Original Article

Advanced Noise-Optimized Dual-Energy Virtual Monochromatic Imaging vs. Conventional 120-kVp CT Imaging: Image Quality Assessment

Abstract

Purpose: This study aimed at evaluating the image quality characteristics of advanced noise-optimized and traditional virtual monochromatic images compared with conventional 120-kVp images from second-generation Dual-Source CT.

Materials and Methods: For spiral scans six syringes filled with diluted iodine contrast material (1, 2, 5, 10, 15, 20 mg I/ml) were inserted into the test phantom and scanned with a second-generation dual-source CT in both single-energy (120-kVp) and dual-energy modes. Images set contain conventional single-energy 120-kVp, and virtual monochromatic were reconstructed with energies ranging from 40 to 190-keV in 1-keV steps. An energy-domain noise reduction algorithm was applied and the mean CT number, image noise, and iodine CNR were calculated.

Results: The iodine CT number of conventional 120-kVp images compared with monochromatic of 40-, 50-, 60- and 70-keV images showed increase. The improvement ratio of image noise on Advanced Virtual Monochromatic Images (AVMIs) compared with the Traditional Virtual Monochromatic Images (TVMIs) at energies of 40-, 50-, 60, 70-keV was 52.9%, 35.7%, 8.1%, 2.1%, respectively. At AVMIs from 75- to 190-keV, the image noise value was less than conventional 120-kVp images. CNR improvement ratio at 20 mg/ml of iodinated contrast material for TVMIs and AVMIs compared to 120-kVp CT images and AVMIs compared to TVMI was 18.3% and 56.3%, 32.1% respectively.

Conclusion: Both TVMIs (in energies ranging from 54 to 71-keV) and AVMIs (in energies ranging from 40 to 74-keV) represent improvement in the iodine contrast-to-noise ratio than conventional 120-kVp CT images for the same radiation dose. Also, AVMIs compared to TVMIs have been obtained considerable noise reduction and CNR improvement for low-energy virtual monochromatic images. In the present study, we show that virtual monochromatic image and its Advanced version (AVMI) may boost the dual-energy CT advantages by providing higher CNR images in the same exposure value compared to routinely acquired single-energy CT images.

1- M. H. Albrecht, J.-E. Scholtz, J. Kraft, R. W. Bauer, M. Kaup, P. Dewes, et al., "Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer," European radiology, Vol. 25(8), pp. 2493-2501, 2015.
2- M. H. Albrecht, T. J. Vogl, S. S. Martin, J. W. Nance, T. M. Duguay, J. L. Wichmann, et al., "Review of clinical applications for virtual monoenergetic dual-energy CT," Radiology, Vol. 293(2), pp. 260-271, 2019.
3- P. Aspelin, P. Aubry, S.-G. Fransson, R. Strasser, R. Willenbrock, K. J. J. N. E. J. o. M. Berg. "Nephrotoxic effects in high-risk patients undergoing angiography," New England Journal of Medicine, Vol. 348(6), pp. 491-499, 2003.
4- C. Frellesen, M. Kaup, J. L. Wichmann, K. Hüsers, J.-E. Scholtz, M. H. Albrecht, et al., "Noise-optimized advanced image-based virtual monoenergetic imaging for improved visualization of lung cancer: comparison with traditional virtual monoenergetic imaging," European Journal of Radiology, Vol. 85(3), pp. 665-672, 2016.
5- U. P. Fulwadhva, J. R. Wortman, A. D. J. R. Sodickson. "Use of dual-energy CT and iodine maps in evaluation of bowel disease," Radiographics, Vol. 36(2*), pp. 393-406, 2016.
6- H. Ghadiri, A. Rahmim, M. Shiran, H. Soltanian-Zadeh, M. Ay, editors. A fast and hardware mimicking analytic CT simulator. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC); 2013: IEEE.
7- M. K. Gill, A. Vijayananthan, G. Kumar, K. Jayarani, K.-H. Ng, Z. J. Q. i. i. m. Sun, et al., "Use of 100 kV versus 120 kV in computed tomography pulmonary angiography in the detection of pulmonary embolism: effect on radiation dose and image quality," Quantitative imaging in medicine surgery, Vol. 5(4), pp. 524, 2015.
8- K. L. Grant, T. G. Flohr, B. Krauss, M. Sedlmair, C. Thomas, B. J. I. r. Schmidt. "Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media," Investigative radiology, Vol. 49(9), pp. 586-592, 2014.
9- T. R. Johnson, B. Krauss, M. Sedlmair, M. Grasruck, H. Bruder, D. Morhard, et al., "Material differentiation by dual energy CT: initial experience," European radiology, Vol. 17(6), pp. 1510-1517, 2007.
10- S. Khademi, A. Shakeri‐Zadeh, R. Solgi, H. Azimian, H. J. I. N. Ghadiri. "Observation of targeted gold nanoparticles in nasopharyngeal tumour nude mice model through dual‐energy computed tomography," IET Nanobiotechnology, Vol., pp., 2021.
11- D. Leithner, S. Mahmoudi, J. L. Wichmann, S. S. Martin, L. Lenga, M. H. Albrecht, et al., "Evaluation of virtual monoenergetic imaging algorithms for dual-energy carotid and intracerebral CT angiography: effects on image quality, artefacts and diagnostic performance for the detection of stenosis," European journal of radiology, Vol. 99, pp. 111-117, 2018.
12- L. Lenga, M. H. Albrecht, A. E. Othman, S. S. Martin, D. Leithner, T. D’Angelo, et al., "Monoenergetic Dual-energy Computed Tomographic Imaging," Journal of thoracic imaging, Vol. 32(3), pp. 151-158, 2017.
13- S. Lennartz, M. Le Blanc, D. Zopfs, N. Große Hokamp, N. Abdullayev, K. R. Laukamp, et al., "Dual-energy CT–derived iodine maps: use in assessing pleural carcinomatosis," Radiology, Vol. 290(3), pp. 796-804, 2019.
14- S. Mangold, C. Thomas, M. Fenchel, M. Vuust, B. Krauss, D. Ketelsen, et al., "Virtual nonenhanced dual-energy CT urography with tin-filter technology: determinants of detection of urinary calculi in the renal collecting system," Radiology, Vol. 264(1), pp. 119-125, 2012.
15- S. S. Martin, J. L. Wichmann, J.-E. Scholtz, D. Leithner, T. D’Angelo, H. Weyer, et al., "Noise-optimized virtual monoenergetic dual-energy CT improves diagnostic accuracy for the detection of active arterial bleeding of the abdomen," Journal of Vascular Interventional Radiology, Vol. 28(9), pp. 1257-1266, 2017.
16- S. Mashouf, E. Lechtman, P. Lai, B. Keller, A. Karotki, D. Beachey, et al., "Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images," Physics in Medicine Biology, Vol. 59(18*), pp. 5305, 2014.
17- C. H. McCollough, S. Leng, L. Yu, J. G. J. R. Fletcher. "Dual-and multi-energy CT: principles, technical approaches, and clinical applications," Radiology, Vol. 276(3), pp. 637-653, 2015.
18- F. G. Meinel, C. N. De Cecco, U. J. Schoepf, J. W. Nance Jr, J. R. Silverman, B. A. Flowers, et al., "First–arterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? Comparison with SPECT," Radiology, Vol. 270(3), pp. 708-716, 2014.
19- S. R. Pomerantz, S. Kamalian, D. Zhang, R. Gupta, O. Rapalino, D. V. Sahani, et al., "Virtual monochromatic reconstruction of dual-energy unenhanced head CT at 65–75 keV maximizes image quality compared with conventional polychromatic CT," Radiology, Vol. 266(1), pp. 318-325, 2013.
20- M. Qu, G. Jaramillo-Alvarez, J. C. Ramirez-Giraldo, Y. Liu, X. Duan, J. Wang, et al., "Urinary stone differentiation in patients with large body size using dual-energy dual-source computed tomography," European radiology, Vol. 23(5), pp. 1408-1414, 2013.
21- E. D. Roele, V. C. Timmer, L. A. Vaassen, A. M. van Kroonenburgh, A. J. C. r. r. Postma. "Dual-energy CT in head and neck imaging," Current radiology reports, Vol. 5(5), pp. 19, 2017.
22- HS Thomsen, Contrast Media: Safety Issues and ESUR Guidline, Springer-Verlag (2006), ISBN 3-540-20448-2, Elsevier; p. 183, 2006.
23- D. Sakabe, Y. Funama, K. Taguchi, T. Nakaura, D. Utsunomiya, S. Oda, et al., "Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT: comparison with conventional tube-voltage images," Physica Medica, Vol. 49, pp. 5-10, 2018.
24- D. Schneider, P. Apfaltrer, S. Sudarski, J. W. Nance Jr, H. Haubenreisser, C. Fink, et al., "Optimization of kiloelectron volt settings in cerebral and cervical dual-energy CT angiography determined with virtual monoenergetic imaging," Academic radiology, Vol. 21(4), pp. 431-436, 2014.
25- F. Stacul, A. J. van der Molen, P. Reimer, J. A. Webb, H. S. Thomsen, S. K. Morcos, et al., "Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines," European radiology, Vol. 21(12), pp. 2527-2541, 2011.
26- A. J. van der Molen, M. C. J. A. J. o. R. Hovius. "Hematuria: a problem-based imaging algorithm illustrating the recent Dutch guidelines on hematuria," American Journal of Roentgenology, Vol. 198(6), pp. 1256-1265, 2012.
27- Y. Yamada, M. Jinzaki, Y. Tanami, T. Abe, S. J. I. r. Kuribayashi. "Virtual monochromatic spectral imaging for the evaluation of hypovascular hepatic metastases: the optimal monochromatic level with fast kilovoltage switching dual-energy computed tomography," Investigative radiology, Vol. 47(5), pp. 292-298, 2012.
28- L. Yu, J. A. Christner, S. Leng, J. Wang, J. G. Fletcher, C. H. J. M. p. McCollough. "Virtual monochromatic imaging in dual‐source dual‐energy CT: radiation dose and image quality," Medical physics, Vol. 38(12), pp. 6371-6379, 2011.
Files
IssueVol 8 No 4 (2021) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/fbt.v8i4.7753
Keywords
Dual-Source Computed Tomography Dual Energy Computed Tomography Advanced Virtual Monochromatic Images Traditional Virtual Monochromatic Images Contrast-to-Noise Ratio

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Honardari A, Bitarafan-Rajabi A, Solgi R, Shakeri M, Rezaei-Kalantari K, Ghadiri H. Advanced Noise-Optimized Dual-Energy Virtual Monochromatic Imaging vs. Conventional 120-kVp CT Imaging: Image Quality Assessment. Frontiers Biomed Technol. 2021;8(4):253-260.