 

 

Table 3. Classification results for a subject-dependent model 

Hemodynamic 

response 

Poincare 

measures 

High-

performance 

classifier 

K for k-

fold CV 
AC SE SP F1 

[Oxy-Hb] 

SD1 11NN 2 75 73.08 77.27 76 

SD2 20NN 7 93.10 87.50 100 93.33 

SD1/SD2 17NN 8 93.75 100 88.89 93.33 

Area AdaBoost 7 83.33 92.86 77.27 81.25 

[Deoxy-Hb] 

SD1 20NN 3 75.86 70 88.89 80 

SD2 14NN 2 85.37 100 76.92 83.33 

SD1/SD2 20NN 8 85.71 85.71 85.71 85.71 

Area 19NN 4 86.21 82.35 91.67 87.50 

[Tot-Hb] 

SD1 18NN 7 71.88 73.33 70.59 70.97 

SD2 20NN 8 93.10 92.86 93.33 92.86 

SD1/SD2 19NN 3 89.66 88.89 92.86 89.66 

Area 18NN 6 84.38 92.31 78.95 82.76 

All 

SD1 20NN 6 79.31 75 84.62 80 

SD2 18NN 2 90.63 100 93.33 90.91 

SD1/SD2 20NN 6 89.66 100 83.33 88 

Area 17NN 8 84.38 86.67 82.35 83.87 
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A comparison of the results from the subject-

independent (Table 2) and the subject-dependent 

(Table 3) indicates that the subject-dependent strategy 

demonstrates superior performance in classifying rest 

and task states. 

The study employed an Intel(R) Core(TM) i7-

14650HX processor with a clock speed of 2.20 GHz. 

The time required for subject-dependent channel 

selection was recorded at 0.621456 seconds, whereas 

the time for subject-independent channel selection 

was noted to be 0.560980 seconds. These findings 

indicate that the proposed method exhibits 

computational efficiency, rendering it appropriate for 

real-time applications. Furthermore, the 

straightforward nature of the channel selection 

algorithm reduces computational complexity, thereby 

enhancing its suitability for incorporation into 

wearable fNIRS devices. 

4. Discussion 

This study aims to propose an accurate fNIRS 

system for the classification of mental tasks and 

resting conditions. The primary focus is on presenting 

a novel and straightforward approach for channel 

selection, as well as evaluating the outcomes in both 

subject-dependent and subject-independent modes. 

We employed Poincaré-based indices to analyze the 

various hemodynamic responses. Subsequently, a 

channel-selection algorithm was developed, 

emphasizing the most significant changes in 

characteristics between the two states. Following the 

normalization of the feature vector, a decision-making 

module was implemented, wherein NB, DT, SVM, 

kNN, and AdaBoost were assessed for mental task 

recognition. The maximum accuracy achieved was 

93.75% using a subject-specific channel selection 

procedure. Furthermore, our findings indicate the 

superiority of the kNN algorithm, particularly 

highlighting the importance of the k values and k-fold 

CV on recognition rates.  

We conducted a comparative analysis of the 

performance of the proposed system against 

previously established systems, as summarized in 

Table 4. 

Table 4 demonstrates the superiority of the current 

system, as evidenced by its higher classification rates 

in comparison to other existing models.  

Most of the scientists referenced have employed 

conventional methodologies for statistical signal 

analysis [7, 8, 17, 24, 25, 27, 28, 37, 38]. In contrast, 

this study adopts a non-linear feature engineering 

approach. The methodology is based on the principles 

of non-linear dynamics and deterministic chaos, with 

a focus on characterizing system attractors and their 

invariant parameters [39]. The non-linear features are 

designed to capture complex relationships and 

interactions that may not be sufficiently represented 

by linear models [39]. This approach facilitates a more 

nuanced understanding of how various cognitive tasks 

are encoded by neural populations. Furthermore, LDA 

has been utilized as a classifier in the majority of the 

studies reviewed [7, 12, 25, 27, 28, 37, 38], yielding 

accuracy rates ranging from approximately 63% to 

89%. However, none of these studies have provided 

alternative criteria for evaluating classifier 

performance. Additionally, our proposed system 

demonstrates superiority over the non-linear feature 

engineering system presented by Ergün and Aydemir 

[29]. Their study examined Hilbert-based features in 

conjunction with kNN, achieving maximum 

accuracies of 84.94% for [Oxy-Hb] and 82.87% for 

[Deoxy-Hb]. A self-governing decision path fusion 

methodology was introduced by Jiang et al. [30] for a 

hybrid EEG and fNIRS BCI, resulting in a maximum 

accuracy of 70.32%, which is significantly lower than 

the performance of our system. Another hybrid EEG-

fNIRS system proposed by Li et al. [9] achieved the 

highest accuracy of 91.02%; however, this accuracy 

decreased to 85.55% when utilizing fNIRS alone. 

Recent literature has suggested the implementation of 

channel selection and cascade feature selection for 

fNIRS task recognition [33], reporting a maximum 

accuracy of 86.2% using matching pursuit-based 

indices. Although the data and classifiers employed in 

the present study are identical to those in previous 

research, our system has enhanced the maximum 

accuracy rate by approximately 7%. 
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 Table 4. A comparison of the performance of the proposed system with previously presented schemes 

Study Task 
No. of 

subjects 
Feature Engineering 

Classification and other 

procedures 

Maximum accuracy 

(%) 

[25] Imagery 12 

Skewness, kurtosis, 

variance, and mean signal 

amplitudes 

Fisher’s linear discriminant 

analysis 
81 

[12] 
Mental 

calculation 
8 

The task-related 

concentration changes of 

[oxy-Hb] referred to a 10-

s baseline interval before 

the task 

LDA, three regions of interest 79.7 

[21] Mental workload 12 

Average of [Oxy-Hb], and 

spectral indices of heart 

rate 

ANOVA test - 

[7] 

Mental 

calculation, 

imagery 

10 
Mean and slope of the 

signal 
LDA 75.6 

[31] 
Mental 

calculation 
5 

3D fNIRS imaging by 

bundled-optode 

arrangement, average of 

[Oxy-Hb] 

- - 

[28] 

Mental 

calculation, 

imagery 

29 

Mean and slope of 

concentration changes of 

[Deoxy-Hb] and [Oxy-

Hb] 

LDA. 

80.7[Deoxy-

Hb]/83.6[Oxy-Hb] for 

mental calculation 

66.5[Deoxy-

Hb]/63.5[Oxy-Hb] for 

imagery 

[9] Motor task 11 

A general linear model 

and temporal features, a 

hybrid EEG-fNIRS 

scheme 

SVM 
91.02 (hybrid) 

85.55 (fNIRS) 

[8] Imagery 5 

Slope, mean, kurtosis, 

peak, variance, and 

skewness from the [Oxy-

Hb] 

Hybrid genetic algorithm-

SVM 

91% (subject-

dependent) 

[29] 
Mental 

calculation 
29 

Hilbert-based indices of 

[Oxy-Hb] and [Deoxy-

Hb] 

kNN 

82.87 [Deoxy-Hb] 

84.94 [Oxy-Hb] 

 

[30] 

Mental 

calculation, 

imagery 

29 - 
Independent decision path 

fusion of EEG and fNIRS 
70.3 

[27] 

Mental 

calculation, 

imagery 

29 

Mean, slope, peak, 

skewness and kurtosis, of 

fNIRS 

LDA, kNN, and SVM, 

sequential feature selection and 

reliefF 

77.01[Deoxy-

Hb]/71.32[Oxy-Hb] for 

imagery 88.67[Deoxy-

Hb]/86.43[Oxy-Hb] for 

mental calculation 

[24] Mental workload 20 

Concentration changes in 

[Oxy-Hb] and [Deoxy-

Hb] 

ANOVA, Principal 

Component Analysis 
- 

[36] 
Mental 

calculation 
8 

General linear model to 

identify the active areas of 

the brain 

- - 

[17] N-back task 25 Traditional measures ANOVA, topographic maps, - 

[37] 
Mental 

calculation 
8 

Average, minimum, 

maximum, variance, and 

slope 

LDA, QDA, and SVM 89.73 by QDA 

[38] Imagery 20 

mean, slope, maximum of 

[Oxy-Hb] and minimum 

of [Deoxy-Hb] 

Fisher score, SVM, LDA, kNN 69.6 

[33] 
Mental 

calculation 
8 

Matching pursuit-based 

indices 

AdaBoost, kNN, SVM, NB, 

DT, channel selection, cascade 

feature selection 

86.2 by DT 

Current 

study 

Mental 

calculation 
8 Poincare plot measures 

Subject-dependent and 

subject-independent 

feature/channel selection, 

AdaBoost, kNN, SVM, NB, 

DT 

93.75 (subject-

dependent) 

91.67 (subject-

independent) 
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The proposed system demonstrated effective 

performance in both subject-dependent and subject-

independent feature/channel selection modes, 

indicating its potential for the advancement of fNIRS-

BCI systems in future applications. 

The methodology employed in this paper is 

characterized by its simplicity in terms of feature 

engineering and feature/channel selection, while being 

efficient in distinguishing between mental tasks and 

rest conditions. The straightforward nature of our 

approach presents a significant advantage for potential 

integration into wearable fNIRS devices. The 

implementation of a basic channel-selection 

algorithm, alongside the application of fundamental 

statistical measures, minimizes computational 

demands, thus rendering the approach suitable for 

real-time applications within wearable technology 

contexts. The capacity for real-time classification of 

mental tasks and rest conditions facilitates diverse 

practical applications, including neurofeedback, 

brain-computer interfaces, and cognitive state 

monitoring. This simplicity further enhances the 

adaptability of our method to lower-resolution 

systems. Even with diminished spatial resolution, our 

channel-selection strategy remains capable of 

effectively identifying the most informative channels, 

ensuring consistent classification performance.  

Nevertheless, the study is not without its 

limitations. The restricted number of database samples 

poses challenges to the generalizability of the 

proposed algorithm. Addressing this limitation 

necessitates the evaluation of a broader array of fNIRS 

recordings. Our process of feature/channel selection 

was conducted to feature engineering. Future 

investigations might consider incorporating this step 

before feature extraction to enhance computational 

efficiency. This study establishes a straightforward 

feature selection criterion, utilizing the maximum 

range difference as the primary metric. Other metrics 

could yield supplementary insights; for instance, 

identifying channels with features highly correlated to 

task performance may enhance the selection of those 

channels that best reflect the cognitive demands of the 

mental task, potentially resulting in improved 

classification accuracy. Furthermore, by examining 

the spatial patterns of hemodynamic responses, it may 

be possible to pinpoint regions of interest consistently 

activated during mental tasks. Such an approach could 

bolster the interpretability and relevance of the 

selected channels, particularly in studies focusing on 

specific cognitive tasks. Future research should 

consider the exploration of alternative metrics, such as 

correlation with task performance or the spatial 

distribution of brain activity. In our analysis, we opted 

to utilize a singular time lag for the computation of the 

Poincaré plot [41]. However, the application of 

multiple time lags could facilitate a more nuanced 

understanding of data dynamics. Therefore, future 

investigations are warranted to systematically 

examine the optimal time lag for fNIRS data, 

potentially yielding more refined measurements of 

temporal variability.  

Additionally, this study adhered to a binary 

classification framework, distinguishing between 

mental task and resting condition. This constraint 

arises from the dataset, which only provides "rest" and 

"task" labels, thereby limiting our exploration of 

multi-class classification scenarios. Further research 

should involve the collection of more extensive 

datasets that encompass multiple mental tasks or 

varying levels of task difficulty. Moreover, the feature 

selection methodology, which relies on the range and 

absolute differences of characteristics between the two 

states, would necessitate adaptation for multi-class 

settings. Identifying the most discriminative features 

across multiple classes in such scenarios could prove 

more complex and may require the implementation of 

advanced feature selection algorithms.  

In our study, the kNN classifier exhibited superior 

performance compared to other methods, such as 

SVM. This variation in performance can be attributed 

to several factors, including the inherent 

characteristics of the data, the underlying assumptions 

associated with each classifier, and the influence of 

hyperparameters. For example, the choice of the k-

value is critical in the kNN algorithm; a lower k-value 

may render the classifier susceptible to noise, whereas 

a higher k-value could smooth the decision boundary, 

possibly obscuring finer distinctions between classes 

[40]. Future work should incorporate a more 

comprehensive hyperparameter optimization strategy 

for the classifiers. Additionally, exploring ensemble 

methods that amalgamate multiple classifiers may 

further enhance performance by capitalizing on the 

strengths of each approach. 
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5. Conclusion 

Recent advancements in the development of fNIRS-

based BCI systems have led to a significant increase 

in interest aimed at creating user-friendly and 

naturalistic communication schemes. In this context, 

we have proposed a novel and straightforward tool for 

the classification of mental arithmetic tasks. Contrary 

to conventional methodologies that primarily utilize 

statistical features, our approach employs nonlinear 

indices derived from two-dimensional phase space. 

These features, while computationally simple, 

effectively elucidate the dynamics of the system. A 

key innovation of our procedure is the introduction of 

a new feature/channel selection strategy, which we 

evaluated in both subject-dependent and subject-

independent classification modes. Despite the 

computational simplicity of our method, the results 

obtained in both modes were notably impressive. The 

rapid and uncomplicated calculations offered by the 

proposed algorithm, along with its high performance 

in differentiating between mental states, position it as 

a promising candidate model for the development of 

online fNIRS-BCI systems. 
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