The Benson Complex Figure Test: Normative Data for the Healthy Iranian Population
Abstract
Purpose: Visual-related abilities such as visual memory and visuo-constructional skills are among the cognitive abilities with fundamental importance for normal cognitive function, and its impairment is manifested in many neurological and psychiatric disorders. The present study aimed to generate normative data for the Benson Complex Figure Test (BCFT), a well-known simplified version of the Rey-Osterrieth Complex Figure Test, in Iran and to assess the effect of demographic variables of age, gender, and education on its various measures.
Materials and Methods: The present study was conducted in 2017-2018 as part of the Iranian Brain Imaging Database (IBID) project. The study sample consisted of 300 normal individuals in the age range of 20 to 70 years, with an equal number of participants and an equal proportion of genders in each age decade (# 60). Independent and dependent variables, respectively, were age (classified by five decades including 20-30 year olds, 31-40 year olds, 41-50 year olds, 51-60 year olds, and 61-70 year olds) and performance in the BCFT (defined in terms of 3 scores on copy, recall, and recognition of the geometric figure and 2 scores on time of copy and recall).
Results: The correlation matrix among the variables showed that age and education has a significant correlation with most the BCFT scores, while gender only has a significant correlation with recognition score. Multivariate analysis of variance showed the effect of age, gender, and their interaction on scores, while education did not make a significant difference in the BCFT scores. Also, the t-test showed a significant difference between men and women in recall and recognition, so that women and men showed better performance in recall and recognition, respectively.
Conclusion: In summary, our results suggest that demographic variables of age, gender, and education affect visual memory and visuospatial abilities, and it is essential to generate normative data for research or clinical settings.
2. C. R. Reynolds, R. A. Altmann, and D. N. Allen, "Neuropsychological Testing," in Mastering Modern Psychological Testing: Theory and Methods: Springer, pp. 499-541, (2021).
3. L. A. Rabin, E. Paolillo, and W. B. Barr, "Stability in test-usage practices of clinical neuropsychologists in the United States and Canada over a 10-year period: A follow-up survey of INS and NAN members," Archives of Clinical Neuropsychology. 31(3): 206-230, (2016).
4. E. Strauss, E. M. Sherman, and O. Spreen, A compendium of neuropsychological tests: Administration, norms, and commentary. American chemical society. (2006).
5. Zhang, X., Lv, L., Min, G., Wang, Q., Zhao, Y. and Li, Y., 2021. Overview of the complex figure test and its clinical application in neuropsychiatric disorders, including copying and recall. Frontiers in Neurology, p.1304.
6. Possin, K.L., Laluz, V.R., Alcantar, O.Z., Miller, B.L. and Kramer, J.H., 2011. Distinct neuroanatomical substrates and cognitive mechanisms of figure copy performance in Alzheimer's disease and behavioral variant frontotemporal dementia. Neuropsychologia, 49(1), pp.43-48.
7. Fastenau, P.S., Denburg, N.L. and Hufford, B.J., 1999. Adult norms for the Rey-Osterrieth Complex Figure Test and for supplemental recognition and matching trials from the Extended Complex Figure Test. The Clinical Neuropsychologist, 13(1), pp.30-47.
8. Machulda, M.M., Ivnik, R.J., Smith, G.E., Ferman, T.J., Boeve, B.F., Knopman, D., Petersen, R.C. and Tangalos, E.G., 2007. Mayo's older Americans normative studies: Visual form discrimination and copy trial of the Rey–Osterrieth complex figure. Journal of clinical and experimental neuropsychology, 29(4), pp.377-384.
9. Caffarra, P., Vezzadini, G., Dieci, F., Zonato, F. and Venneri, A., 2002. Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurological sciences, 22, pp.443-447.
10. Palomo, R., Casals-Coll, M., Sánchez-Benavides, G., Quintana, M., Manero, R.M., Rognoni, T., Calvo, L., Aranciva, F., Tamayo, F. and Peña-Casanova, J., 2013. Spanish normative studies in young adults (NEURONORMA young adults project): Norms for the Rey–Osterrieth Complex Figure (copy and memory) and Free and Cued Selective Reminding Test. Neurología (English Edition), 28(4), pp.226-235.
11. Peña-Casanova, J., Gramunt-Fombuena, N., Quiñones-Úbeda, S., Sánchez-Benavides, G., Aguilar, M., Badenes, D., Molinuevo, J.L., Robles, A., Barquero, M.S., Payno, M. and Antúnez, C., 2009. Spanish multicenter normative studies (NEURONORMA Project): Norms for the Rey–Osterrieth complex figure (copy and memory), and free and cued selective reminding test. Archives of Clinical Neuropsychology, 24(4), pp.371-393.
12. Tremblay, M.P., Potvin, O., Callahan, B.L., Belleville, S., Gagnon, J.F., Caza, N., Ferland, G., Hudon, C. and Macoir, J., 2015. Normative data for the Rey–Osterrieth and the Taylor complex figure tests in Quebec-French people. Archives of Clinical Neuropsychology, 30(1), pp.78-87.
13. Rivera, D., Perrin, P.B., Morlett-Paredes, A., Galarza-del-Angel, J., Martínez, C., Garza, M.T., Saracho, C.P., Rodríguez, W., Rodríguez-Agudelo, Y., Rábago, B. and Aliaga, A., 2015. Rey–Osterrieth Complex Figure–copy and immediate recall: Normative data for the Latin American Spanish speaking adult population. NeuroRehabilitation, 37(4), pp.677-698.
14. Tsatali, M., Emmanouel, A., Gialaouzidis, M., Avdikou, K., Stefanatos, C., Diamantidou, A., Kouroundi, E., Messini, C. and Tsolaki, M., 2022. Rey complex figure test (RCFT): Norms for the Greek older adult population. Applied Neuropsychology: Adult, 29(5), pp.958-966.
15. Vicente, S.G., Ramos-Usuga, D., Barbosa, F., Gaspar, N., Dores, A.R., Rivera, D. and Arango-Lasprilla, J.C., 2021. Regression-based norms for the hopkins verbal learning test-revised and the rey–osterrieth complex figure in a portuguese adult population. Archives of Clinical Neuropsychology, 36(4), pp.587-596.
16. Rocha-Amador, D., Navarro, M., Trejo-Acevedo, A., Carrizales, L., Pérez-Maldonado, I., Díaz-Barriga, F. and Calderón, J., 2009. Use of the Rey-Osterrieth Complex Figure Test for neurotoxicity evaluation of mixtures in children. Neurotoxicology, 30(6), pp.1149-1154.
17. Luzzi, S., Pesallaccia, M., Fabi, K., Muti, M., Viticchi, G., Provinciali, L. and Piccirilli, M., 2011. Non-verbal memory measured by Rey–Osterrieth Complex Figure B: normative data. Neurological Sciences, 32, pp.1081-1089.
18. Hubley, A.M., 2010. Using the Rey–Osterrieth and Modified Taylor Complex Figures with older adults: A preliminary examination of accuracy score comparability. Archives of Clinical Neuropsychology, 25(3), pp.197-203.
19. Lee, B.G., Kent, J.A., Marcopulos, B.A., Arredondo, B.C. and Wilson, M., 2022. Rey–Osterrieth complex figure normative data for the psychiatric population. The Clinical Neuropsychologist, 36(7), pp.1653-1678.
20. Jiskoot, L.C., Russell, L.L., Peakman, G., Convery, R.S., Greaves, C.V., Bocchetta, M., Poos, J.M., Seelaar, H., Giannini, L.A., van Swieten, J.C. and van Minkelen, R., 2023. The Benson Complex Figure Test detects deficits in visuoconstruction and visual memory in symptomatic familial frontotemporal dementia: A GENFI study. Journal of the Neurological Sciences, 446, p.120590.
21. Lempert, K.M., Mechanic-Hamilton, D.J., Xie, L., Wisse, L.E., de Flores, R., Wang, J., Das, S.R., Yushkevich, P.A., Wolk, D.A. and Kable, J.W., 2020. Neural and behavioral correlates of episodic memory are associated with temporal discounting in older adults. Neuropsychologia, 146, p.107549.
22. Yeung, L.K., Hale, C., Rizvi, B., Igwe, K., Sloan, R.P., Honig, L.S., Small, S.A. and Brickman, A.M., 2021. Anterolateral entorhinal cortex volume is associated with memory retention in clinically unimpaired older adults. Neurobiology of aging, 98, pp.134-145.
23. Liew, T.M., 2019. Developing a brief neuropsychological battery for early diagnosis of cognitive impairment. Journal of the American Medical Directors Association, 20(8), pp.1054-e11.
24. Ryu, J., Vero, J., Dobkin, R.D. and Torres, E.B., 2019. Dynamic digital biomarkers of motor and cognitive function in Parkinson's disease. JoVE (Journal of Visualized Experiments), (149), p.e59827.
25. Tippett, D.C., Breining, B., Goldberg, E., Meier, E., Sheppard, S.M., Sherry, E., Stockbridge, M., Suarez, A., Wright, A.E. and Hillis, A.E., 2020. Visuomotor figure construction and visual figure delayed recall and recognition in primary progressive aphasia. Aphasiology, 34(12), pp.1456-1470.
26. Barker, M.S., Gottesman, R.T., Manoochehri, M., Chapman, S., Appleby, B.S., Brushaber, D., Devick, K.L., Dickerson, B.C., Domoto-Reilly, K., Fields, J.A. and Forsberg, L.K., 2022. Proposed research criteria for prodromal behavioural variant frontotemporal dementia. Brain, 145(3), pp.1079-1097.
27. Weintraub, S., Besser, L., Dodge, H.H., Teylan, M., Ferris, S., Goldstein, F.C., Giordani, B., Kramer, J., Loewenstein, D., Marson, D. and Mungas, D., 2018. Version 3 of the Alzheimer Disease Centers’ neuropsychological test battery in the Uniform Data Set (UDS). Alzheimer disease and associated disorders, 32(1), p.10.
28. Alty, J., Bai, Q., Li, R., Lawler, K., St George, R.J., Hill, E., Bindoff, A., Garg, S., Wang, X., Huang, G. and Zhang, K., 2022. The TAS Test project: a prospective longitudinal validation of new online motor-cognitive tests to detect preclinical Alzheimer’s disease and estimate 5-year risks of cognitive decline and dementia. BMC neurology, 22(1), pp.1-13.
29. Sachs, B.C., Steenland, K., Zhao, L., Hughes, T.M., Weintraub, S., Dodge, H.H., Barnes, L.L., Craft, S., Parker, M.L. and Goldstein, F.C., 2020. Expanded demographic norms for version 3 of the Alzheimer disease centers’ neuropsychological test battery in the uniform data set. Alzheimer disease and associated disorders, 34(3), p.191.
30. Tavakoli, M., Barekatain, M. and Emsaki, G., 2015. An Iranian normative sample of the Color Trails Test. Psychology & Neuroscience, 8(1), p.75.
31. Ghasemian-Shirvan, E., Shirazi, S.M., Aminikhoo, M., Zareaan, M. and Ekhtiari, H., 2018. Preliminary normative data of Persian phonemic and semantic verbal fluency test. Iranian journal of psychiatry, 13(4), p.288.
32. M. Rezvanfard, H. Ekhtiari, A. Rezvanifar, M. Noroozian, R. Nilipour, and G. K. Javan, "The Rey Auditory Verbal Learning Test: alternate forms equivalency and reliability for the Iranian adult population (Persian version)," Archives of Iranian medicine. 14(2): 104-109, (2011).
33. Malek, A., Hekmati, I., Amiri, S., Pirzadeh, J. and Gholizadeh, H., 2013. The standardization of Victoria Stroop color-word test among Iranian bilingual adolescents. Archives of Iranian Medicine, 16(7), pp.380-384.
34. S. A. H. Batouli, M. Sisakhti, S. Haghshenas, H. Dehghani, P. Sachdev, H. Ekhtiari, N. Kochan, W. Wen, A. Leemans, M. Kohanpour, M.A. Oghabian, "Iranian brain imaging database: a neuropsychiatric database of healthy brain," Basic and Clinical Neuroscience. 12(1): 115-131, (2021).
35. M. Sisakhti, S. A. H. Batouli , H. Farrahi. “The Rey Auditory Verbal Learning Test: Age-, Gender- and Education-Related Normative Data for the Iranian Healthy Population”, Frontiers in Biomedical Technologies. In press, (2023)
36. Crivelli, L., Calandri, I., Corvalán, N., Carello, M.A., Keller, G., Martínez, C., Arruabarrena, M. and Allegri, R., 2021. Cognitive consequences of COVID-19: results of a cohort study from South America. Arquivos de Neuro-psiquiatria, 80, pp.240-247.
37. S. Cavaco, A. Gonçalves, C. Pinto, E. Almeida, F. Gomes, I. Moreira, J. Fernandes, A. Teixeira-Pinto, "Auditory verbal learning test in a large nonclinical Portuguese population," Applied Neuropsychology: Adult. 22(5): 321-331, (2015).
38. O. Bezdicek, H. Stepankova, L. Moták, B.N. Axelrod, J.L. Woodard, M. Preiss, T. Nikolai, E. Růžička, A. Poreh, "Czech version of Rey Auditory Verbal Learning test: normative data," Aging, Neuropsychology, and Cognition. 21(6): 693-6721, (2014).
39. E. Lara, M. Miret, A. Sanchez-Niubo, J.M. Haro, S. Koskinen, M. Leonardi, B. Tobiasz-Adamczyk, S. Chatterji, J.L. Ayuso-Mateos, "Episodic memory and verbal fluency tasks: normative data from nine nationally representative samples," Journal of the International Neuropsychological Society. 27(1): 89-98, (2021).
40. M. Rönnlund, L. Nyberg, L. Bäckman, and L.-G. Nilsson, "Stability, growth, and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study," Psychology and aging. 20(1): 3-18, (2005).
41. S. L. Danckert and F. I. Craik, "Does aging affect recall more than recognition memory?," Psychology and aging. 28(4): 902-909, (2013).
42. S. Rhodes, N. R. Greene, and M. Naveh-Benjamin, "Age-related differences in recall and recognition: A meta-analysis," Psychonomic Bulletin & Review. 26(5): 1529-1547, (2019).
43. Fraundorf, S. H., Hourihan, K. L., Peters, R. A., & Benjamin, A. S. (2019). Aging and recognition memory: A meta-analysis. Psychological bulletin, 145(4), 339–371.
44. M. Asperholm, N. Högman, J. Rafi, and A. Herlitz, "What did you do yesterday? A meta-analysis of sex differences in episodic memory," Psychological Bulletin. 145(8): 785-821, (2019).
45. Kramer, J. H., Yaffe, K., Lengenfelder, J., & Delis, D. C. (2003). Age and gender interactions on verbal memory performance. Journal of the International Neuropsychological Society : JINS, 9(1), 97–102.
46. Herlitz, A., Nilsson, L. G., & Bäckman, L. (1997). Gender differences in episodic memory. Memory & cognition, 25(6), 801–811.
47. Tascón, L., Castillo, J., & Cimadevilla, J. M. (2019). Age-related differences in the elderly in a spatial recognition task. Memory (Hove, England), 27(10), 1415–1422.
48. Herlitz, A., Reuterskiöld, L., Lovén, J., Thilers, P. P., & Rehnman, J. (2013). Cognitive sex differences are not magnified as a function of age, sex hormones, or puberty development during early adolescence. Developmental neuropsychology, 38(3), 167–179.
49. Puts, D. A., McDaniel, M. A., Jordan, C. L., & Breedlove, S. M. (2008). Spatial ability and prenatal androgens: meta-analyses of congenital adrenal hyperplasia and digit ratio (2D:4D) studies. Archives of sexual behavior, 37(1), 100–111.
50. Kung, K. T. F., Browne, W. V., Constantinescu, M., Noorderhaven, R. M., & Hines, M. (2016). Early postnatal testosterone predicts sex-related differences in early expressive vocabulary. Psychoneuroendocrinology, 68, 111–116.
51. Schaadt, G., Hesse, V., & Friederici, A. D. (2015). Sex hormones in early infancy seem to predict aspects of later language development. Brain and language, 141, 70–76.
52. Strandqvist, A., Herlitz, A., Nordenskjöld, A., Örtqvist, L., Frisén, L., Lindén Hirschberg, A., & Nordenström, A. (2018). Cognitive abilities in women with complete androgen insensitivity syndrome and women with gonadal dysgenesis. Psychoneuroendocrinology, 98, 233–241.
53. R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, "Mild cognitive impairment: clinical characterization and outcome," Archives of neurology. 56(3): 303–8, (1999).
Files | ||
Issue | Vol 11 No 2 (2024) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/fbt.v11i2.15339 | |
Keywords | ||
Complex figure Cognition Visuospatial Memory |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |