Comparison of Two Electrode Placement Methods in Transcranial Direct Current Stimulation for Parkinson's disease
Abstract
Purpose: Therapeutic electrical stimulation of deep brain structures, such as subthalamic nucleus and the globus pallidus , is widely accepted as a treatment tool for patients with Parkinson's disease (PD). Electrical stimulation of the cerebral cortex with electrodes or transcranial stimulation can increase motor function among PD patients.
Methods: The aim of the present study was to evaluate the effects of non-invasive cortical stimulation with simulation of transcranial direct current stimulation (tDCS) technique on parts of the basal ganglia among PD patients in MATLAB software. tDCS was simulated using two different electrode placement methods (anodal stimulation of the primary motor cortex (M1) and anodal stimulation of the dorsolateral prefrontal cortex (DLPFC)) and stimulation on the target region was evaluated. All simulations were performed using head MRI images of four people with PD. The effectiveness of brain stimulation was also studied using a basal ganglia model in MATLAB software. considering the membrane potential of Globus Pallidus and Subthalamic Nucleus regions, The effectiveness of each electrode placement method was evaluated in the BG model.
Results: According to the results, direct current stimulation was propagated through electrodes placed on the scalp throughout the model. Also anodal stimulation of primary motor cortex (M1) had a better effect on globus pallidus and subthalamic nucleus than anodal stimulation of the dorsolateral prefrontal cortex (DLPFC).
Conclusion: However, the procedures for performing tDCS and invasive brain stimulation in Parkinson's disease are different, the results show that this treatment can be appropriate and improve motor function in patients with PD.
[2] Benninger, D. H., Lomarev, M., Lopez, G., Wassermann, E. M., Li, X., Considine, E., & Hallett, M. “Transcranial direct current stimulation for the treatment of Parkinson's disease. Journal of neurology”, neurosurgery, and psychiatry, 81(10), 1105–1111. (2010). https://doi.org/10.1136/jnnp.2009.202556
[3] Salimpour Y, Mari ZK, Shadmehr R. “Altering effort costs in Parkinson’s disease with noninvasive cortical stimulation. Journal of Neuroscience, 35 (35) 12287-12302, (2015). DOI: 10.1523 / JNEUROSCI
[4] E. Lattari, et al. “Can transcranial direct current stimulation on the dorsolateral prefrontal cortex
improves balance and functional mobility in Parkinson’s disease?” Neurosci. Lett, (2016). http://dx.doi.org/10.1016/j.neulet.2016.11.01
[5] Manenti R, Brambilla M, Rosini S, et al. “Time up and go task performance improves after transcranial direct current stimulation in patient affected by Parkinson's disease. “,Neuroscience Letters. 580:74-77. (2014). DOI: 10.1016/j.neulet.2014.07.052
[6] Ferrucci, R., Bocci, T., Cortese, F., Ruggiero, F., & Priori, A. “Cerebellar transcranial direct current stimulation in neurological disease”, Cerebellum & ataxias, 3(1), 16. (2016). https://doi.org/10.1186/s40673-016-0054-2
[7] Alizad, V., Meinzer, M., Frossard, L., Polman, R., Smith, S., & Kerr, G. “Effects of transcranial direct current stimulation on gait in people with Parkinson's disease: study protocol for a randomized”, controlled clinical trial. Trials, 19(1), 661. (2018).https://doi.org/10.1186/s13063-018-2982-z
[8] Doruk D, Gray Z, Bravo GL, Pascual-Leone A, Fregni F. “Effects of tDCS on executive function in Parkinson's disease”, Neuroscience Letters. 582:27-31, (2014). DOI: 10.1016/j.neulet.2014.08.043.
[9] Fregni F, Pascual-Leone A. ”Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS”. Nat Clin Pract Neurol.3(7):383-93. (2007). doi: 10.1038/ncpneuro0530
[10] De Paz, R. H., Serrano-Muñoz, D., Perez-Nombela, S., Bravo-Esteban, E., Avendano-Coy, J., and Gomez-Soriano, J. “Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: a systematic review”. J. Neuroeng. Rehabil. 16:114. (2019). doi: 10.1186/s12984-019-0591-z
[11] Navarro-López V, et al. “The Long-Term Maintenance of Upper Limb Motor Improvements Following Transcranial Direct Current Stimulation Combined with Rehabilitation in People with Stroke: A Systematic Review of Randomized Sham-Controlled Trials”. Sensors (Basel). 31;21(15):5216. (2021). doi:10.3390/s21155216
[12] Shahid SS, Bikson M, Salman H, Wen P, Ahfock T. “The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation”. J Neural Eng.11(3):036002. (2014). doi: 10.1088/1741-2560/11/3/036002
[13] Thair H, Holloway AL, Newport R, Smith AD . ”Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation”. Front Neurosci. 22;11:641. (2017). doi: 10.3389/fnins.2017.00641
[14] Krause B, Cohen Kadosh R. “ Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation”. Front Syst Neurosci. 24;8:25.(2014). doi:10.3389/fnsys.2014.00025
[15] Guleyupoglu B, Schestatsky P, Edwards D, Fregni F, Bikson M. “Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations”. J Neurosci Methods. 219(2):297-311. (2013). doi: 10.1016/j.jneumeth.2013.07.016.
[16] Fregni F, Boggio PS, Santos MC, et al. “Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease”. Mov Disord. 21(10):1693-1702. (2006). doi: 10.1002/mds.21012.
[17] Zarzycki MZ, Domitrz I. “Stimulation-induced side effects after deep brain stimulation - a systematic review”. Acta Neuropsychiatr.32(2):57-64.(2020). doi: 10.1017/neu.2019.35.
[18] Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. “Increasing human brain excitability by transcranial high-frequency random noise stimulation”. J Neurosci. 28(52):14147-14155. (2008). doi: 10.1523/JNEUROSCI.4248-08.2008.
[19] Fertonani A, Pirulli C, Miniussi C. “Random noise stimulation improves neuroplasticity in perceptual learning”. J Neurosci. 31(43):15416-15423. (2011). doi: 10.1523/JNEUROSCI.2002-11.2011.
[20] Wang, J., Luo, H., Schülke, R., Geng, X., Sahakian, B. J., & Wang, S. “Is transcranial direct current stimulation, alone or in combination with antidepressant medications or psychotherapies, effective in treating major depressive disorder? A systematic review and meta-analysis”. BMC medicine, 19(1), 319. (2021). https://doi.org/10.1186/s12916-021-02181-4
[21] Zettin M, Bondesan C, Nada G, Varini M and Dimitri D. “Transcranial Direct-Current Stimulation and Behavioral Training, a Promising Tool for a Tailor-Made Post-stroke Aphasia Rehabilitation: A Review. Front”. Hum. Neurosci. 15:742136. (2021). doi: 10.3389/fnhum.2021.742136.
[22] Monastero, R., Baschi, R., Nicoletti, A., Pilati, L., Pagano, L., Cicero, C. E., Zappia, M., & Brighina, F. “Transcranial random noise stimulation over the primary motor cortex in PD-MCI patients: a crossover, randomized, sham-controlled study”. Journal of neural transmission (Vienna, Austria : 1996), 127(12), 1589–1597. (2020). https://doi.org/10.1007/s00702-020-02255-2
[23] Pereira JB, et al. “Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson's disease”. Brain Stimul. 6(1):16-24. (2013). doi: 10.1016/j.brs.2012.01.006.
[24] Liu, X., Liu, H., Liu, Z., Rao, J., Wang, J., Wang, P., Gong, X., & Wen, Y. “Transcranial Direct Current Stimulation for Parkinson's Disease: A Systematic Review and Meta-Analysis”. Frontiers in aging neuroscience, 13, 746797. (2021).
[25] Kaski D, Dominguez RO, Allum JH, Islam AF, Bronstein AM. “Combining physical training with transcranial direct current stimulation to improve gait in Parkinson's disease: a pilot randomized controlled study”. Clin Rehabil. 28(11):1115-24.(2014). doi: 10.1177/0269215514534277
[26] Valentino F, et al. ”Transcranial direct current stimulation for treatment of freezing of gait: a cross-over study”. Mov Disord. 29(8):1064-9. (2014). doi: 10.1002/mds.25897
[27] Biundo R, et al. “Double-blind Randomized Trial of tDCS Versus Sham in Parkinson Patients With Mild Cognitive Impairment Receiving Cognitive Training”. Brain Stimul. 8(6):1223-5. (2015). doi:10.1016/j.brs.2015.07.043.
[28] Costa-Ribeiro A, et al. “Dopamine-independent effects of combining transcranial direct current stimulation with cued gait training on cortical excitability and functional mobility in Parkinson's disease”. J Rehabil Med.12;48(9):819-823. (2016). doi:10.2340/16501977-2134
[29] Manenti R, Brambilla M, et al. “Mild cognitive impairment in Parkinson's disease is improved by transcranial direct current stimulation combined with physical therapy”. Mov Disord. 31(5):715-24. (2016). doi:10.1002/mds.26561
[30] Schabrun SM, Lamont RM, Brauer SG. “Transcranial Direct Current Stimulation to Enhance Dual-Task Gait Training in Parkinson's Disease: A Pilot RCT”. PLoS One. 30;11(6):e0158497. (2016). doi:10.1371/journal.pone.0158497
[31] Swank C, Mehta J, Criminger C. “Transcranial direct current stimulation lessens dual task cost in people with Parkinson's disease”. Neurosci Lett. 28;626:1-5. (2016). doi:10.1016/j.neulet.2016.05.010
[32] Forogh B, Rafiei M, Arbabi A, Motamed MR, Madani SP, Sajadi S. “Repeated sessions of transcranial direct current stimulation evaluation on fatigue and daytime sleepiness in Parkinson's disease”. Neurol Sci. ;38(2):249-254. (2017). doi: 10.1007/s10072-016-2748-x
[33] Kaminski E, Steele CJ, Hoff M, et al. “Transcranial direct current stimulation (tDCS) over primary motor cortex leg area promotes dynamic balance task performance”. Clin Neurophysiol. 127(6):2455-2462. (2016). doi: 10.1016/j.clinph.2016.03.018.
[34] Oldrati V, Schutter DJLG. “Targeting the Human Cerebellum with Transcranial Direct Current Stimulation to Modulate Behavior: a Meta-Analysis”. Cerebellum. 17(2):228-236. (2018). doi: 10.1007/s12311-017-0877-2.
[35] Pisoni, Pisoni A, Mattavelli G, Papagno C, Rosanova M, Casali AG, Romero Lauro LJ. “Cognitive Enhancement Induced by Anodal tDCS Drives Circuit-Specific Cortical Plasticity”. Cereb Cortex. 28(4):1132-1140. (2018). doi: 10.1093/cercor/bhx021.
[36] Verheyden G, Purdey J, Burnett M, Cole J, Ashburn A. “Immediate effect of transcranial direct current stimulation on postural stability and functional mobility in Parkinson's disease”. Mov Disord. 28(14):2040-2041. (2013). doi: 10.1002/mds.25640.
[37] Stephani C, Nitsche MA, Sommer M, Paulus W. “Impairment of motor cortex plasticity in Parkinson's disease, as revealed by theta-burst-transcranial magnetic stimulation and transcranial random noise stimulation”. Parkinsonism Relat Disord. 17(4):297-298. (2011). doi: 10.1016/j.parkreldis.2011.01.006.
[38] Gabriel S, Lau RW, Gabriel C. “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz”. Phys Med Biol.41(11):2251-69. (1996). doi: 10.1088/0031-9155/41/11/002
[39] Gonçalves S, de Munck JC, Verbunt JP, Heethaar RM, da Silva FH. “In vivo measurement of the brain and skull resistivities using an EIT-based method and the combined analysis of SEF/SEP data”. IEEE Trans Biomed Eng. 50(9):1124-8. (2003). doi: 10.1109/TBME.2003.816072.
[40] Rubin JE, Terman D. “High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model”. J Comput Neurosci.16(3):211-35. (2004). doi:10.1023/B:JCNS.0000025686.47117.67
[41] So RQ, Kent AR, Grill WM. “Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study”. J Comput Neurosci. 32(3):499-519. (2012). doi: 10.1007/s10827-011-0366-4
[42] Workman CD, Kamholz J, Rudroff T. “Transcranial direct current stimulation (tDCS) for the treatment of a Multiple Sclerosis symptom cluster”. Brain Stimul.13(1):263-264. (2020). doi:10.1016/j.brs.2019.09.012
[43] G. Ruffini, F. Wendling, I. Merlet, B. Molaee-Ardekani, A. Mekonnen, R. Salvador, et al. "Transcranial current brain stimulation (tCS): models and technologies," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 21, 333-345. (2013). doi: 10.1109/TNSRE.2012.2200046.
Files | ||
Issue | Vol 10 No 2 (2023) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/fbt.v10i2.12222 | |
Keywords | ||
Parkinson’s disease; Transcranial direct current stimulation; Globus pallidus; Subthalamic nucleus; Basal ganglia; 3D model of Brain. |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |