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Abstract

Purpose: For Whole-Body (WB) kinetic modeling based on a typical PET scanner, a multi-pass multi-bed
scanning protocol is necessary given the limited axial field-of-view. Such a protocol introduces loss of early-
dynamics in Time-Activity Curves (TACs) and sparsity in TAC measurements, inducing uncertainty in parameter
estimation when using Least-Squares Estimation (LSE) (i.e., common standard), especially for kinetic
microparameters. We present a method to reliably estimate microparameters, enabling accurate parametric
imaging, on regular-axial field-of-view PET scanners

Materials and Methods: Our method, denoted Parameter Combination-Driven Estimation (PCDE), relies on the
generation of reference truth TAC database, and subsequently selected, the best parameter combination as the
one arriving at TAC with the highest Total Similarity Score (TSS), focusing on the general image quality, overall
visibility, and tumor detectability metrics. Our technique has two distinctive characteristics: 1) improved
probability of having one-on-one mapping between early and late dynamics in TACs (the former missing from
typical protocols), and 2) use of multiple aspects of TACs in the selection of best fits. To evaluate our method
against conventional LSE, we plotted trade-off curves for noise and bias. In addition, the overall Signal-to-Noise
Ratio (SNR) and spatial noise were calculated and compared. Furthermore, the Contrast-to-Noise Ratio (CNR)
and Tumor-to-Background Ratio (TBR) were also calculated. We also tested our proposed method on patient data
("SF-DCFPyL PSMA PET/CT scans) to further verify clinical applicability.

Results: Significantly improved general image quality performance was verified in microparametric images (e.g.
noise-bias trade-off performance). The overall visibility and tumor detectability were also improved. Finally, for
our patient studies, improved overall visibility and tumor detectability were demonstrated in mico parametric
images, compared to the use of conventional parameter estimation.

Conclusion: The proposed method provides improved microkinetic parametric images compared to the common
standard in terms of general image quality, overall visibility, and tumor detectability.

Keywords: Whole-Body Kinetic Modeling; Microparameters; Least Squares Estimation; Parametric Imaging;
Image Quality; Tumor Detectability.
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1. Introduction

Clinical diagnosis and treatment response
monitoring of localized and metastatic cancers have
benefited remarkably from Whole-Body (WB)
Positron Emission Tomography/Computed
Tomography (PET/CT) Imaging [1-7]. Currently, the
standardized uptake value (SUV) is the metric used to
measure metabolic activity from quantitative images.
PET tracer distribution is a dynamic process altered by
several factors that vary considerably depending on
the organ, Region Of Interest (ROI), patient, and time
of scan [1,8]. Hence, static SUV images are time-
dependent, which is undesirable for use in quantitative
studies. With the additional use of tracer kinetic
modeling techniques that require dynamic PET
scanning, there is the potential for substantially
improving the type and quality of information of the
biological and physiological processes in tissuel,2
which is not time-dependent. This can enable further
clinical benefits from PET images through
quantitative analysis. Many studies have shown that
kinetic compartment modeling can improve both
characterization and treatment

tumor response

monitoring [2,9-13].

Nonetheless, dynamic PET protocols have been
confined to a single-bed position, limiting the axial
field-of-view of parametric images to ~15-25 [cm],
and have not been translated to multi-bed positions
(i.e., WB). However, it is more desirable to inspect
disseminated diseases and this has been gaining
increasing attention [3—7].

To achieve four-Dimensional (4D) WB PET
acquisition, the following three challenges present
themselves: (1) long acquisition times, (2) few
dynamic frames at each bed (i.e., sparsity of data), and
(3) noninvasive quantification of rapid early kinetics
in the plasma. Karakatsanis et al. optimized the
scanning protocol through extensive Monte Carlo
simulation studies [8, 14]. They proposed an optimal
protocol for input function estimation and dynamic
WB dataset generation, which comprises two
sequential scanning steps: (1) an initial 6 min single-
bed dynamic scan over the cardiac region to generate
an image-derived input function (addressing challenge
number 3) and (2) a sequence of six multi-bed multi-
pass WB scans to capture the late dynamics of the
tracer in the blood plasma and tissue.
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Although the optimal protocol allows for WB
kinetic modeling, it was optimized for the
measurement of macro parameters, specifically the net
influx rate from the plasma into the 2nd compartment
in the two-tissue compartment model (i.e., Ki).; macro
parameters are lumped constants comprised of several
microparameters. Hence, this method is not the most
appropriate protocol for microparameter estimation if
Least Squares Estimation (LSE) is exploited.

Two factors can contribute to uncertainty in micro
parameter estimation: (1) the loss of early dynamics of
time activity (i.e., the loss of near-peak data), except
for the chest region in the FOV of the first 6 minutes
of the acquisition, and (2) sparsity of measured data
(i.e., 5-6 min between scans of the same anatomical
region). Due to these factors, the estimation of
microparameters for WB kinetic modeling has not
been fully implemented in cases where a typical PET
scanner (i.e. axial FOV between 15-30 cm) is the only
available option for dynamic scans. However, the
detailed explanatory power of microparameter
estimation in assessing the biochemical status of
tissues can significantly enhance effectiveness and
flexibility in clinical applications, surpassing the
capabilities of macroparameters.

We aimed to develop a novel method to enable
accurate kinetic modeling including the estimation of
the microparameters using multi-pass protocols in
typical PET scanner-based WB imaging. We refer to
this new method as Parameter Combination-Driven
Estimation (PCDE). We evaluated the methods in
terms of image quality, overall visibility, and tumor
detectability compared to LSE (i.e.,
standard).

common

2. Materials and Methods

2.1. Generating Simulated Data
2.1.1. Noise Free Images

To generate ground-truth PET images, we
employed the 4D extended Cardiac-Torso (XCAT)
phantom [ 15], which is well-validated and widely used
for performance testing of new algorithms or
approaches in numerous areas of medical imaging.
The dynamics of the activity distribution assigned to
each ROI in the XCAT phantom were based on
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realistic ~ fluorodeoxyglucose  (FDG)  kinetic
microparameters, as reported in the literature [8, 16]
and presented in Tables 1 and 2. Volumes of organs
are also shown in Table 1 (note that for quantitative
analysis, entire ROI volumes equal to organ sizes were
used). In this study, the reversible uptake process rate
k4 was assumed to be zero.

Table 2. Ground truths of kinetic micro parameters for
normal whole-body organs

K, k, ks

(vol.:Blr;g.TS ml) 0.13 0.63 0.19
(Vofflgg(.)idml) 0.97 1.00 0.07
ol iosmy 082 100019
(Vol.:SIil;g.Izl ml) 0.88 1.00 0.04
(VOlla.agggsml) 0.36 1.00 0.08
(V01.11<13fi2r};}2] ml) 0.70 1.00 0.18
(vol.: I1417V6e7r.9 my 086 0.98 0.01
Lune 0.11 0.74 0.02

(vol.: 2757.7 ml)

Table 1. Ground truths of kinetic macro parameters for
tumors

Kl k2 k3
Lung 0.3 0.86 0.05
Liver 0.24 0.78 0.1

*Tumor shape and size: sphere with 1.5 cm diameter

A plasma input function was created based on
Feng’s model [17], and the basic formula of the two-
tissue compartment model (2TCM) was used to
calculate true activities follows
(Equations 1, 2):

over time as

K —aqt
Cppr(t) = [(k3 + ks —ay)e™™
a; —ag 1
+ (az - k3 ( )
— ky)e 2 ]QC, (1)
a1,2
Cky kst kg F [l + ks + k)2 —dkok, (2
a 2
166

where Cppr and C, denote the measured PET
concentration and plasma concentration input
function, respectively, and ® is the convolution
operator. K; and k, are the influx and efflux rate
constants between the plasma and first tissue
compartments, and k3 and k, represent the influx and
efflux rate constants between the first and second
tissue compartments, respectively. In the above
formulas and the present investigation, blood volume
is not included, but it can be easily added in future

efforts within the framework proposed in this work.

To alleviate the long scan time (i.e., one of the
disadvantages of dynamic acquisition), we limited the
total acquisition duration to 40 min after injection. We
also only used the data between 10-40 min post-
injection (PI) to simulate the loss of early dynamics
due to first-phase scanning of the cardiac region.
Based on true kinetic parameters (i.e., Tables 1 and 2)
and the predefined scanning protocol for the virtual
dynamic set (i.e., Table 3), the calculated
concentrations with time were assigned for each ROI
in the XCAT input files to generate noise-free XCAT
phantom images.

Table 3. Scanning protocol for the virtual dynamic
dataset

Item Value
Total acquisition time (cardiac + WB) 40 min
Image acquisition for WB *10-40 min
Time interval 5 min
# of passes 7
# of beds 5

*10 min was assumed to simulate a scenario worse than
that of the protocol proposed by Karakatsanis. Time:
Post-injection time

2.1.2. Noise Realizations

To add realistic noise, we employed a Dynamic
PET Simulator of Tracers via Emission Projection [ 18,
19] (dperster), which is a fast and simple tool to
simulate dynamic PET as an alternative to Monte
Carlo simulation. Noise-free XCAT phantom images
and attenuation maps were used as input data to
generate a realistic (i.e., noisy) dynamic PET dataset.
The validated settings for the GE Discovery LS
Scanner [18] were used with the Ordered Subset
Expectation Maximization (OSEM) algorithm. Table
4 summarizes the reconstruction settings for dperstep.
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Table 4. Summary of reconstruction settings

Item Value
Radial bins 283
Projection angles 336
OSEM iterations 1-5
OSEM subsets 24
PSF 5.1 mm

Post-filter XY
Post-filter Z

*Reconstructed matrix per bed

6 mm Gaussian
[121]/4
165 x 165 x 35
2x2x4.25mm?
Noise realizations 10

*Reconstructed matrix for the entire body: 165 X 165 X
175

Reconstructed voxel size

2.2. Proposed Parameter Combination-Driven
Estimation Method

2.2.1. Basic Concepts and Assumptions

PCDE is a novel method for microparameter
estimation. This method has two distinctive
characteristics compared to LSE: 1) the allowance of
one-on-one mapping between early (e.g., <10 min PI)
and late (e.g., >10 min PI) dynamics in TACs by
limiting the precision of the estimated kinetic
parameter (e.g., up to 2nd decimal place), and 2)
employment of multi-aspect time-activity curve
(TAC) in the selection of best fits. We elaborate more
on these next.

The first characteristic is based on two assumptions:
1) each microparameter has a finite range [8, 16], and
2) the imaging system has a finite level of precision in
the determination of a micro parameter (i.e., step size
of a microparameter). Under these assumptions, only
a finite number of TACs are available for a given
range and precision, which enables to improve the
probability of having a one-on-one relationship
between early and late dynamics by filtering out
similar TACs. Indeed, with a kinetic parameter
precision of 2nd decimal place (i.e., step size: 0.01),
almost all TACs from 2TCM are likely to be unique
and thus have a higher probability of correct one-to-
one mapping between early and late dynamics for
TACs. This improved uniqueness enables us to predict
a full TAC (i.e., early + late) in situations where the
early dynamics are missing.

FBT, Vol. 13, No. 1 (Winter 2026) 164-186

The second characteristic is a finer and more
consistent comparison between the measured and
reference truth TACs, compared to LSE. Inherently,
the Sum of Squared Error (SSE) cannot account for
positive and negative errors differently [20-24].
Therefore, minimizing the SSE of
concentration/activity (i.e., LSE) might not capture
very small TAC trends well; something critical for
microparameter estimation. Instead, other aspects of
TAC (e.g., its st and 2nd derivatives) can be effective
criteria for further finely assessing curve trends.
Additionally, a comprehensive comparison of various
aspects of TACs would yield more stable and balanced
results. Relying solely on a single aspect for
comparison could lead to significantly varied and
unstable outcomes, influenced by factors such as noise
level, type, number of passes in WB
measurement time intervals, and voxel positions
within the body [25-27]. Thus, a comprehensive
consideration of the multiple aspects of TAC would
allow for a more consistent comparison. The details

scans,

are presented in the next section.
2.2.2. Workflow and Similarity Measure

The workflow of the proposed method comprises
three steps: 1) building a reference truth TAC database
by setting micro parameter range and precision of
estimated parameters, 2) selecting the top-300 optimal
parameter combinations with respect to SSE in
ascending order, and subsequently, selecting the top-
10 using the absolute difference of Area Under the
Curve (AUC) between the measured and ground truths
in ascending order, and finally 3) selecting the best
parameter combination using a comprehensive
comparison based on multiple TAC aspects. Figure 1
shows the workflow of the proposed method.

For the comprehensive comparison, towards
picking the best parameter combination as the one
arriving at TAC with the highest total similarity score

(TSS), TSS was defined as follows (Equation 3):

N
. 1 . .
TSScomp. = N-S “Weomp. E SPf ' S; 3)
max
=
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((a) N ()

Finite Ranges of Micro Kinetic Parameters
(e.g., Ki: 0.01-1.00, ky: 0.01-1.00 , ks: 0.01-0.50, k~0)

Finite Precision of Imaging System
(¢.g. resolution of estimated parameters: 0.01)

Finite # of Available
Combinations

True Database

C
[kBq/mi]

Time [min]

A
[kBg/ml] ‘

I rfc) N\

Measured TAC a Top 10 list

oo [ || (o) o) (e (o)
(o= ()

D True Database v.s. Measured TA‘K‘

\_ Time [min’] J L

v
C True TACs + by S.‘n’{i‘r » _
[kBg/mi] (True Database) aTop3001ist | (ascending order) Total Similarity Score
- by AUC TS5kt = s Weomt,* Ef1 Pr - 5
Y

(ascending order)
a Top 10 list

7 Physical & I Statistical Aspects

| Optimal Parameter Combination

S g J

Figure 1. PCDE workflow. (a): Building a reference truth TAC database. (b): Selecting the top 300 combinations
followed by the top 10 by comparing measured and reference TAC databases. (c): Selecting the optimal
combination using comprehensive comparison based on multi-aspect of TAC

where i, f, and N denote an index for a parameter
combination in the top-10 list, an index for an aspect
of TAC, and the total number of aspects considered,
respectively. Wciomb_, SPy, S}, and S,,4, represent the
relative weight of the i combination, selection power
for aspect f, a scaled score of the i™ combination for
aspect f, and the maximum scaled score, respectively
(further elaborated in subsequent paragraphs). Table 5
shows the eight similarity metrics (aspects considered)
and the order (ascending vs. descending) for assigning
the scaled scores to each parameter combination set.
Depending on the raw score ranking in the top-10 list,
scaled scores for each combination were assigned
from 10 to 1 in descending order (i.e., maximum score:
10, step size: 1).

Table 5. Similarity measure and order to assign scaled
scores to each combination

Aspect Similarity Metric Order
C SSE Ascending
Slope SSE Ascending
Acc. SSE Ascending
AUC AD Ascending
ROA Itself Descending
Continuity (Cy) SE Ascending
Continuity (slope) SE Ascending
MI Itself Descending

C;, concentration; Acc., acceleration, ROA, ratio of
overlapped area; MI, mutual information; SSE, sum of
squared error; SE, squared error; AD, absolute difference;
Scaled score: 10 to 1 depending on the ranking among the
top-10 lists (step size: 1).

168

As seen in Table 5, in our work we considered 8
physical and statistical aspects of TAC: 1)
concentration/activity, 2) slope and 3) acceleration of
TAC to consider a fine TAC trend, 4) AUC, 5) ratio of
overlapped area (ROA) to compensate for a limitation
of simple AUC comparison, continuities of 6)
concentration and 7) slope at the earliest measurement
time between true and measured quantities for each to
account for the relatively higher importance of data at
an early time after injection, and 8) mutual
information as a statistical similarity measure [28, 29].

In addition, to quantitatively account for the
different capabilities of each TAC aspect in how well
an aspect can distinguish parameter combinations in
the top-10 list separately, we defined the relative
selection power (SPr) as follows (Equation 4):

__
SPy = SV CV, 4
where f and N denote the index for an aspect of the
TAC and a total number of aspects considered,
respectively, and CV; represents the coefficient of
variation for aspect f. Supplemental Figure 1 shows
the calculation process for the relative selection
powers.

Furthermore, we defined a parameter combination
weight (i.e., W.,,.,) to account for the relative
occurrence probability of a parameter combination in
the top-10 list so that the more probable combination
can contribute more to the TSS, assuming that each
micro parameter is independent of the others. The
formulas are as follows (Equations 5, 6):
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i _ com
Wcomb 10 PL (5)
i=1"comb.

K1 of ith comb. ky of ith comb.
Plomp = Pey -P,
comb.

k2 (6)

i Pk3 of ith comb.
k3

where 1 denotes an index for a parameter

K1 of ith comb. k, of ith comb.
combination, and Py f , By s and

Pkk33 of ith comb. represent the probabilities of having

K, ka, ks for the i combination, respectively. P,
is the probability of occurrence of the i combination.
Supplemental Figure 2 shows the calculation process
for the parameter combination weights.

2.3. Kinetic Parameters of Interest for
Comparison Study

On the noisy virtual dynamic dataset, kinetic
modeling was performed through each method (i.e.,
LSE and PCDE), and the kinetic parameters of interest
for comparison are defined as follows.

2.3.1. Kinetic Microparameters

For the microparameters, we compared the LSE-
based 2TCM [30], implemented via the Levenberg-
Marquardt (LM) algorithm (function tolerance: 107,
max iterations: 1000), against the proposed PCDE
method. Because we focused on the irreversible
uptake process, only parametric K, k», and k3 images
were compared.

2.3.2. Kinetic Macro Parameters

For the macro parameters, we compared the
parametric images of the LSE-based Patlak Graphical
Analysis (PGA) [30, 31] with those of PCDE.
Assuming an irreversible or nearly irreversible uptake
process in 2TCM (i.e., k, = 0), the PGA formula can
be derived as follows (Equation 7):

t
C t C,(t)dt
PET( )= i_fo p +Vd, £>t (7)
Cp (D) Cp(©
where t* denotes the time required to reach

equilibrium between the plasma and the first
compartment in the 2TCM.

FBT, Vol. 13, No. 1 (Winter 2026) 164-186

Furthermore, assuming that the blood volume
fraction was negligible (i.e., V, = 0), we defined the
net influx rate constant K; and volume of distribution
Vi as follows (Equations 8, 9):

_ Kik;
Ki = k, + ks ®)
Va = (ky + k3)? ©)

2.4. Quantitative Evaluation Criteria
2.4.1. General Image Quality

Normalized Bias (NBias). As a measure of
accuracy, NBias is determined by first calculating
NBias; for the i voxel of an ROI over all R noise
realizations and subsequently averaging over all
voxels of that ROI as follows (Equation 10):

NBias = EZ ('ﬁ > Z NBias; (10)

1/ R)XF_1 f75 f{ denotes the i voxel

value from the ' noise realization, and y;, n, and R

where f, =
represent the truth of the i voxel, the number of
voxels in an ROI, and the number of noise realizations,
respectively.

Normalized Standard Deviation (NSD). As a
precision measure, the NSD; of the i voxel was first
calculated over all R realizations, followed by

averaging over all n voxels of an ROI to calculate the
NSD of the ROI as follows (Equation 11):

1 —\2
n R T
1 JR_lzrzl(fi _fz)
NSD =—Z _
n
- .

n

1

n .

i=1

Normalized Root Mean Squared Error (NRMSE).
As a measure of comprehensive performance (i.e.,

(11)

combined measure of accuracy and precision),
NRMSE; was first calculated for each i™ voxel over all
realizations, followed by spatial averaging over all
voxels of an ROI to calculate the NMSE for an ROI as
follows (Equation 12):
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NRMSE = —
=i ' (12)

n
Z NRMSE,

i=1

13 \/%zizl(f: e

3|'—‘

For each ROI of interest (Table 1), the calculations
of all three quantities were repeated by changing the
number of OSEM iterations, as listed in Table 4. To
compare the general image quality between each
estimation method (i.e., LSE vs. PCDE), we plotted
the NBias-NSD trade-off curves. In addition,
NRMSEs were plotted against the number of
iterations.

2.4.2. Overall Visibility and Tumor Detectability

Signal-to-Noise Ratio (SNR). As a measure of the
overall visibility relevant to the identification of
suspicious lesions in WB (i.e., global inspection), the
SNR of an ROI was determined by averaging the
SNRs over all noise realizations as follows (Equation
13):

R —

1 fr
SNRzﬁ —
= 1\/71—12 l(fz fT) (13)

1
= EZ SNRr
r=1

where f, = (1/71) X fil

Spatial Noise (NSDgpaia). As another measure of
overall visibility, the NSDgpsa of an ROI was
calculated by averaging the NSDs over all realizations

as follows Equation 14:

1 =2
1% \/mz?:l(fir - f)
NSDgpatiar = Ez ra
Z NSD spatlal

By comparing Equations 11 and 14, it should be

(14)

noted that NSD quantifies the average level of noise
across multiple realizations at each voxel for an ROI,
whereas NSDgpaiat known as ROI roughness, measures
the average of the spatial noise across multiple
realizations for an ROI [8].

170

Tumor-to-Background Ratio (TBR). As a measure
of tumor detectability within a particular organ (i.e.,
local inspection), TBR was determined as follows
(Equation 15):

1 Tumor
TBR = Ez Vs Z TBR, (15)

where £,T¥mOT and fBKC: denote f, of tumor and

background ROI, respectively.

Contrast-to-Noise Ratio (CNR). As a measure of
tumor detectability within a specific organ (i.e., local
inspection), the CNR was calculated as follows
(Equation 16):

| fTumor
Z BKG

- (16)

where o2K6 = ﬁ nL (T

fBKG.|

:ulr—k

_ W)Z

Relative Error of TBR (RE1sr). It is possible to have
a misleading (i.e., erroneously higher) TBR and/or
CNR originating from a high bias (i.e., the wrongly
increased/decreased mean ROI) and/or zero-like noise
(i.e., the noise is approximately zero), owing to the
local minimum issue of the LSE. Hence, the REtgr
was also calculated as an auxiliary measure (Equation
17).

| TBRMeasured - TBRTruth |

RErpp = 1
TBRyruon .

where TBRpyeqsurea and TBRy,:, denote a
measured and true TBR, respectively.

2.4.3. Overall Performance Metrics

To verify the overall performance of each
parametric image, the overall NBias, NSD, NRMSE,
SNR, and NSDgpwiz metrics were defined as the
volume-weighted averages of the individual ROIs
metrics [8].
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2.5. Patient Study

In addition to performance testing on virtual
dynamic datasets, the proposed method was also
implemented on actual patient datasets to further
verify clinical applicability. In this work, we focus on
an anecdotal study for initial assessment, and a large-
scale patient study is the topic of an upcoming study
(see discussion). Table 6 summarizes scanning
protocols for two patients undergoing '*F-DCFPyL
PET scans, involving prostate-specific membrane
antigen (PSMA) targeted imaging.

The quantitative evaluation of parametric images
includes the analysis of: 1) overall visibility relevant
to the identification of suspicious lesions in WB (i.e.,
SNRoverall), and 2) overall lesion detectability (i.e.,
CNRoverail, TBRoverain). The ROIs of all lesions for each
patient were defined and confirmed by a nuclear
medicine physician.

Table 6. Dynamic scanning protocols for '8F-DCFPyL

3. Results

3.1. NBias-NSD Trade-off Curves and NRMSE
Results

3.1.1. Kinetic Micro Parameters

Supplemental Figures 3, 4, and 5 show the ROI-
based NBias-NSD trade-off curves and NRMSE
results for the parametric K1, k2, and k3 images,
respectively. Overall the proposed PCDE method
showed lower NBias and NSD compared to the LSE-
based 2TCM, which allows much lower NRMSEs for
all normal WB organs of interest; the common
standard shows smaller NSDs in K1 images. However,
significantly high levels of NBias result in larger
NRMSE:s for all ROIs.

Figure 2 shows the overall NBias-NSD trade-off
curves and NRMSE results. At five OSEM iterations,
using our PCDE method, the overall NRMSEs were

Item Patient #1 Patient #2
Injected activity 9.14 mCi 7.16 mCi
Scanner GE Discovery MI GE Discovery MI
Dimensions 256 x 256 x 409 256 x 256 x 409
Voxel size 2.73 x2.73 x 2.8 mm? 2.73x2.73 x 2.8 mm?
Total acquisition time . .
(cardiac + WB) 87 min 92 min
Image acquisition for WB 7-87 min 9-92 min
Time interval 5 min 5 min
# of passes 16 16
# of beds 6 6
R TR - S b T s [T e v [DE
sw S e | ge =
2 60 @ 138 2 60 @ 30 @30
E 40 E ﬁgi E 40 E 20 E 20
gzz . . gzo' . gzo . 312 \ gm ¢

e
0 20 40 60 80 100
Overall NBias [%]

=— 2TCM =—2TCM
100, PEDEL 400 . - PCDEl 400,
80 80 ]

60; sn;
40 40

0 20 40 60 80 100
Overall NBias [%]

@ @
S o
L

NRMSE [%)]
8

NRMSE [%]

NRMSE [%]

0 20 40 60 80 100
Overall NBias [%]

0 20 40 60 80 100
Overall NBias [%]

0 20 40 60 80 100
Overall NBias [%]

=— 2TCM . = PGA = PGA
N Ki . vd .
100 PCDE] 100 PCDE
80 80
60 60

—

NRMSE [%]
NRMSE [%]

40 40
] . . ] | .
20 20 - . 20 20{" = == 204 514
0 o 0 ol o
1.2 3 4 5 1. 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Iterations Iterations Iterations Iterations Iterations

Figure 2. Overall NBias-NSD trade-off curves (i.e., first row) and NRMSE results with increasing OSEM iterations
(i.e., second row) for each parametric image. Micro parameters: first three columns; Macro parameters: last two columns
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considerably reduced by 57.5, 71.1, and 56.1 [%] in
the parametric K1, k2, and k3 images, respectively.

3.1.2. Kinetic Macro Parameters

Supplemental Figures 6 and 7 show the ROI-based
NBias-NSD trade-off curves and NRMSE results for
the parametric K; and Vg4 images, respectively. No
significant differences between the LSE-based PGA
and PCDE were observed. For V4, the PGA shows a
slightly better performance, but the differences are less
than 10 [%] in most cases.

Figure 2 shows the overall NBias-NSD trade-off
curves and NRMSE results. At five OSEM iterations,
using our proposed PCDE method, the overall
NRMSE for K; was reduced by 0.4 [%]. However, the
overall NRMSE for V4 was increased by 3.3 [%],
indicating no significant difference between the two
methods.

3.2. Overall Visibility and Tumor Detectability
3.2.1. Kinetic Microparameters

The first three columns of Figure 3 show the overall
visibility results for the parametric K, k,, and k;
images. After five OSEM iterations, the overall SNR
increased by 0.2, 4.1, and 2.4, and the overall NSDspagial
decreased by 0.2, 5.4, and 4.1 for the parametric K;,
ks, and ks images, respectively, indicating the

excellent performance of our proposed method in both
aspects simultaneously.

The first three columns of Figure 4 show the tumor
detectability results for each tumor in the parametric
K1, k2, and k3 images. After five OSEM iterations,
although there was no clear improvement in CNR in
the k2 images from the proposed method, the CNR for
a lung tumor increased by 1.3 and 1.0, and that for a
liver tumor increased by 1.2, and 9.8 in the K1 and k3
images, respectively. In addition, the RETBR of a lung
tumor decreased by 17.5, 82.2, and 68.4, and that of
the liver tumor decreased by 255.8, 1733.5, and 80.3
[%] in the K1, k2, and k3 images, respectively. Figure
5 shows an example of microparametric images.

3.2.2. Kinetic Macroparameters

The last two columns of Figure 3 show the overall
visibility results for the parametric Ki and Vd images.
There were no substantial differences between the two
methods in either aspect. The last two columns of
Figure 4 show the tumor detectability results for each
tumor in the parametric Ki and Vd images. For both
tumors, the differences in CNR were within 0.5, and
the differences in RETBR were within 10 [%] in most
cases, except for the case with a decrease in RETBR
by 19.6 [%] for a liver tumor in the Vd images using
the proposed method. Figure 6 shows an example of
macroparametric images.
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* PCDE . * PCDE * PCDE * PCDE * PCDE
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Figure 3. Overall visibility in each parametric image. Micro parameters: first three columns; Macro parameters: last two
columns. (OSEM iterations=5). Matrices: overall SNR and NSDgpagial.
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Figure 4. Tumor detectability in each parametric image. Micro parameters: first three columns; Macro parameters: last
two columns. Matrices: CNR [%] and RETBR [%]. (OSEM iterations=5)
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(c) PCDE ks

Figure 5. Parametric ks images with five OSEM iterations. (a): Ground Truth. (b): LSE-based 2TCM. (c): PCDE.

(OSEM iterations=5, Noise Realization index=1)
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Figure 6. Parametric K; images with five OSEM iterations. (a): Ground Truth. (b): LSE-based PGA. (¢): PCDE.

(OSEM iterations=5, Noise Realization index=1)
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Figure 7. Overall visibility in each parametric image. Micro-parameters: first three columns; Macro-parameters: last two

columns. PAT.=patient. Radiotracer: '*F-DCFPyL

3.3. Patient Study
3.3.1. Overall Visibility

The first three columns of Figure 7 show the overall
visibility results of "*F-DCFPyL for microparametric

FBT, Vol. 13, No. 1 (Winter 2026) 164-186

images. The averaged overall SNR (i.e., average of
individual patient’s metric) increased by 1.1940.25,
2.06+0.42, and 0.8010.16 for the parametric K;, k,
and ks images, respectively. Each first rows of Figures
8 and 9 show examples of micro-parametric images
for each patient. Overall, compared to 2TCM, better
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Figure 8. Example of parametric images focusing on overall visibility. Micro-parameters (K, k», and k3): the first row.
Macro-parameters (K; and Vg): the second row. Radiotracer: '®F-DCFPyL (Patient #1). We showed results for the

conventional 2TCM approach vs. our proposed PCDE approach

2TCM

[mL/m

7~

PGA PCDE

[mEZ m_

103

PCDE k,

Figure 9. Example of parametric images focusing on overall visibility. Micro-parameters (K, k», and k3): the first row.
Macro-parameters (K; and Va): the second row. Radiotracer: '8F-DCFPyL (Patient #2). We showed results for the

conventional 2TCM approach vs. our proposed PCDE approach

definitions with less noise via PCDE in all micro-
parametric images were verified.

In addition, the last two columns of Figure 7 show
the overall visibility for macroparametric images. The
averaged overall SNR increased by 0.094+0.03 and
0.3740.58 for the parametric K; and Vg4 images,
respectively. Each second row of the Figures § and 9
shows examples of macro-parametric images for each
patient. Overall, there were no visually significant
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differences between the two methods (i.e., PGA vs.
PCDE).

3.3.2. Lesion Detectability

The first three columns of Figure 10 show the tumor
detectability for microparametric images. The overall
CNR increased by 2.54, 1.99, and 1.29, and the overall
TBR increased by 1.21, 0.39, and 1.84 for the
parametric K;, k», and ks images, respectively,
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Figure 10. Lesion detectability in each parametric image. Micro-parameters: first three columns; Macro-parameters:
last two columns. Matrices: CNRovyerant and TBRoveranl (the # of lesions: 2). Radiotracer: '8F-DCFPyL
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Figure 11. Examples of parametric images focusing on lesion detectability. Micro-parameter: K; (lesion #1) and k3

(lesion #2). Radiotracer: '®F-DCFPyL (Patient #1)

indicating the excellent performance of our proposed
method in both aspects simultaneously. For instance,
Figure 11 presents examples of parametric K; and k3
images. Compared to the reference method (i.e.,
2TCM), the enhanced lesion detectability was verified
via PCDE.

In addition, the last two columns of Figure 10 show
the tumor detectability for macroparametric images.
The overall CNR increased by 0.21 and -0.06, and the
overall TBR increased by -0.49 and 0.16 for the
parametric Ki and Vd images, respectively. The minus
sign represents the decrease in the metric of interest.

4, Discussion

This study introduces our proposed method (i.e.,
PCDE) and compares it to the common standard
parameter estimation method for kinetic modeling
invoking LSE. The comparison study was performed
on the virtual dynamic dataset focusing on two
aspects:1) general image quality for major normal
organs in WB, and 2) overall visibility and tumor
detectability.

FBT, Vol. 13, No. 1 (Winter 2026) 164-186

First, we verified that PCDE could improve the
quality of microparametric images (i.e., NBias, NSD,
and NRMSE). For the K1 image, the LSE-based
2TCM showed better results in terms of NSD.
However, the considerably higher level of bias
compared to PCDE resulted in a larger NRMSE,
reducing the overall performance compared to PCDE.
Moreover, because multiple local minima can cause
variability (e.g., NSD or NSDspatial) with high bias,
the lower level of NSD from the LSE-based 2TCM
could be due to the local minimum issue of LSE [32—
34] instead of the actual benefit of LSE for K1 images.
Supplemental Figure 8 shows the example of an
erroneously lower level of NSDspatial with high bias
in the K1 image generated from the LSE-based 2TCM.
When considering that NBias through the LSE-based
2TCM show an extremely high bias (i.e., 96.6 [%]),
we can indirectly expect that the lower level of
NSDspatial is caused by the local minimum issue
rather than the improved performance of LSE.

For macro parameters, there was no significant
difference between the PCDE and LSE-based PGA.
This was expected because the relative benefit of
PCDE compared to the reference (i.e., LSE-based
PGA) would not be significant because the macro
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parameter estimation from the reference method
already has good accuracy (i.e., NBias) and precision
(i.e., NSD) owing to the linearized fit-type function for
PGA [30, 31].

In addition, we verified the improved overall
visibility (i.e., overall SNR, overall NSDspatial) and
tumor detectability (i.e., CNR, RETBR) in the
microparametric images, except for CNRs in k2
images. For k2 images, there was a negligible
difference between the two methods (i.e., <0.5).
However, a high positive bias of the tumor, high
negative bias of the background, and erroneously zero-
like NSDspatial originating from the local minimum
issue of LSE may highly mislead CNR value (i.e.,
erroneously high CNR), which cannot provide any
actual benefit for tumor detectability on images. Thus,
a comparison based solely on CNR may lead to
incorrect conclusions regarding tumor detection
capability.

Supplemental Figure 9 shows the example of a
misleading CNR and the necessity of RETBR for a fair
comparison in this simulation study. Even though the
CNR from the reference shows a slightly better CNR
than that of PCDE (i.e., CNRref=1.8,
CNRPCDE=L1.5), there is no actual relative benefit
from the reference method in terms of tumor detection.
Moreover, the relatively better CNR originates from
high levels of bias in the liver tumor and background
(i.e., highly negative bias) as shown in the figure.

Therefore, in this study, we included RETBR as an
auxiliary measure to minimize the possibility of
incorrect conclusions regarding tumor detection
capability. Considering that PCDE showed much
lower RETBR values even for cases where the CNRs
were quite similar (due to the misleading CNR from
the reference method), we expect improved tumor
detectability through PCDE compared to that of the
reference.

With microparametric images from PCDE (e.g.,
Figure 5), improving the overall SNR and NSDspatial
would help identify suspicious regions in WB globally
(i.e., global inspection). The improved CNR and
RETBR performance would directly lead to improved
tumor detectability locally within a particular organ
(i.e., local inspection). For macroparameters (e.g.,
Figure 6), there were no significant differences in the
overall visibility and tumor detectability between the
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two methods. This is understandable because the two
methods had no significant differences in general
image quality (i.e., NBias, NSD, and NRMSE).

Overall, our proposed PCDE method provides
enhanced microparametric images on not only virtual
dynamic datasets but also real patient data, supporting
application to clinical studies, and the need for more
exhaustive studies.

4.1. Comparison with Other Studies

Our study contributes to enabling reliable WB
kinetic modeling in regular-axial field-of-view PET
scanners (i.e., multi-pass protocols on a limited axial
FOV), tackling 3 important points (as elaborated
next): 1) minimization of adverse effects in previously
proposed techniques, 2) potential applicability for
shorter scan durations, and 3) avoidance of the local
minimum issues discussed above.

For the first point, the protocol proposed by
Karakatsanis et al. [8, 14] was optimized based on
macroparametric images (i.e., Ki) and was used 6 min
after injection to scan the cardiac region. Because the
macro parameters of PGA only require data after the
mechanism reaches kinetic equilibrium [8, 35, 36], the
loss of early dynamics of TAC would not adversely
affect parameter estimation. However, unlike macro
parameters, early dynamics are critical for
microparameter estimation because they typically
include near-peak data considerably influenced by
microparameter combinations. Although the accuracy
and precision of the microparameter estimation need
to be improved further relative to those of the macro
parameter (i.e., Figure 2), it offers increased
improvements for each microparameter compared to
the common standard. This indicates a substantial
reduction in the adverse effects of the protocol

favorably optimized for macro parameter estimation.

In addition, for the second point, the comprehensive
comparison based on the multi-aspect of TAC can
offer more stabilized parameter estimation (i.e., less
variation of performance) from various image
acquisition-related factors (e.g., the number of passes,
time interval, voxel position, noise level, and type),
compared to the case considering only one single
factor (e.g., SSE for LSE). Therefore, we expect our
proposed method to perform better even when using a
dynamic PET dataset scanned only for 30 min,
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realistically achieving the shortest scan duration for a
typical PET-based WB kinetic modeling for micro
parameter estimation.

All results reported in this study are based on a
simulated dynamic dataset scanned only 40 min PI,
which is 5 min shorter than the optimal acquisition
length suggested by Dr. Karakatsanis (i.e., 45 min) and
20 min shorter than the typical time required for
dynamic PET acquisition [ 1] for kinetic modeling (i.e.,
60 min). Hence, we can expect the promising
applicability of the proposed method to studies
involving shorter scan duration.

Moreover, the PCDE avoids the local minimum
issue by systematically evaluating various aspects of
TAC and selecting the best parameter combination,
rather than relying on an iterative approach to find an
optimal value. Consequently, unlike the LSE method,
the PCDE does not necessitate an initial guess for
parameter estimation. However, PCDE also uses
curve fitting to model a measured TAC, but the later
dynamics of TAC (e.g., >10 min after injection) can
be well-fitted using a single exponential function (i.e.,
fit-type function: c — a - e bt fit parameter: a, b, c),
which can be an automatic process without a manual
initial guess because of its negligible dependence on
the initial values.

Tackling the local minimum issue is critical for the
active use of kinetic modeling in clinics for two
reasons. First, it is not necessary to set starting points
for each voxel (i.e., voxel-wise computation) or ROIs
(i.e., ROI-based computation). Compared to curve
fitting for the later dynamics of TAC (i.e., a single
exponential shape), curve fitting for the entire
dynamics of TAC (i.e., a surge-like shape) is most
likely to have starting point dependency, especially if
near-peak data are missing either partially or
completely. Thus, for clinical use, starting points must
be set subtlety through repetition to minimize the
adverse effects of the local minimum issue (i.e.,
finding a global minimum), which is time-consuming
when performed for each voxel or ROI, preventing the
routine application of kinetic modeling in the clinic.
Second, by minimizing the starting point dependency,
the interpersonal error of the estimated kinetic
parameters can be considerably reduced, which is
critical for the consistency of kinetic modeling results
and large-scale data comparison across different
institutions worldwide.
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4.2. Limitations

Some limitations in our proposed method indicate
the need for further studies. First, the computational
speed of PCDE is approximately 1.1x103 s/voxel,
therefore, approximately 2 hours of computing are
needed to perform WB kinetic modeling for a typical
active patient volume size in the clinic with typical
hardware specifications (e.g., CPU: AMD Ryzen 9
5900HX, RAM: 32.0 GB, platform: MATLAB
R2021b, precision of estimated parameter: 0.01). For
use in routine practice, at least 100 times the current
computational speed (i.e., ~10-5 s/voxel) is needed to
complete the computation in a few minutes.
Parallelized computation using a graphical processing
unit (GPU) will allow us to achieve this.

Secondly, in this study, we limited the maximum
allowable value of the micro parameter to 1 (for K1
and k2) and 0.5 (for k3), respectively. Although for
18F-FDG, almost all micro parameters for each ROI
in WB were within the desired ranges [8, 16], we need
to broaden the range to increase applicability to
diverse types of radiotracers.

Thirdly, in the present work, irreversible uptake
process was assumed (i.e., k 4~0), as mentioned
previously. Such an assumption is quite prevalent in
studies with a number of
FDG, DCFPyL).
Incorporating additional modeling of k,is certainly

past and ongoing
radiopharmaceuticals  (e.g.

possible, and can result in more accurate estimates, but
at the expense of reduced precision (increased noise)
in parametric images given the extra degree of
freedom in fitting. In any case, depending on a specific
radiopharmaceutical of interest, such additional

modeling can certainly be performed and studied.

Opverall, with the addition of a reversible process and
a broader range of parameters, we anticipate that the
GPU-accelerated PCDE approach will enable the
widespread use of typical PET-based WB kinetic
modeling for kinetic microparameters. This method
ensures both reasonable computational time and
compatibility with various types of radiotracers.

Furthermore, despite significant improvements via
PCDE, the overall levels of NBias and NSD tend to be
beyond 10% (i.e., near 20%), and non-negligible
variations among ROIs exist (e.g., supplemental
Figures 1-7), implying that the proposed method may
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still be insufficient for use in routine practice. We
expect that the exploitation of de-noising techniques
such as the finite Legendre transform-based low-pass
filter with excellent de-noising performance for the
exponential type curve (i.e., typical shape of TAC
after peak) without the phase shift [37] and/or noise
propagation pattern learning through machine/deep
learning algorithms (i.e., noise propagation from the
sinogram domain into image domain) could reduce the
overall levels of NBias and NSD within 10%.
Moreover, it can reduce variations among ROIs (i.e.,
consideration of different noise propagation patterns
at each position).

Finally, a validation study based on real patient data
should be conducted. We are actively collecting
patient data (e.g., Clinical Trial ID: NCT04017104)
categorized by a specific tumor detection mechanism
such as 18F-FDG by glucose metabolism [38], 'F-
DCFPyL and ®*Ga-HTK by targeting PSMA [39,40],
and "F-AmBF3 by targeting somatostatin receptor 2
(SSTR2) [41]. We expect to perform a validation
study based on extensive patient data in the near
future.

5. Conclusion

We compared the performance of kinetic parameter
estimation between the common standard (LSE) and
the proposed PCDE method, focusing on general

image quality, overall visibility, and tumor
detectability. Although there were no significant
differences in macroparameter estimation, significant
improvements in the microparameters were
demonstrated. PCDE can enable typical PET-based
WB kinetic modeling for kinetic microparameters,
which has been almost nonexistent owing to
significant uncertainties in estimates when using LSE.
Overall, our proposed framework enables
microparametric imaging as applied to dynamic WB
imaging protocols on regular-axial field-of-view PET
scanners.
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Supplemental Figure 3. Example of an erroneously lower level of NSDgpasial With high bias in the LSE-based 2TCM
K image mainly due to the local minimum issue. (OSEM iterations=5, Noise realization index=1). Note that, unlike
NSDgpatial, €ach NBias values were calculated from all noise realizations
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Supplemental Figure 4. Example of a misleading CNR and necessity of REtgr for a fair comparison. (a): Ground
Truth. (b): LSE-based 2TCM. (c): PCDE. (OSEM iterations=5, Noise realization index=1, Kinetic parameter: k»)
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Supplemental Figure 5. ROI-based NBias-NSD trade-off curves (i.e., upper two rows) and NRMSE results with increasing
OSEM iterations (i.e., lower two rows) for parametric K images
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Supplemental Figure 7. ROI-based NBias-NSD trade-off curves (i.e., upper two rows) and NRMSE results with increasing
OSEM iterations (i.e., lower two rows) for parametric k3 images
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