Original Article

The Reliability of Diagnosing Schizophrenia Using the GRU Layer in Conjunction with EEG Rhythms

Abstract

Purpose: At resting state, the human brain releases cycles of Electroencephalography (EEG), which has been proven aberrant in persons with schizophrenia. Deep learning methods and patterns found in EEG of brain activity are helpful features for verifying schizophrenia. The proposed study demonstrates the applicability of alpha-EEG rhythm in a Gated-Recurrent-Unit-based deep learning model for studying schizophrenia.

Materials and Methods: This study suggests Rudiment Densely-Coupled Convolutional Gated Recurrent Unit (RDCGRU) for the EEG rhythm (gamma, beta, alpha, theta, and delta) based diagnoses of schizophrenia. The model includes multiple 1-D-Convolution (Con-1-D) folds with steps greater than 1, which enables the model to programmatically and effectively learn how to reduce the incoming signal. The Con-1-D layers and numerous Gated Recurrent Unit (GRU) layers comprise the Exponential-Linear-Unit activation function. This powerful activation function facilitates in-deep-network training and improves classification performance. The Densely-Coupled Convolutional Gated Recurrent Unit (DCGRU) layers enable RDCGRU to address the training accuracy loss brought on by vanishing or exploding gradients. This makes it possible to develop intense, deep versions of RDCGRU for more complex problems. The sigmoid activation function is implemented in the digital classifier's output nodes.

Results: The RDCGRU framework performs efficiently with alpha-EEG rhythm (88.06%) and harshly with delta-EEG rhythm (60.05%). The research achievements: In EEG rhythm-based schizophrenia verification, GRU cells with the RDCGRU deep learning model performed better with alpha-EEG rhythm.

Conclusion: The α-EEG rhythm is a crucial component of the RDCGRU deep learning model for studying schizophrenia using EEG rhythms. In our investigation of RDCGRU deep learning architectures, we noticed that Con-1-D layers connected special learning networks function well with the α-EEG rhythm for the EEG rhythm-based verification of schizophrenia.

1- WHO. Accessed: Jan. 10, (2022). https://www.who.int/news-room/fact-sheets/detail/schizophrenia.
2- F. Li et al., “Recognition of the Multi-class Schizophrenia Based on the Resting-State EEG Network Topology.” Brain Topogr., vol. 35, no. 4, pp. 495–506, (2022), doi: 10.1007/s10548-022-00907-y.
3- J. A. Cortes-Briones, N. I. Tapia-Rivas, D. C. D’Souza, and P. A. Estevez, “Going deep into schizophrenia with artificial intelligence.” Schizophr. Res., vol. 245, no. December 2020, pp. 122–140, (2022), doi: 10.1016/j.schres.2021.05.018.
4- M. Agarwal and A. Singhal, “Fusion of pattern-based and statistical features for Schizophrenia detection from EEG signals.” Med. Eng. Phys., vol. 112, no. January, p. 103949, (2023), doi: 10.1016/j.medengphy.2023.103949.
5- J. W. Y. Kam, A. R. Bolbecker, B. F. O’Donnell, W. P. Hetrick, and C. A. Brenner, “Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia.” J. Psychiatr. Res., vol. 47, no. 12, pp. 1893–1901, (2013), doi: 10.1016/j.jpsychires.2013.09.009.
6- B. Narayanan et al., “Resting state electroencephalogram oscillatory abnormalities in schizophrenia and psychotic bipolar patients and their relatives from the bipolar and schizophrenia network on intermediate phenotypes study.” Biol. Psychiatry, vol. 76, no. 6, pp. 456–465, (2014), doi: 10.1016/j.biopsych.2013.12.008.
7- M. G. Knyazeva, M. Jalili, R. Meuli, M. Hasler, O. De Feo, and K. Q. Do, “Alpha rhythm and hypofrontality in schizophrenia.” Acta Psychiatr. Scand., vol. 118, no. 3, pp. 188–199, (2008), doi: 10.1111/j.1600-0447.2008.01227.x.
8- E. L. Merrin and T. C. Floyd, “Negative symptoms and EEG alpha in schizophrenia: A replication.” Schizophr. Res., vol. 19, no. 2–3, pp. 151–161, (1996), doi: 10.1016/0920-9964(96)88522-7.
9- E. L. Merrin and T. C. Floyd, “Negative symptoms and EEG alpha activity in schizophrenic patients.” Schizophr. Res., vol. 8, no. 1, pp. 11–20, (1992), doi: 10.1016/0920-9964(92)90056-B.
10- P. Bachman et al., “Abnormally high EEG alpha synchrony during working memory maintenance in twins discordant for schizophrenia.” Schizophr. Res., vol. 103, no. 1–3, pp. 293–297, (2008), doi: 10.1016/j.schres.2008.04.006.
11- Y. Koh et al., “An MEG study of alpha modulation in patients with schizophrenia and in subjects at high risk of developing psychosis.” Schizophr. Res., vol. 126, no. 1–3, pp. 36–42, (2011), doi: 10.1016/j.schres.2010.10.001.
12- A. Mierau, W. Klimesch, and J. Lefebvre, “State-dependent alpha peak frequency shifts: Experimental evidence, potential mechanisms and functional implications.” Neuroscience, vol. 360, pp.146–154, (2017), doi: 10.1016/j.neuroscience.2017.07.037.
13- W. Klimesch, “Alpha-band oscillations, attention, and controlled access to stored information.” Trends Cogn. Sci., vol. 16, no. 12, pp. 606–617, (2012), doi: 10.1016/j.tics.2012.10.007.
14- W. Klimesch, P. Sauseng, and S. Hanslmayr, “EEG alpha oscillations: The inhibition-timing hypothesis.” Brain Res. Rev., vol. 53, no. 1, pp. 63–88, (2007), doi: 10.1016/j.brainresrev.2006.06.003.
15- J. Samaha and B. R. Postle, “The Speed of Alpha-Band Oscillations Predicts the Temporal Resolution of Visual Perception.” Curr. Biol., vol. 25, no. 22, pp. 2985–2990, (2015), doi: 10.1016/j.cub.2015.10.007.
16- J. Keil and D. Senkowski, “Individual alpha frequency relates to the sound-induced flash illusion.” Multisens. Res., vol. 30, no. 6, pp. 565–578, (2017), doi: 10.1163/22134808-00002572.
17- K. Jann, T. Koenig, T. Dierks, C. Boesch, and A. Federspiel, “Association of individual resting state EEG alpha frequency and cerebral blood flow.” Neuroimage, vol. 51, no. 1, pp. 365–372, (2010), doi: 10.1016/j.neuroimage.2010.02.024.
18- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition.” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, (2016), doi: 10.1109/CVPR.2016.90.
19- G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks.” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2261–2269, (2017), doi: 10.1109/CVPR.2017.243.
20- D. A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning by exponential linear units (ELUs).” 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., no. November, (2016).
21- G. N. M. Cristina, V. G. C. Sanchez, O. O. V. Villegas, M. Nandayapa, H. D. J. O. Dominguez, and J. H. S. Azuela, “Study of the Effect of Combining Activation Functions in a Convolutional Neural Network.” IEEE Lat. Am. Trans., vol. 19, no. 5, pp. 844–852, (2021), doi: 10.1109/TLA.2021.9448319.
22- G. Sharma and A. M. Joshi, “SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG.” IEEE Trans. Instrum. Meas., vol. 71, (2022), doi: 10.1109/TIM.2022.3212040.
23- J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.” pp. 1–9, (2014), [Online]. Available: http://arxiv.org/abs/1412.3555.
24- E. Olejarczyk and W. Jernajczyk, “Graph-based analysis of brain connectivity in schizophrenia.” PLoS One, vol. 12, no. 11, Nov. (2017), DOI: 10.1371/journal.pone.0188629.
25- E. Olejarczyk and W. Jernajczyk, EEG in Schizophrenia, 2017, DOI: 10.18150/repod.0107441.
26- C. R. Phang, F. Noman, H. Hussain, C. M. Ting, and H. Ombao, “A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia from EEG Connectivity Patterns.” IEEE J. Biomed. Heal. Informatics, vol. 24, no. 5, pp. 1333–1343, (2020), doi: 10.1109/JBHI.2019.2941222.
27- D. Ahmedt-Aristizabal et al., “Identification of Children at Risk of Schizophrenia via Deep Learning and EEG Responses.” IEEE J. Biomed. Heal. Informatics, vol. 25, no. 1, pp. 69–76, (2021), doi: 10.1109/JBHI.2020.2984238.
Files
IssueArticles in Press QRcode
SectionOriginal Article(s)
Keywords
Gated Recurrent Unit Rudiment Densely-Coupled Convolutional Densely-Coupled Convolutional 1-D-Convolution Layer

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Sahu P, Jain K. The Reliability of Diagnosing Schizophrenia Using the GRU Layer in Conjunction with EEG Rhythms. Frontiers Biomed Technol. 2024;.