Original Article

rGO-Cu@TiO2 Nanocomposite: Photosynthesis, Characterization, and Dye Sensitized Solar Cell Performance

Abstract

Purpose: In this work, nanocomposite with different weight ratios reduce graphene oxide/copper doping-anatase (rGO/Cu-TiO2) has been successfully prepared using the photolysis method to evaluate the role of rGO/Cu in photovoltaic properties performance application as a photoanodes.

Materials and Methods: The X-Ray Diffraction (XRD), Raman spectrum, and X-Ray Photoelectron (XPS) results analysis confirmed successfully incorporating rGO/Cu in the TiO2 crystal structure. Transmission Electron Microscopy (TEM) reveals the formation of spherical agglomeration nanoparticles with a size approximately equal to 18nm.

Results: The current density–voltage curves (J-V) and Intensity-Modulated Photocurrent Spectroscopy (IMPS) showed that the incorporation of rGO sheets enhances the ability of N3 loading of (rGO/Cu-TiO2) photoanodes with faster charge transfer.

Conclusion: Our results illustrate that optimal Cu and rGO can increase the efficiency of dye-sensitized solar cells (4.56%) by 8.2% higher than TiO2 DSSCs (3.52%).

1- Mahmoud, Z.H., AL-Bayati, R.A. & Khadom, A.A. Electron transport in dye-sanitized solar cell with tin-doped titanium dioxide as photoanode materials. J Mater Sci: Mater Electron 33, 5009–5023 (2022). https://doi.org/10.1007/s10854-021-07690-9
2- ZH Mahmoud, RA Al-Bayati, AA Khadom, Enhanced photovoltaic performance of dye-sanitized solar cell with tin doped titanium dioxide as photoanode materials, Chalcogenide Letters, 18(12), (2021).
3- Wang, C., Zhu, Y., Ge, Z., et al., 2020. The feasible photoanode of graphene oxide/zinc aluminum mixed metal oxides for the dye-sensitized solar cell. Colloid Interf. Sci. Commun. 39 (100), 313.
4- Xu, Z., Li, Y., Li, Y., Yuan, S., Hao, L., Gao, S., Lu, X., 2020. Theoretical study of T shaped phenothiazine/carbazole based organic dyes with naphthalimide as π-spacer for DSSCs. Spectrochim. Acta Mol. Biomol. Spectrosc. 233, 118201. https://doi.org/10.1016/j.saa.2020.118201.
5- Zaid H Mahmoud, Reem Adham AL-Bayati, Anees A Khadom, The efficacy of samarium loaded titanium dioxide (Sm: TiO2) for enhanced photocatalytic removal of rhodamine B dye in natural sunlight exposure, Journal of Molecular Structure, 1235, 2022. https://doi.org/10.1016/j.molstruc.2021.132267
6- Mahmoud, Z.H., AL-Bayati, R.A. & Khadom, A.A. Synthesis and supercapacitor performance of polyaniline-titanium dioxide-samarium oxide (PANI/TiO2-Sm2O3) nanocomposite. Chem. Pap. 76, 1401–1412 (2022). https://doi.org/10.1007/s11696-021-01948-6
7- Mohammed Alwan Farhan, Zaid Hamid Mahmoud, Marwa Sabbar Falih, Synthesis and characterization of TiO2/Au nanocomposite using UV-Irradiation method and its photocatalytic activity to degradation of methylene blue, Asian J. Chem., 30(5), 1142-1146, 2018.
8- Noor Sabah Al-Obaidi, Zainab Esmail Sadeq, Zaid H Mahmoud, Ahmed Najem Abd, Anfal Salam Al-Mahdawi, Farah K Ali, Synthesis of chitosan-TiO2 nanocomposite for efficient Cr (VI) removal from contaminated wastewater sorption kinetics, thermodynamics and mechanism, Journal of Oleo Sciences, 72(3), 337-346.
9- Mohammed Asaad Mahdi, Mohammed A Farhan, Zaid H Mahmoud, Ahmed Mahdi Rheima, Zainab sabri Abbas, Mustafa M Kadhim, Asala Salam Jaber, Safa K Hachim, Ahmad Hussain Ismail, Direct sunlight photodegradation of congo red in aqueous solution by TiO2/rGO binary system: Experimental and DFT study, Arabian Journal of Chemistry, 16(8) 104992. https://doi.org/10.1016/j.arabjc.2023.104992
10- González-Verjan, V.A., Trujillo-Navarrete, B., Félix-Navarro, R.M. et al. Effect of TiO2 particle and pore size on DSSC efficiency. Mater Renew Sustain Energy 9, 13 (2020). https://doi.org/10.1007/s40243-020-00173-7
11- Kaur, N., Singh, D.P. & Mahajan, A. Plasmonic Engineering of TiO2 Photoanodes for Dye-Sensitized Solar Cells: A Review. J. Electron. Mater. 51, 4188–4206 (2022). https://doi.org/10.1007/s11664-022-09707-3
12- Putri, A.A., Kato, S., Kishi, N. et al. TiO2/Bi5O7I Composite Films for Dye-Sensitized Solar Cells. J. Electron. Mater. 49, 1827–1834 (2020). https://doi.org/10.1007/s11664-019-07868-2
13- Li, Z., Yu, L. Double-layered TiO2 cavity/nanoparticle photoelectrodes for efficient dye-sensitized solar cells. Front. Mater. Sci. 17, 230638 (2023). https://doi.org/10.1007/s11706-023-0638-8
14- Liu, L., Zhang, Y., Zhang, B. et al. A detailed investigation on the performance of dye-sensitized solar cells based on reduced graphene oxide-doped TiO2 photoanode. J Mater Sci 52, 8070–8083 (2017). https://doi.org/10.1007/s10853-017-1014-9
15- Lee, CH., Kim, K.H., Bark, C.W. et al. Preparation of doping metal TiO2 particle/nanotube composite layer and their applications in dye-sensitized solar cells. Met. Mater. Int. 19, 1355–1359 (2013). https://doi.org/10.1007/s12540-013-0640-2
16- Tang, B., He, Y., Zhang, Z. et al. Influence of N doping and the functional groups of graphene on a RGO/TiO2 composite photocatalyst. Sci. China Technol. Sci. 63, 1045–1054 (2020). https://doi.org/10.1007/s11431-019-9749-1
17- Gao, N., Wan, T., Xu, Z., Ma, L., Ramakrishna, S., Liu, Y., 2020. Nitrogen doped TiO2/Graphene nanofibers as DSSCs photoanode. Mat. Chem. Phy. 255, 123542. https://doi.org/10.1016/j.matchemphys.2020.123542.
18- Pattarith, K., Areerob, Y. Fabrication of Ag nanoparticles adhered on RGO based on both electrodes in dye-sensitized solar cells (DSSCs). Renewables 7, 1 (2020). https://doi.org/10.1186/s40807-020-00058-3
19- Dhonde, M., Sahu, K., Murty, V.V.S., Nemala, S.S., Bhargava, P., Mallick, S., 2018. Enhanced photovoltaic performance of a dye sensitized solar cell with Cu/N Co doped TiO2 nanoparticles. J Mater Sci Mater Electron. 29 (8), 6274.
20- Gupta, A., Sahu, K., Dhonde, M., Murty, V.V.S., 2020. Novel synergistic combination of Cu/S co-doped TiO2 nanoparticles incorporated as photoanode in dye sensitized solar cell. Solar Energy. 203, 296–303.
21- Dhonde, M., Sahu, K., Murty, V.V.S., 2021. Microwave-assisted hydrothermal synthesis of Cu-doped TiO2 nanoparticles for efficient dye-sensitized solar cell with improved open-circuit voltage. Inter. Jour Ener. Reser. 45, 5423–5432.
22- Raghvendra S. Dubey*, Sandesh R. Jadkar, and Ajinkya B. Bhorde, Synthesis and Characterization of Various Doped TiO2 Nanocrystals for Dye-Sensitized Solar Cells, ACS Omega 2021, 6, 5, 3470–3482. https://doi.org/10.1021/acsomega.0c01614.
23- Ramakrishnan V, N. M, Pitchaiya S, S. A, Pugazhendhi A, Velauthapillai D. UV-aided graphene oxide reduction by TiO2 towards TiO2/reduced graphene oxide composites for dye-sensitized solar cells. Int J Energy Res. 2020;1–13. https://doi.org/10.1002/er.5806.
24- Pham, et al., 2015. Cu-doped TiO2/reduced graphene oxide thin-film photocatalysts: Effect of Cu content upon methylene blue removal in water. Ceram. Intern. 41, 11184–11193.
25- Regkouzas, P., Sygellou, L. & Diamadopoulos, E. Production and characterization of graphene oxide-engineered biochars and application for organic micro-pollutant adsorption from aqueous solutions. Environ Sci Pollut Res 30, 87810–87829 (2023). https://doi.org/10.1007/s11356-023-28549-y
26- Abdolhosseinzadeh, S., Asgharzadeh, H. & Seop Kim, H. Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5, 10160 (2015). https://doi.org/10.1038/srep10160
27- Atia, D.M., Ahmed, N.M. Mathematical modeling, parameter identification, and electrical performance of a DSSC based on nature-inspired optimization techniques. J Comput Electron 22, 723–741 (2023). https://doi.org/10.1007/s10825-023-02018-8
28- Kužel, R., Nichtová, L., Matěj, Z. et al. X-ray Diffraction Investigations of TiO2 Thin Films and Their Thermal Stability. MRS Online Proceedings Library 1352, 1031 (2011). https://doi.org/10.1557/opl.2011.1133
29- Wang, N., Zhang, F., Mei, Q. et al. Photocatalytic TiO2/rGO/CuO Composite for Wastewater Treatment of Cr(VI) Under Visible Light. Water Air Soil Pollut 231, 223 (2020). https://doi.org/10.1007/s11270-020-04609-8
30- Zitting, A., Paajanen, A. & Penttilä, P.A. Impact of hemicelluloses and crystal size on X-ray scattering from atomistic models of cellulose microfibrils. Cellulose 30, 8107–8126 (2023). https://doi.org/10.1007/s10570-023-05357-8
31- Tetiana A. Dontsova, Anastasiya S. Kutuzova, Kateryna O. Bila, Svitlana O. Kyrii, Iryna V. Kosogina, Daria O. Nechy poruk, Enhanced photocatalytic activity of TiO2/SnO2 binary nanocomposites. J.Nanomater. (2020). https://doi.org/10.1155/2020/8349480
32- F.K. Mammo, I.D. Amoah, K.M. Gani, L. Pillay, S.K. Ratha, F. Bux, S. Kumari, Microplastics in the environment: inter actions with microbes and chemical contaminants. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.140518
33- Sha, J. et al. In situ synthesis of ultrathin 2-D TiO2 with high energy facets on graphene oxide for enhancing photocatalytic activity. Carbon 68, 352–359 (2014).
34- Jia, Z., Wang, F., Xin & Zhang, B. Simple Solvothermal routes to synthesize 3D BiOBrxI1-x microspheres and their visible-light-induced photocatalytic properties. Ind. Eng. Chem. Res. 50, 6688–6694 (2011).
35- Irfan, F., Tanveer, M.U., Moiz, M.A. et al. TiO2 as an effective photocatalyst mechanisms, applications, and dopants: a review. Eur. Phys. J. B 95, 184 (2022). https://doi.org/10.1140/epjb/s10051-022-00440-8
36- Çorlu, T., Tekin, S., Karaduman Er, I. et al. Room-temperature gas sensing properties of Zn, Sn and Cu-doped TiO2 films. J Mater Sci: Mater Electron 34, 2224 (2023). https://doi.org/10.1007/s10854-023-11609-x
37- Rescigno, R., Sacco, O., Venditto, V. et al. Photocatalytic activity of P-doped TiO2 photocatalyst. Photochem Photobiol Sci 22, 1223–1231 (2023). https://doi.org/10.1007/s43630-023-00363-y
38- Dhonde, M., Sahu, K., Murty, V.V.S., Nemala, S.S., Bhargava, P., Mallick, S., 2018. Enhanced photovoltaic performance of a dye sensitized solar cell with Cu/N Co doped TiO2 nanoparticles. J Mater Sci Mater Electron. 29 (8), 6274.
39- Tehmina Akhtar, Habib Nasir, Effat Sitara, Syeda Aqsa Batool Bukhari, Sharif Ullah, Rana Muhammad Arslan Iqbal, Efficient photocatalytic degradation of nitrobenzene by copper-doped TiO2: kinetic study, degradation pathway, and mechanism, Environ Sci Pollut Res Int. 2022 Jul;29(33):49925-49936. doi: 10.1007/s11356-022-19422-5.
40- Aleksandra Bartkowiak, Oleksandr Korolevych, Gian Luca Chiarello, Malgorzata Makowska-Janusik, Maciej Zalas, Experimental and theoretical insight into DSSCs mechanism influenced by different doping metal ions, Applied Surface Science, vol. 597, 153607, 2022. https://doi.org/10.1016/j.apsusc.2022.153607
41- S. Meng, E. Kaxiras, Electron and Hole Dynamics in Dye-Sensitized Solar Cells: Influencing Factors and Systematic Trends, Nano Lett., 10 (2010), pp. 1238-1247.
42- A. Kubiak, Z. Bielan, A. Bartkowiak, E. Gabała, A. Piasecki, M. Zalas, A. Zielińska-Jurek, M. Janczarek, K. Siwińska-Ciesielczyk, T. Jesionowski, Synthesis of Titanium Dioxide via Surfactant-Assisted Microwave Method for Photocatalytic and Dye-Sensitized Solar Cells Applications, Catalysts., 10 (2020), p. 586.
43- L.B. Patle, V.R. Huse, A.L. Chaudhari, Band edge movement and structural modifications in transition metal doped TiO2 nanocrystals for the application of DSSC, Mater. Res. Express., 4 (2017)
44- D. Pysch, A. Mette, S.W. Glunz, A review and comparison of different methods to determine the series resistance of solar cells Sol. Energy Mater. Sol. Cells., 91 (18) (2007), pp. 1698-1706.
45- Y. Wang, R. Zhang, J. Li, L. Li, S. Lin, First-principles study on transition metal-doped anatase TiO2, Nanoscale Res. Lett., 9 (2014), p. 46.
Files
IssueArticles in Press QRcode
SectionOriginal Article(s)
Keywords
Dye Sensitized Solar Cells X Ray Photoelectron Photolysis Intensity Modulated Photocurrent Spectroscopy Selected Area Electron Diffraction

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
H. Mahmoud Z, Ghadir G, Al-Tmimi H, Al-Saray MJ, Al-Shuwaili SJ, Mohammed AM, Al-Ani AM, Ali Khalil NAM, Mustafa M. rGO-Cu@TiO2 Nanocomposite: Photosynthesis, Characterization, and Dye Sensitized Solar Cell Performance. Frontiers Biomed Technol. 2024;.