Systematic Review

Green Chemistry Approaches towards the Synthesis of Selenium Nanoparticles (SeNPs) as a Metal Nano-Therapy: Possible Mechanisms of Anticancer Action

Abstract

Cancer is one of the most devastating disorders of the 21st century, creating a major concern among clinicians and researchers. Many different treatment strategies are being tried to fight the war against cancer have been tested. Various inorganic nanoparticles have been investigated to induce cytotoxicity in cancer cells and one of the successfully tried nanoparticles is Selenium Nanoparticles (SeNPs). Green synthesized SeNPs are a promising source of new antioxidant and anti-inflammatory agents, given the multiplicity of its mechanism. SeNPs displayed antiproliferative potential against colon, liver, cervical, breast, melanoma, and prostate cancer cells by several mechanisms, including triggering apoptotic signal transduction pathways or slow down the angiogenic signalling in cancer cells. Metal nano-therapies such as SeNPs are granted research consideration for cancer treatment. The biocompatibility achieved through green synthesis suggests its possible use not only in specific cancer conditions but also in other types of cancer without any risk of toxicity of these molecules

1- K.M. Woldeamanuel, F.A. Kurra, Y.T. Roba. A review on nanotechnology and its application in modern veterinary science. International Journal of Nanomaterials, Nanotechnology and Nanomedicine, Vol. 7, pp. 26-31, (2021).
2- K. Ariga, M. Nishikawa, T. Mori, J. Takeya, L.K. Shrestha, J.P. Hill. Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, Vol. 20, pp. 51-95, (2019).
3- S.A. Ashraf, A.J. Siddiqui, A.E.O. Elkhalifa, M.I. Khan, M. Patel, M. Alreshidi, A. Moin, R. Singh, M. Snoussi, M. Adnan. Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Science of the Total Environment, Vol.768, pp. 144990, (2021).
4- S. Chetehouna, O. Atoussi, S. Derouiche. Biological activity and toxicological profile of zinc oxide nanoparticles synthesized by portulaca oleracea (l) leaves extract. Advances in Nanomedicine and Nanotechnology Research, Vol. 2, pp. 125-133, (2020).
5- S. Shilpi, U. Zeba, G.A. Atanas, K.S. Vinod, S.N. Pratap, M.A.A. Ahmed, P. Ram, G. Govind, S. Minaxi, S.B. Atul. Biological nanofactories: using living forms for metal nanoparticle synthesis. Mini-Reviews in Medicinal Chemistry, Vol. 21, pp. 245-265, (2021).
6- O. Atoussi, S. Chetehouna, S. Derouiche, Biological properties and Acute Toxicity Study of Copper oxide nanoparticles prepared by aqueous leaves extract of Portulaca oleracea (L). Asian Journal of Pharmaceutical Research, Vol. 10, pp. 89-94, (2020).
7- S.Derouiche, I.Y. Guemari, I. Boulaares. Characterization and acute toxicity evaluation of the MgO Nanoparticles Synthesized from Aqueous Leaf Extract of Ocimum basilicum L. Algerian Journal of Biosciences, vol. 1, pp. 1-6, (2020).
8- H. Tao, T. Wu, M. Aldeghi, T.C. Wu, A. Aspuru-Guzik, E. Kumacheva. Nanoparticle synthesis assisted by machine learning. Nature Reviews Materials, Vol. 6, pp. 701-716, (2021).
9- S. Derouiche, I. Ahmouda, R. Moussaoui. Effectiveness of a novel senps synthetized by aquilaria malaccensis extract compared to selenium acetate on lead induced metabolic disorder and oxidative stress in pregnant rats. International Journal of Chemical and Biochemical Science, vol.19, pp. 50-57, (2021).
10- S. Rajeshkumar, P. Veena, R.V. Santhiyaa. Synthesis and characterization of selenium nanoparticles using natural resources and its applications. Nanotechnology in the Life Sciences. pp. 63-79, (2018). doi:10.1007/978-3-319-99570-0_4
11- S. Djalalinia, M. Hasani, H. Asayesh, H.S. Ejtahed, H. Malmir, A. Kasaeian, M. Zarei, F. Baygi, H. Rastad, A.M. Gorabi, M. Qorbani. The effects of dietary selenium supplementation on inflammatory markers among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials. Journal of Diabetes & Metabolic Disorders, Vol. 20, pp.1051-1062, (2021).
12- M. Ikram, B. Javed, N.I. Raja, Z.R. Mashwani. Biomedical potential of plant-based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. International Journal of Nanomedicine, Vol. 16, pp. 249-268, (2021).
13- H.W. Tan, H.Y. Mo, A.T.Y. Lau, Y.M. Xu. Selenium species: current status and potentials in cancer prevention and therapy. International Journal of Molecular Sciences, vol. 20, pp. 1-26, (2019).
14- A. Singh, P.K. Gautam, A. Verma, V. Singh, P.M. Shivapriya, S. Shivalkar, A.K. Sahoo, S.K. Samant. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: areview. Biotechnology Report, vol. 25, pp. e00427, (2020).
15- A. Gour, N.K. Jain. Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol. Vol. 47, pp. 844-851, (2019).
16- B.K. Ndwandwe, S.P. Malinga, E. Kayitesi, B.C. Dlamini, Advances in green synthesis of selenium nanoparticles and their application in food packaging. International Journal of Food Science & Technology, vol. 56, n.6, pp. 2640-2650, (2020). doi:10.1111/ijfs.14916.
17- A. Saravanan, P.S. Kumar, S. Karishma, D.V.N. Vo, S. Jeevanantham, P.R. Yaashikaa, C. S. George. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere. vol. 264, p. 128580, (2020). doi: 10.1016/j.chemosphere.2020.12
18- G. Murugesan, K. Nagaraj, D. Sunmathi, K. Subramani. Methods involved in the synthesis of selenium nanoparticles and their different applications- a review. European Journal of Biomedical and Pharmaceutical Sciences, Vol. 6, pp. 189-194, (2019).
19- J. Annamalai, S.B. Ummalyma, A. Pandey, T. Bhaskar. Recent trends in microbial nanoparticle synthesis and potential application in environmental technology: a comprehensive review. Environmental Science and Pollution Research, vol. 28, pp. 49362-82, (2021).
20- V.R. Ranjitha, V.R. Rai. Selenium nanostructure: Progress towards green synthesis and functionalization for biomedicine. Journal of Pharmaceutical Investigation, vol. 51, pp. 117-135, (2021).
21- M.C. Zambonino, E.M. Quizhpe, F.E. Jaramillo, A. Rahman, V.N. Santiago, C. Jeffryes, S.A. Dahoumane. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. International Journal of Molecular Sciences, vol. 22 p. 989, (2021).
22- M. Abu-Elghait, M. Hasanin, A.H. Hashem, S.S. Salem. Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: characterization, antibiofilm and biocompatibility. International Journal of Biological Macromolecules, Vol. 175, pp. 294-303, (2021).
23- A.H. Hashem, A.M.A. Khalil, A.M. Reyad, S.S. Salem. Biomedical applications of mycosynthesized selenium nanoparticles using penicillium expansum attc 36200. Biological Trace Element Research, vol. 199, pp. 3998-4008, (2021).
24- Z. Wu, Y. Ren, Y. Liang, L. Huang, Y. Yang, A. Zafar, M. Hasan, F. Yang, X. Shu. Synthesis, characterization, immune regulation, and antioxidative assessment of yeast-derived selenium nanoparticles in cyclophosphamide-induced rats. ACS Omega, vol. 6, pp. 24585-24594, (2021).
25- M. Ashengroph, S.R. Hosseini. A newly isolated bacillus amyloliquefaciens srb04 for the synthesis of selenium nanoparticles with potential antibacterial properties.
International Journal of Microbiology, vol. 24, pp. 103–14, (2021).
26- H. Zhang, Z. Li, C. Dai, P. Wang, S. Fan, B. Yu, Y. Qu. Antibacterial properties and mechanism of selenium nanoparticles synthesized by providencia sp. dcx. Environmental Research, vol.; 194, p. 110630, (2021). doi: 10.1016/j.envres.2020.110630
27- S.N. Borah, L. Goswami, S. Sen, D. Sachan, H. Sarma, M. Montes, J.R. Peralta-Videa, K. Pakshirajan, M. Narayan. Selenite bioreduction and biosynthesis of selenium nanoparticles by bacillus paramycoides sp3 isolated from coal mine overburden leachate. Environmental Pollution, Vol. 285 p. 117519, (2021).
28- M.T. El-Saadony, A.M. Saad, T.F. Taha, A.A. Najjar, N.M. Zabermawi, M.M. Nader, S.F. AbuQamar, K.A. El-Tarabily, A. Salama, Selenium nanoparticles, from lactobacillus paracasei hm1 capable of antagonizing animal pathogenic fungi, as a new source from human breast milk,
Saudi Journal of Biological Sciences, vol. 28, pp. 6782-94, (2021).
29- H.S. Abbas, D.H. Abou-Baker, E.A. Ahmed. Cytotoxicity and antimicrobial efficiency of selenium nanoparticles biosynthesized by Spirulina platensis. Archives of Microbiology, Vol. 203, pp. 523-532, (2020).
30- P. Korde, S. Ghotekar, T. Pagar, S. Pansambal, R. Oza, D. Mane. Plant extract assisted eco-benevolent synthesis of selenium nanoparticles-a review on plant parts involved, characterization and their recent applications. Chemical Reviews, vol. 2, pp.157-168, (2020).
31- S.S. Salem, A. Fouda. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biological Trace Element Research, vol. 199, pp. 344-370, (2020).
32- M. Ikram, B. Javed, N.I. Raja, Z.R. Mashwani. Biomedical potential of plant-based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. International Journal of Nanomedicine, Vol. 6, pp. 249-268, (2021).
33- A. Djouadi, S. Derouiche. Spinach mediated synthesis of Zinc oxide nanoparticles: characterization, In vitro biological activities study and In vivo acute toxicity evaluation. Current Research in Green and Sustainable Chemistry, vol. 4, p. 100214, (2021).
34- P.K. Dikshit, J. Kumar, A.K. Das, S. Sadhu, S. Sharma, S. Singh, P.K. Gupta, B.S. Kim. Green synthesis of metallic nanoparticles: applications and limitations. Catalysts. Vol. 11, pp. 1-35,(2021).
35- R.S. Ghaderi, F. Adibian, Z. Sabouri, J. Davoodi, M. Kazemi, S.A. Jamehdar, Z. Meshkat, S. Soleimanpour, M. Daroudi. Green synthesis of selenium nanoparticle by Abelmoschus esculentus extract and assessment of its antibacterial activity. Materials Technology, vol. 2021, pp. 1-9, (2021). doi:10.1080/10667857.2021.1935602
36- V. Cittrarasu, D. Kaliannan, K. Dharman, V. Maluventhen, M. Easwaran, W.C. Liu, B. Balasubramanian, M. Arumugam. Green synthesis of selenium nanoparticles mediated from ceropegia bulbosa roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientific Reports, vol. 11, p. 1032, (2021).
37- B. Madhumitha, P. Santhakumar, M. Jeevitha, S. Rajeshkumar. Green synthesis of selenium nanoparticle using capparis decidua fruit extract and its characterization using transmission electron microscopy and uv- visible spectroscopy. Research Journal of Pharmacy and Technology, vol. 14, pp. 2129-2132, (2021).
38- G. Rajagopal, A. Nivetha, S. Ilango, G.P. Muthudevi, I. Prabha, R. Arthimanju. Phytofabrication of selenium nanoparticles using Azolla pinnata: Evaluation of catalytic properties in oxidation, antioxidant and antimicrobial activities. Journal of Environmental Chemical Engineering, Vol. 9, p. 105483, (2021).
39- I. lashin, M. Hasanin, S.A.M. Hassan, A.H. Hashem. Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of ziziphus spina-christi: characterization, antimicrobial, and antioxidant activity. Biomass Convers Biorefin, 0123456789, (2021).
40- S. Miglani, N. Tani-Ishii. Biosynthesized selenium nanoparticles: characterization, antimicrobial, and antibiofilm activity against enterococcus faecalis. Peer Journal, vol. 9, p. e11653, (2021).
41- M. Nasrollahzadeh, M. Sajjadi, J. Dadashi, H. Ghafuri. Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Advances in Colloid and Interface Science, vol. 276, p. 102103, (2020).
42- R.C. Fierascu, I. Fierascu, E.M. Lungulescu, N. Nicula, R. Somoghi, L.M. Diţu, C. Ungureanu, A.N. Sutan, O.A. Drăghiceanu, A. Paunescu, L.C. Soare. Phytosynthesis and radiation-assisted methods for obtaining metal nanoparticles. Journal of Materials Science, vol. 55, pp. 1915-1932, (2020).
43- M. Ahmadi, K. Kaleji, B. Tca (ag doped tio2-cuo) mesoporous composite nanoparticles: optical, xps and morphological characterization. Journal of Materials Science: Materials in Electronics, Vol. 32, pp. 13450–13461, (2021).
44- K. Vijayaraghavan, T. Ashokkumar. Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. Journal of Environmental Chemical Engineering,Vol. 5, pp. 4866-4883, (2017).
45- M.I. Din, R. Rehan. Synthesis, characterization, and applications of copper nanoparticles. Analytical Letters, vol. 50, pp.50-62, (2017).
46- M.T. El-Sayed, A.S. El-Sayed. Biocidal activity of metal nanoparticles synthesized by fusarium solani against multidrug-resistant bacteria and mycotoxigenic fungi. Journal of Microbiology and Biotechnology, vol. 30, pp. 226-236, (2020).
47- J. Liu, J. Jiang, Y. Meng, A. Aihemaiti, Y. Xu, H. Xiang, Y. Gao, X. Chen. Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. Journal of Hazardous Materials, vol. 388, p. 122026, (2020).
48- F. Ali, S.B. Khan, T. Kamal, K.A Alamry, E.M. Bakhsh, A.M. Asiri, T.R.A Sobahi. Synthesis and characterization of metal nanoparticles templated chitosan-sio 2 catalyst for the reduction of nitrophenols and dyes. Carbohydrate Polymer, vol. 192, pp. 217-230, (2018).
49- H.M. Ibrahim, M.M. Reda, A. Klingner. Preparation and characterization of green carboxymethylchitosan (cmcs) – polyvinyl alcohol (pva) electrospun nanofibers containing gold nanoparticles (aunps) and its potential use as biomaterials. International Journal of Biological Macromolecules, Vol. 151, pp. 821-829, (2020).
50- M. Parashar, V.K. Shukla, R. Singh. Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, vol. 31, pp. 3729-3749, (2020).
51- A. Kumar, B. Prasad, J. Manjhi, K.S. Prasad. Antioxidant activity of selenium nanoparticles biosynthesized using a cell-free extract of geobacillus. Toxicological & Environmental Chemistry, vol. 2020, pp. 556-567, (2020). doi: 10.1080/02772248.2020.1829623
52- W. Cai, T. Hu, A.M. Bakry, Z. Zheng, Y. Xiao, Q. Huang. Effect of ultrasound on size, morphology, stability and antioxidant activity of selenium nanoparticles dispersed by a hyperbranched polysaccharide from lignosus rhinocerotis. Ultrasonics Sonochemistry, vol. 42, pp. 823-31, (2018).
53- Y. Qi, P. Yi, T. He, X. Song, Y. Liu, Q. Li, J. Zheng, C. Liu, Z. Zhang, W. Peng, Y. Zhang. Quercetin-loaded selenium nanoparticles inhibit amyloid-β aggregation and exhibit antioxidant activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 602, p. 125058, (2020).
54- T. Wang, H. Zhao, Y. Bi, X. Fan. Preparation and antioxidant activity of selenium nanoparticles decorated by polysaccharides from sargassum fusiforme. Journal of Food Science, 86 977-86, (2021).
55- L. Qiao, X. Dou, S. Yan, B. Zhang, C. Xu. Biogenic selenium nanoparticles synthesized by: lactobacillus casei atcc 393 alleviate diquat-induced intestinal barrier dysfunction in c57bl/6 mice through their antioxidant activity. Food & Function, vol. 11, pp. 3020-31, (2020).
56- G. Kojouri, F. Arbabi, A. Mohebbi. The effects of selenium nanoparticles (senps) on oxidant and antioxidant activities and neonatal lamb weight gain pattern. Comparative Clinical Pathology, vol. 29, pp. 369-74, (2020).
57- M.F. Abd El-Kader, A.F. Fath El-Bab, M. Shoukry, A.W.A. Abdel-Warith, E.M. Younis, E.M. Moustafa, H.B. El-Sawy, H.A. Ahmed, H.V. Doan, M.A.O. Dawood. Evaluating the possible feeding strategies of selenium nanoparticles on the growth rate and wellbeing of european seabass (dicentrarchus labrax). Aquaculture Reports, vol. 18, pp. 100539, (2020). doi 10.1016/j.aqrep.2020.100539
58- K. Bai, B. Hong, W. Huang, J. He. Selenium nanoparticles‐loaded chitosan chitooligosaccharide microparticles and their antioxidant potential a chemical and in vivo investigation. Pharmaceutics, vol. 12, p. 43, (2020). doi: 10.3390/pharmaceutics12010043.
59- E.S.R. El-Sayed, H.K. Abdelhakim, A.S. Ahmed. Solid-state fermentation for enhanced production of selenium nanoparticles by gamma-irradiated Monascus purpureus and their biological evaluation and photocatalytic activities. Bioprocess and Biosystems Engineering, vol. 43, pp. 797-809 (2020).
60- T. Francis, S. Rajeshkumar, A. Roy, T. Lakshmi. Anti-inflammatory and cytotoxic effect of arrow root mediated selenium nanoparticles. Pharmacognosy Journal, vol. 12, pp. 1363-1367, (2020).
61- A.J. Ram, A. Roy, S. Rajeshkumar, T. Lakshmi. Anti-inflammatory activity of coriander oleoresin mediated selenium nanoparticles. Plant cell biotechnology and molecular biology, Vol. 21, pp. 106-111, (2020).
62- X.D. Shi, Y.Q. Tian, J.L. Wu, S.Y. Wang. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides. Critical Reviews in Food Science and Nutrition, vol. 2020, pp. 1-12, (2020). doi:10.1080/10408398.2020.1774497
63- C. Xu, L. Qiao, L. Ma, S. Yan, Y. Guo, X. Dou, B. Zhang, A. Roman. Biosynthesis of polysaccharides-capped selenium nanoparticles using lactococcus lactis nz9000 and their antioxidant and anti-inflammatory activities. Frontiers in Microbiology, Vol. 10, pp. 1632, (2019).
64- V. Nayak, K.R. Singh, A.K. Singh, R.P. Singh. Potentialities of selenium nanoparticles in biomedical science. New Journal of Chemistry, vol. 45, pp. 2849-2878, (2021).
65- C. Zhu, S. Zhang, C. Song, Y. Zhang, Q. Ling, P.R. Hoffmann, J. Li, T. Chen, W. Zheng, Z. Huang. Selenium nanoparticles decorated with ulva lactuca polysaccharide potentially attenuate colitis by inhibiting nf-κb mediated hyper inflammation. Journal of Nanobiotechnology, vol.15, p. 20, (2017). doi: 10.1186/s12951-017-0252-y
66- M.A. El-Ghazaly, N. Fadel, E. Rashed, A. El-Batal, S.A. Kenawy. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats.
Canadian Journal of Physiology and Pharmacology, vol. 95, pp. 101-110, (2017).
67- A. Khurana, S. Tekula, M.A. Saifi, P. Venkatesh, C. Godugu. Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy, vol. 111, pp. 802-812, (2019).
68- M.E. Fernando, M.G.F. Juan, P.L. Alejandro, R.J. Luis, B.R.J. Saraé. A review of the effects of gold, silver, selenium, and zinc nanoparticles on diabetes mellitus in murine models. Mini-Reviews in Medicinal Chemistry, vol. 2, pp. 1798-1812, (2021).
69- A. Rehman, P. John, A. Bhatti. Biogenic selenium nanoparticles: potential solution to oxidative stress mediated inflammation in rheumatoid arthritis and associated complications. Nanomaterials, vol. 11, pp. 2005, (2021).
70- S.X. Ren, B. Zhang, Y. Lin, D.S. Ma, H. Yan. Selenium nanoparticles dispersed in phytochemical exert anti-inflammatory activity by modulating catalase, gpx1, and cox-2 gene expression in a rheumatoid arthritis rat model. Medical Science Monitor, vol. 25, pp. 991-1000, (2019).
71- L. Falzone, S. Salomone, M. Libra. Evolution of cancer pharmacological treatments at the turn of the third millennium. Frontiers in Pharmacology, vol. 9, pp. 1300, (2018).
72- B. Guan, R. Yan, R. Li, X. Zhang. Selenium as a pleiotropic agent for medical discovery and drug delivery. International Journal of Nanomedicine, vol. 13, pp. 7473-7490, (2018).
73- R.I. El-Gogary, S.A.A. Gaber, M. Nasr. Polymeric nanocapsular baicalin: chemometric optimization, physicochemical characterization and mechanistic anticancer approaches on breast cancer cell lines. Scientific Reports, vol. 9, n. 1, p. 11064, (2019).
74- E.A. Turovsky, E.G. Varlamova. Mechanism of ca2+-dependent pro-apoptotic action of selenium nanoparticles, mediated by activation of cx43 hemichannels. Biology (Basel). Vol. 10, p. 743, (2021).
75- C. Ferro, H.F. Florindo, H.A. Santos. Selenium nanoparticles for biomedical applications: from development and characterization to therapeutics. Advanced Healthcare Materials, Vol. 10, p. 2100598, (2021).
76- M. Schieber, N.S. Chandel. Ros function in redox signaling and oxidative stress. Current Biology, vol. 24, pp. R453-62, (2014).
77- A. Khurana, S. Tekula, M.A. Saifi, P. Venkatesh, C. Godugu. Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy, vol. 111, pp. 802-812, (2019).
78- P.K. Gautam, S. Kumar, M.S. Tomar, R.K. Singh, A. Acharya, S. Kumar, B. Ram. Selenium nanoparticles induce suppressed function of tumor associated macrophages and inhibit dalton's lymphoma proliferation. Biochemistry and Biophysics Reports, vol. 12, pp. 172-184, (2017).
79- G. Liao, J. Tang, D. Wang, H. Zuo, Q. Zhang, Y. Liu, H. Xiong. Selenium nanoparticles (senps) have potent antitumor activity against prostate cancer cells through the upregulation of mir-16. World Journal of Surgical Oncology, vol. 18, p. 81, (2020).
80- P. Sonkusre, S.S. Cameotra. Biogenic selenium nanoparticles induce ros-mediated necroptosis in pc-3 cancer cells through tnf activation. Journal of Nanobiotechnology, vol. 15, p. 43, (2017).
81- S. Perner, M.V. Cronauer, A.J. Schrader, H. Klocker, Z. Culig, A. Baniahmad. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget, vol. 6, n. 34, pp. 35542-55, (2015).
82- I. Samaržija. Post-Translational modifications that drive prostate cancer progression. Biomolecules, vol. 11, p. 247, (2021).
Files
IssueArticles in Press QRcode
SectionSystematic Review(s)
Keywords
SeNPs; Green synthesis; Characterization methods; Anticancer action

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Chetehouna S, Derouiche S, Reggami Y. Green Chemistry Approaches towards the Synthesis of Selenium Nanoparticles (SeNPs) as a Metal Nano-Therapy: Possible Mechanisms of Anticancer Action. Frontiers Biomed Technol. 2024;.