Monte Carlo Code Calculation for the Characterization of 10nm Nano-Layers Coated 50nm 90Y Radionuclide Nanospheres Radiation in the Liver Radionuclide Therapy
Abstract
Purpose: Cancer radionuclide therapy is an effective, beneficial, and crucial method of cancer treatment that uses unsealed radioactivated radionuclides sources that are attached to a targeting vector to deliver therapeutic radiation doses from the ionizing radiation source to specific disease sites either for curative intent or for disease control and palliation for the patient pain decreasing. For this aim, Monte Carlo N–Particle 5 (MCNP5) MC computational code was employed for simulations and calculations as well as radiation transport.
Materials and Methods: 50nm 90Y radionuclide nanosphere was modelled coated by a 10nm coating layer with some non-toxic high and low Z materials. Physical interactions, such as β-ray and the simulated coating materials were studied and radiological parameters were scored by the used MC code. Attenuation of β-ray, and production of the bremsstrahlung X-ray photons and other phenomena were simulated by the code and analyzed. MC code estimated the effect of the simulated coating materials, such as Gold, Platinum, Gaddolonium, Silver, and Epoxy-Resin on the radiation characteristics around the modelled nano-radionuclide per 2nm from the radiation source surface to 1µm distance. Produced bremsstrahlung X-ray by the source coating material and tissue atoms, emitted β-particle number, flux over the surfaces (per 2nm), radiation fluence of photon and β- ray, deposited energy per gr of the cell medium, and average dose to the cells around the 500nm and 1µm distance from the radionuclide source surface also was derived.
Results: Our results showed that coating the radionuclide with the materials especially high Z (Gold and Platinum) materials may produce a dual emitter radiation source, X-ray photon and β- ray and is capable of killing the cancer cells more than the source with not-coated source.
Conclusion: Our conclusion was that coating the β- ray emitter radionuclides, especially high-energy β- ray, enhances its therapeutical capability with X-ray and β- ray emission. The studied coated sources in our study were performed as a dual radiation source; produced X-ray and β-ray, which increases the therapeutic efficiency of the source.
2- I. M. Costa, J. Cheng, K. M. Osytek, C. Imberti, and S. Y. A. Terry, "Methods and techniques for in vitro subcellular localization of radiopharmaceuticals and radionuclides.", Nuclear Medicine and Biology, vol. 98-99, pp. 18-29, (2021).
3- S. Rout, S. Yadav, and V. Pulhani, "Transfer of radionuclides from soil to selected tropical plants of Indian Subcontinent: A review,", Journal of Environmental Radioactivity, vol. 235-236, p. 106652, (2021).
4- M. Sahagia, E. L. Grigorescu, A. Luca, A. C. W+ñtjen, C. Ivan, A. Antohe, and M. R. Ioan, "60 years of absolute standardization of radionuclides by coincidence counting methods in the Romanian metrology laboratory.", Applied Radiation and Isotopes, vol. 174, p. 109707, (2021).
5- B. Fi+¬vet, P. Bailly du Bois, and C. Voiseux, "Concentration factors and biological half-lives for the dynamic modeling of radionuclide transfers to marine biota in the English Channel.", Science of The Total Environment, vol. 791, p. 148193, (2021).
6- M. Peer-Firozjaei, M. A. Tajik-Mansoury, P. Geramifar, A. A. Parach, and S. Zarifi, "Implementation of dose point kernel (DPK) for dose optimization of 177Lu/90Y cocktail radionuclides in internal dosimetry.", Applied Radiation and Isotopes, vol. 173, p. 109673, (2021).
7- M. Radomirovi-ç, S. Stankovi-ç, M. Mandi-ç, M. Jovi-ç, L. J. Mandi-ç, S. Dragovi-ç, and A. Onjia, "Spatial distribution, radiological risk assessment and positive matrix factorization of gamma-emitting radionuclides in the sediment of the Boka Kotorska Bay.", Marine Pollution Bulletin, vol. 169, p. 112491, (2021).
8- J. Lubbe, B. R. S. Simpson, M. J. van Staden, and M. W. van Rooy, "The operation of an ionization chamber with depleted gas for radioactivity measurement: Calibration procedure and utilising normalized manufacturer's radionuclide factors.", Applied Radiation and Isotopes, vol. 170, p. 109633, (2021).
9- A. Dash, S. Chakraborty, M. R. A. Pillai, and F. F. Knapp, "Peptide Receptor Radionuclide Therapy: An Overview.", Cancer Biotherapy and Radiopharmaceuticals, vol. 30, no. 2, pp. 47-71, (2015).
10- A. Sundl+¦v and K. Sj+¦green-Gleisner, "Peptide Receptor Radionuclide Therapy GÇô Prospects for Personalised Treatment.", Clinical Oncology, vol. 33, no. 2, pp. 92-97, (2021).
11- T. Mastren, A. Akin, R. Copping, M. Brugh, D. S. Wilbur, E. R. Birnbaum, F. M. Nortier, K. D. John, and M. E. Fassbender, "A reverse 230U/226Th radionuclide generator for targeted alpha therapy applications.", Nuclear Medicine and Biology, vol. 90-91, pp. 69-73, (2020).
12- S. Basu, R. V. Parghane, Kamaldeep, and S. Chakrabarty, "Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors.", Seminars in Nuclear Medicine, vol. 50, no. 5, pp. 447-464, (2020).
13- H. Ahmadzadehfar, M. Essler, K. Rahbar, and A. Afshar-Oromieh, "Radionuclide Therapy for Bone Metastases: Utility of Scintigraphy and PET Imaging for Treatment Planning.", PET Clinics, vol. 13, no. 4, pp. 491-503, (2018).
14- S. Severi, A. "Peptide receptor radionuclide therapy in patients with metastatic progressive pheochromocytoma and paraganglioma: long-term toxicity, efficacy and prognostic biomarker data of phase II clinical trials.", ESMO Open, vol. 6, no. 4, p. 100171, (2021).
15- N. Heynickx, K. Herrmann, K. Vermeulen, S. Baatout, and A. Aerts, "The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far.", Nuclear Medicine and Biology, vol. 98-99, pp. 30-39, (2021).
16- M. Lassmann, U. Eberlein, and J. Tran-Gia, "Multicentre Trials on Standardised Quantitative Imaging and Dosimetry for Radionuclide Therapies.", Clinical Oncology, vol. 33, no. 2, pp. 125-130, (2021).
17- W. Delbart, G. E. Ghanem, I. Karfis, P. Flamen, and Z. +. Wimana, "Investigating intrinsic radiosensitivity biomarkers to peptide receptor radionuclide therapy with [177Lu]Lu-DOTATATE in a panel of cancer cell lines.", Nuclear Medicine and Biology, vol. 96-97, pp. 68-79, (2021).
18- T. Vaghaiwalla, B. Ruhle, K. Memeh, P. Angelos, E. Kaplan, C. Y. Liao, B. Polite, and X. Keutgen, "Response rates in metastatic neuroendocrine tumors receiving peptide receptor radionuclide therapy and implications for future treatment strategies.", Surgery, vol. 169, no. 1, pp. 162-167, (2021).
19- K. Fujieda, J. Kataoka, S. Mochizuki, L. Tagawa, S. Sato, R. Tanaka, K. Matsunaga, T. Kamiya, T. Watabe, H. Kato, E. Shimosegawa, and J. Hatazawa, "First demonstration of portable Compton camera to visualize 223-Ra concentration for radionuclide therapy.", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 958, p. 162802, (2020).
20- S. K. Suman, S. Subramanian, and A. Mukherjee, "Combination radionuclide therapy: A new paradigm.", Nuclear Medicine and Biology, vol. 98-99, pp. 40-58, (2021).
21- D. L. Bushnell and K. L. Bodeker, "Overview and Current Status of Peptide Receptor Radionuclide Therapy.", Surgical Oncology Clinics of North America, vol. 29, no. 2, pp. 317-326, (2020).
22- R. Ghahramani-Asl, F. Razghandi, and H. R. Sadoughi, "Dosimetric evaluation of several candidate radionuclides used in radionuclide therapy of bone metastases in an upper leg model.", Radiation Physics and Chemistry, vol. 176, p. 109082, (2020).
23- Y. Ohshima, H. Suzuki, H. Hanaoka, I. Sasaki, S. Watanabe, H. Haba, Y. Arano, Y. Tsushima, and N. S. Ishioka, "Preclinical evaluation of new +¦-radionuclide therapy targeting LAT1: 2-[211At]astato-+¦-methyl-L-phenylalanine in tumor-bearing model.", Nuclear Medicine and Biology, vol. 90-91, pp. 15-22, (2020).
24- L. Bodei, H. Sch+¦der, R. P. Baum, K. Herrmann, J. Strosberg, M. Caplin, K. +ûberg, and I. M. Modlin, "Molecular profiling of neuroendocrine tumours to predict response and toxicity to peptide receptor radionuclide therapy.", The Lancet Oncology, vol. 21, no. 9, p. e431-e443, (2020).
25- S. J. Goldsmith, "Targeted Radionuclide Therapy: A Historical and Personal Review.", Seminars in Nuclear Medicine, vol. 50, no. 1, pp. 87-97, (2020).
26- P. E. Hartrampf, H. H+ñnscheid, O. Kertels, A. Schirbel, M. C. Kreissl, M. Flentje, R. A. Sweeney, A. K. Buck, B. +. Polat, and C. Lapa, "Long-term results of multimodal peptide receptor radionuclide therapy and fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma.", Clinical and Translational Radiation Oncology, vol. 22, pp. 29-32, (2020).
27- J. Dhanani, D. A. Pattison, M. Burge, J. Williams, B. Riedel, R. J. Hicks, and M. C. Reade, "Octreotide for resuscitation of cardiac arrest due to carcinoid crisis precipitated by novel peptide receptor radionuclide therapy (PRRT): A case report.", Journal of Critical Care, vol. 60, pp. 319-322, (2020).
28- H. Zhou, Q. Zhang, Y. Cheng, L. Xiang, G. Shen, X. Wu, H. Cai, D. Li, H. Zhu, R. Zhang, L. Li, and Z. Cheng, "64Cu-labeled melanin nanoparticles for PET/CT and radionuclide therapy of tumor.", Nanomedicine: Nanotechnology, Biology and Medicine, vol. 29, p. 102248, (2020).
29- J. Garousi, E. von Witting, J. Borin, A. Vorobyeva, M. Altai, O. Vorontsova, M. W. Konijnenberg, M. Oroujeni, A. Orlova, V. Tolmachev, and S. Hober, "Radionuclide therapy using ABD-fused ADAPT scaffold protein: Proof of Principle.", Biomaterials, vol. 266, p. 120381, (2021).
30- A. Stankovi-ç, J. Mihailovi-ç, M. Mirkovi-ç, M. Radovi-ç, Z. Milanovi-ç, M. Ognjanovi-ç, D. Jankovi-ç, B. Anti-ç, M. Mijovi-ç, S. Vranje+í--Éuri-ç, and +. Prijovi-ç, "Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer.", International Journal of Pharmaceutics, vol. 587, p. 119628, (2020).
31- S. Agostinelli, J.et al, "Geant4GÇöa simulation toolkit.", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506, no. 3, pp. 250-303, (2003).
32- S. Jan, G. et al "GATE: a simulation toolkit for PET and SPECT.", Phys Med Biol, vol. 49, no. 19, pp. 4543-4561, (2004).
33- INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, "THERAPEUTIC RADIONUCLIDE GENERATORS: 90Sr/90Y AND 188W/188Re GENERATORS.", IAEA, Vienna,470, (2009).
34- Andreas H Mahnken, "90Y-glass microspheres for hepatic neoplasia.", Future Oncol, 11(9):1343-54, (2015).
35- Y. Caffari, P. Spring, C. Bailat, Y. Nedjadi, and F. Bochud, "Activity measurements of 18F and 90Y with commercial radionuclide calibrators for nuclear medicine in Switzerland.", Applied Radiation and Isotopes, vol. 68, no. 7, pp. 1388-1391, (2010).
36- H. Ahmadzadehfar, H. J. Biersack, and S. Ezziddin, "Radioembolization of Liver Tumors With Yttrium-90 Microspheres.", Seminars in Nuclear Medicine, vol. 40, no. 2, pp. 105-121, (2010).
37- V. Aleksandar, J. Drina, R. Magdalena, M. Zorana, M. Marija, S. Dragana, and V. Sanja, "Optimization of the radiolabelling method for improved in vitro and in vivo stability of 90Y-albumin microspheres.", in Applied Radiation and Isotopes, 156:108984, (2020).
38- F. Biltekin, G. Ozyigit, M. Yeginer, M. Cengiz, D. Celik, F. Yildiz, F. Akyol, F. Zorlu, and M. Gurkaynak, "EP-1374 THE SECONDARY MALIGNANCY RISK ESTIMATION DUE TO THE NEUTRON CONTAMINATION IN 3D-CRT AND IMRT TREATMENT TECHNIQUES.", Radiotherapy and Oncology, vol. 103, p. S521-S522, (2012).
39- M. L. J. Smits, Nijsen, B. A. Zonnenberg, B. A. Seinstra, M. G. E. H. Lam, and M. A. A. J. van den Bosch, "Intra-arterial radioembolization of breast cancer liver metastases: A structured review.", European Journal of Pharmacology, vol. 709, no. 1, pp. 37-42, (2013).
40- Seyyed Mostafa Ghavami, Ghiasi Hosein, and Asghar Mesbahi, "MONTE CARLO MODELING OF THE YTTRIUM-90 NANOSPHERES APPLICATION IN THE LIVER RADIONUCLIDE THERAPY AND ORGANS DOSES CALCULATION.", Nuclear Technology and Radiation Protection, 31(1):89-96, (2016).
41- International Commission on Radiological Protection, "The 2007 Recommendations of the International Commission on Radiological Protection.", ICRP,103, (2007).
42- International Commission on Radiological Protection, "Use of dose quantities in radiological protection," Ann. ICRP,147, (2021).
Files | ||
Issue | Vol 9 No 2 (2022) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/fbt.v9i2.8849 | |
Keywords | ||
Nanospheres 90Y Nanospheres Monte Carlo N–Particle Monte Carlo Simulation Radionuclide Therapy |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |