Explainable Artificial Intelligence in Nuclear Medicine: Advancing Transparency in PET and SPECT Imaging and Radiation Therapy
Abstract
The integration of artificial intelligence (AI) into nuclear medicine has transformed diagnostic and therapeutic processes, yet the opaque nature of many AI models hinders clinical adoption and trust. This narrative review aims to synthesize the current landscape of explainable AI (XAI) in nuclear medicine, emphasizing its role in enhancing transparency, bias mitigation, and regulatory compliance for robust clinical integration. Key chapters cover the fundamentals of XAI in nuclear medicine; XAI applications in PET and SPECT instrumentation and acquisition; image reconstruction; quantitative imaging and corrections; post-reconstruction processing and analysis; and radiotherapy. The review concludes with a discussion of challenges, limitations, and future directions, advocating for interdisciplinary advancements to bridge AI innovation with practical utility in patient care.
2. Arabi, H. and H. Zaidi, Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy. Eur J Hybrid Imaging, 2020. 4(1): p. 17.
3. Papachristou, K., et al., Artificial intelligence in Nuclear Medicine Physics and Imaging. Hell J Nucl Med, 2023. 26(1): p. 57-65.
4. Hirata, K., et al., Artificial intelligence for nuclear medicine in oncology. Ann Nucl Med, 2022. 36(2): p. 123-132.
5. de Vries, B.M., et al., Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review. Front Med (Lausanne), 2023. 10: p. 1180773.
6. Bradshaw, T.J., et al., Artificial Intelligence Algorithms Need to Be Explainable-or Do They? J Nucl Med, 2023. 64(6): p. 976-977.
7. Dagnaw, G.H., et al., Explainable artificial intelligence in biomedical image analysis: A comprehensive survey. arXiv preprint arXiv:2507.07148, 2025.
8. Balaji, V., et al., Artificial Intelligence for PET and SPECT Image Enhancement. J Nucl Med, 2024. 65(1): p. 4-12.
9. Shiyam Sundar, L.K., et al., Potentials and caveats of AI in hybrid imaging. Methods, 2021. 188: p. 4-19.
10. Turner, J.H., Human-Artificial Intelligence Symbiotic Reporting for Theranostic Cancer Care. Cancer Biother Radiopharm, 2025. 40(2): p. 89-95.
11. Nazari, M., et al., Data-driven identification of diagnostically useful extrastriatal signal in dopamine transporter SPECT using explainable AI. Sci Rep, 2021. 11(1): p. 22932.
12. Dadgar, H., et al., Targeted radioligand therapy: physics and biology, internal dosimetry and other practical aspects during (177)Lu/(225)Ac treatment in neuroendocrine tumors and metastatic prostate cancer. Theranostics, 2025. 15(10): p. 4368-4397.
13. Visvikis, D., et al., Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications. Eur J Nucl Med Mol Imaging, 2019. 46(13): p. 2630-2637.
14. Sahiner, B., et al., Deep learning in medical imaging and radiation therapy. Med Phys, 2019. 46(1): p. e1-e36.
15. Majidpour, J., et al., Applications of GAN Models in Breast Cancer Detection: A Comprehensive Review. Archives of Computational Methods in Engineering, 2025.
16. Dadgar, H., et al., The value of artificial intelligence in PSMA PET: a pathway to improved efficiency and results. Q J Nucl Med Mol Imaging, 2025. 69(2): p. 157-173.
17. Hasanabadi, S., et al., Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using (18)F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis. Cancers (Basel), 2024. 16(20).
18. Safarian, A., et al., Impact of [(18)F]FDG PET/CT Radiomics and Artificial Intelligence in Clinical Decision Making in Lung Cancer: Its Current Role. Semin Nucl Med, 2025. 55(2): p. 156-166.
19. Rezaei, S., et al., Role of machine learning in molecular pathology for breast cancer: A review on gene expression profiling and RNA sequencing application. Crit Rev Oncol Hematol, 2025. 213: p. 104780.
20. Rezaei, S., et al., Future of Alzheimer's detection: Advancing diagnostic accuracy through the integration of qEEG and artificial intelligence. Neuroimage, 2025. 317: p. 121373.
21. Hasani, N., et al., Trustworthy Artificial Intelligence in Medical Imaging. PET Clin, 2022. 17(1): p. 1-12.
22. van der Velden, B.H.M., et al., Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal, 2022. 79: p. 102470.
23. Singh, A., S. Sengupta, and V. Lakshminarayanan, Explainable Deep Learning Models in Medical Image Analysis. J Imaging, 2020. 6(6).
24. Noroozi, M., et al., Machine and deep learning algorithms for classifying different types of dementia: A literature review. Appl Neuropsychol Adult, 2024: p. 1-15.
25. Sanaei, B., R. Faghihi, and H. Arabi, Employing Multiple Low-Dose PET Images (at Different Dose Levels) as Prior Knowledge to Predict Standard-Dose PET Images. J Digit Imaging, 2023. 36(4): p. 1588-1596.
26. Liu, J., et al., Artificial Intelligence-Based Image Enhancement in PET Imaging: Noise Reduction and Resolution Enhancement. PET Clin, 2021. 16(4): p. 553-576.
27. Jahangir, R., et al., Strategies for deep learning-based attenuation and scatter correction of brain (18) F-FDG PET images in the image domain. Med Phys, 2024. 51(2): p. 870-880.
28. Mostafapour, S., et al., Deep learning-guided attenuation correction in the image domain for myocardial perfusion SPECT imaging. Journal of Computational Design and Engineering, 2022. 9(2): p. 434-447.
29. Sanaat, A., et al., DeepTOFSino: A deep learning model for synthesizing full-dose time-of-flight bin sinograms from their corresponding low-dose sinograms. Neuroimage, 2021. 245: p. 118697.
30. Arabi, H. and H. Zaidi, MRI-guided attenuation correction in torso PET/MRI: Assessment of segmentation-, atlas-, and deep learning-based approaches in the presence of outliers. Magn Reson Med, 2022. 87(2): p. 686-701.
31. Alongi, P., et al., Artificial Intelligence in Breast Cancer: A Systematic Review on PET Imaging Clinical Applications. Curr Med Imaging, 2023. 19(8): p. 832-843.
32. Speith, T. A review of taxonomies of explainable artificial intelligence (XAI) methods. in Proceedings of the 2022 ACM conference on fairness, accountability, and transparency. 2022.
33. Combi, C., et al., A manifesto on explainability for artificial intelligence in medicine. Artif Intell Med, 2022. 133: p. 102423.
34. Wang, A.Q., et al., A Framework for Interpretability in Machine Learning for Medical Imaging. IEEE Access, 2024. 12: p. 53277-53292.
35. Ribeiro, M.T., S. Singh, and C. Guestrin. " Why should i trust you?" Explaining the predictions of any classifier. in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
36. Lundberg, S.M. and S.-I. Lee, A unified approach to interpreting model predictions. Advances in neural information processing systems, 2017. 30.
37. Selvaraju, R.R., et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE international conference on computer vision. 2017.
38. Chattopadhay, A., et al. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. in 2018 IEEE winter conference on applications of computer vision (WACV). 2018. IEEE.
39. Papandrianos, N.I., et al., An explainable classification method of SPECT myocardial perfusion images in nuclear cardiology using deep learning and grad-CAM. Applied Sciences, 2022. 12(15): p. 7592.
40. Singh, A., et al., Deep Learning for Explainable Estimation of Mortality Risk From Myocardial Positron Emission Tomography Images. Circ Cardiovasc Imaging, 2022. 15(9): p. e014526.
41. Samek, W., et al., Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 2021. 109(3): p. 247-278.
42. Nazari, M., et al., Explainable AI to improve acceptance of convolutional neural networks for automatic classification of dopamine transporter SPECT in the diagnosis of clinically uncertain parkinsonian syndromes. Eur J Nucl Med Mol Imaging, 2022. 49(4): p. 1176-1186.
43. Appineni, A. and A. Gupta, Preemptive Diagnosis of Parkinson's Disease Through DaT Scans Using Inception V3-Based Convolutional Neural. Adaptive Intelligence: Select Proceedings of InCITe 2024, Volume 1, 2025. 1280: p. 31.
44. Boutorh, A., H. Rahim, and Y. Bendoumia. Explainable ai models for covid-19 diagnosis using ct-scan images and clinical data. in International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics. 2021. Springer.
45. Nazir, S., D.M. Dickson, and M.U. Akram, Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks. Comput Biol Med, 2023. 156: p. 106668.
46. Wang, Y., et al., The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study. Eur Radiol, 2022. 32(12): p. 8737-8747.
47. Bhattarai, P., et al., Explainable AI-based Deep-SHAP for mapping the multivariate relationships between regional neuroimaging biomarkers and cognition. Eur J Radiol, 2024. 174: p. 111403.
48. Xie, Y., et al., A PET/CT nomogram incorporating SUVmax and CT radiomics for preoperative nodal staging in non-small cell lung cancer. Eur Radiol, 2021. 31(8): p. 6030-6038.
49. Mishra, S. and R. Molinaro, Physics informed neural networks for simulating radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021. 270: p. 107705.
50. Ferrante, M., et al., Physically informed deep neural networks for metabolite-corrected plasma input function estimation in dynamic PET imaging. Comput Methods Programs Biomed, 2024. 256: p. 108375.
51. Thakur, M., et al., Soft Attention Based DenseNet Model for Parkinson's Disease Classification Using SPECT Images. Front Aging Neurosci, 2022. 14: p. 908143.
52. Ghnemat, R., S. Alodibat, and Q. Abu Al-Haija, Explainable Artificial Intelligence (XAI) for Deep Learning Based Medical Imaging Classification. J Imaging, 2023. 9(9).
53. Jaliparthi, G., et al., Deep residual-convolutional neural networks for event positioning in a monolithic annular PET scanner. Phys Med Biol, 2021. 66(14).
54. Naunheim, S., et al., Improving the timing resolution of positron emission tomography detectors using boosted learning—a residual physics approach. IEEE transactions on neural networks and learning systems, 2023.
55. Loignon-Houle, F., et al., Improving timing resolution of BGO for TOF-PET: a comparative analysis with and without deep learning. EJNMMI physics, 2025. 12(1): p. 2.
56. Sanaat, A., et al., Deep-TOF-PET: Deep learning-guided generation of time-of-flight from non-TOF brain PET images in the image and projection domains. Hum Brain Mapp, 2022. 43(16): p. 5032-5043.
57. Matsubara, K., et al., A review on AI in PET imaging. Ann Nucl Med, 2022. 36(2): p. 133-143.
58. Zatcepin, A., et al., Improving depth-of-interaction resolution in pixellated PET detectors using neural networks. Phys Med Biol, 2020. 65(17): p. 175017.
59. Dai, B., et al., Depth-of-interaction encoding techniques for pixelated PET detectors enabled by machine learning methods and fast waveform digitization. 2024, Society of Nuclear Medicine.
60. Alharthi, A., et al., Explainable AI for Sensor Signal Interpretation to Revolutionize Human Health Monitoring: A Review. IEEE Access, 2025.
61. Petersen, E., et al., Resolving inter-crystal scatter in a light-sharing depth-encoding PET detector. Phys Med Biol, 2024. 69(3): p. 035024.
62. Hicks, R.J., R.E. Ware, and J. Callahan. Total-body PET/CT: pros and cons. in Seminars in nuclear medicine. 2025. Elsevier.
63. Godinez, F., et al. Total body PET/CT: future aspects. in Seminars in Nuclear Medicine. 2025. Elsevier.
64. Arabi, H. and H. Zaidi, Deep learning-guided estimation of attenuation correction factors from time-of-flight PET emission data. Med Image Anal, 2020. 64: p. 101718.
65. Arabi, H. and H. Zaidi, Truncation compensation and metallic dental implant artefact reduction in PET/MRI attenuation correction using deep learning-based object completion. Phys Med Biol, 2020. 65(19): p. 195002.
66. Li, T., et al., Deep Learning Based Joint PET Image Reconstruction and Motion Estimation. IEEE Trans Med Imaging, 2022. 41(5): p. 1230-1241.
67. Zeng, T., et al., Fast Reconstruction for Deep Learning PET Head Motion Correction. Med Image Comput Comput Assist Interv, 2023. 14229: p. 710-719.
68. Huang, Y., et al., GapFill-Recon Net: A Cascade Network for simultaneously PET Gap Filling and Image Reconstruction. Comput Methods Programs Biomed, 2021. 208: p. 106271.
69. Hellwig, D., et al., Artificial Intelligence and Deep Learning for Advancing PET Image Reconstruction: State-of-the-Art and Future Directions. Nuklearmedizin, 2023. 62(6): p. 334-342.
70. Hong, X., et al., Direct parametric reconstruction in dynamic PET using deep image prior and a novel parameter magnification strategy. Comput Biol Med, 2025. 194: p. 110487.
71. Wang, Y., et al., Total-Body PET Kinetic Modeling and Potential Opportunities Using Deep Learning. PET Clin, 2021. 16(4): p. 613-625.
72. Pan, B., P.K. Marsden, and A.J. Reader, Kinetic model-informed deep learning for multiplexed PET image separation. EJNMMI Phys, 2024. 11(1): p. 56.
73. Mehranian, A. and A.J. Reader, Model-Based Deep Learning PET Image Reconstruction Using Forward-Backward Splitting Expectation-Maximization. IEEE Trans Radiat Plasma Med Sci, 2020. 5(1): p. 54-64.
74. Corda-D'Incan, G., J.A. Schnabel, and A.J. Reader, Memory-Efficient Training for Fully Unrolled Deep Learned PET Image Reconstruction with Iteration-Dependent Targets. IEEE Trans Radiat Plasma Med Sci, 2022. 6(5): p. 552-563.
75. Salomonsen, C., et al., Fast Voxel-Wise Kinetic Modeling in Dynamic PET using a Physics-Informed CycleGAN. arXiv preprint arXiv:2510.23140, 2025.
76. Champendal, M., et al., User-centric eXplainable AI criteria for implementing AI-based denoising in PET/CT. Radiography (Lond), 2025. 31(6): p. 103194.
77. Salimi, Y., et al., Explainable AI for automated respiratory misalignment detection in PET/CT imaging. Phys Med Biol, 2024. 69(21).
78. Miller, R.J.H., et al., Explainable Deep Learning Improves Physician Interpretation of Myocardial Perfusion Imaging. J Nucl Med, 2022. 63(11): p. 1768-1774.
79. Apostolopoulos, I.D., et al., Deep learning-enhanced nuclear medicine SPECT imaging applied to cardiac studies. EJNMMI Phys, 2023. 10(1): p. 6.
80. Chen, X. and C. Liu, Deep-learning-based methods of attenuation correction for SPECT and PET. J Nucl Cardiol, 2023. 30(5): p. 1859-1878.
81. Hashimoto, F., et al., Deep learning-based attenuation correction for brain PET with various radiotracers. Ann Nucl Med, 2021. 35(6): p. 691-701.
82. Shanbhag, A.D., et al., Deep Learning-Based Attenuation Correction Improves Diagnostic Accuracy of Cardiac SPECT. J Nucl Med, 2023. 64(3): p. 472-478.
83. Dovletov, G., et al., Grad-CAM Guided U-Net for MRI-based Pseudo-CT Synthesis. Annu Int Conf IEEE Eng Med Biol Soc, 2022. 2022: p. 2071-2075.
84. Dovletov, G., et al. Double grad-CAM guidance for improved MRI-based pseudo-CT synthesis. in BVM Workshop. 2023. Springer.
85. Chen, X., et al., Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT. Eur J Nucl Med Mol Imaging, 2022. 49(9): p. 3046-3060.
86. Shi, L., et al., Deep learning-based attenuation map generation for myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging, 2020. 47(10): p. 2383-2395.
87. Wang, T., et al., Deep progressive learning achieves whole-body low-dose (18)F-FDG PET imaging. EJNMMI Phys, 2022. 9(1): p. 82.
88. Zhao, F., et al., Self-supervised deep learning for joint 3D low-dose PET/CT image denoising. Comput Biol Med, 2023. 165: p. 107391.
89. Azimi, M.S., et al., Deep supervised transformer-based noise-aware network for low-dose PET denoising across varying count levels. Comput Biol Med, 2025. 196(Pt A): p. 110733.
90. Gong, K., et al., PET image denoising based on denoising diffusion probabilistic model. Eur J Nucl Med Mol Imaging, 2024. 51(2): p. 358-368.
91. Aghakhan Olia, N., et al., Deep learning-based denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance. Eur J Nucl Med Mol Imaging, 2022. 49(5): p. 1508-1522.
92. Xie, H., et al., Deep-Learning-Based Few-Angle Cardiac SPECT Reconstruction Using Transformer. IEEE Trans Radiat Plasma Med Sci, 2023. 7(1): p. 33-40.
93. Vlašić, T., T. Matulić, and D. Seršić, Estimating uncertainty in pet image reconstruction via deep posterior sampling. arXiv preprint arXiv:2306.04664, 2023.
94. Tang, Z., et al. A New Paradigm for Low-Dose PET/CT Reconstruction with Mamba-Powered Progressive Network and Physics-Informed Consistency. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 2025. Springer.
95. Azimi, M.S., et al., Deep learning-based partial volume correction in standard and low-dose positron emission tomography-computed tomography imaging. Quant Imaging Med Surg, 2024. 14(3): p. 2146-2164.
96. Marquis, H., K. Erlandsson, and I. Buvat, Addressing Partial Volume Effects in Clinical PET Quantification: Modern Correction Strategies and Challenges. PET Clin, 2025. 20(4): p. 407-422.
97. Matsubara, K., et al., DeepPVC: prediction of a partial volume-corrected map for brain positron emission tomography studies via a deep convolutional neural network. EJNMMI Phys, 2022. 9(1): p. 50.
98. Azimi, M., et al., Attention-based deep neural network for partial volume correction in brain (18)F-FDG PET imaging. Phys Med, 2024. 119: p. 103315.
99. Arabi, H. and H. Zaidi, Deep learning-based metal artefact reduction in PET/CT imaging. Eur Radiol, 2021. 31(8): p. 6384-6396.
100. Kyme, A.Z. and R.R. Fulton, Motion estimation and correction in SPECT, PET and CT. Phys Med Biol, 2021. 66(18).
101. Zeng, T., et al., Supervised Deep Learning for Head Motion Correction in PET. Med Image Comput Comput Assist Interv, 2022. 13434: p. 194-203.
102. Li, C., et al., Optical surface information-based respiratory phase-sorting and motion-incorporated reconstruction for SPECT imaging. Med Phys, 2025. 52(6): p. 4330-4340.
103. Lu, Y., et al., Deep learning-aided respiratory motion compensation in PET/CT: addressing motion induced resolution loss, attenuation correction artifacts and PET-CT misalignment. Eur J Nucl Med Mol Imaging, 2024. 52(1): p. 62-73.
104. Li, T., et al., Motion correction of respiratory-gated PET images using deep learning based image registration framework. Phys Med Biol, 2020. 65(15): p. 155003.
105. Artesani, A., et al., Empowering PET: harnessing deep learning for improved clinical insight. Eur Radiol Exp, 2024. 8(1): p. 17.
106. Quanyang, W., et al., Artificial intelligence in lung cancer screening: Detection, classification, prediction, and prognosis. Cancer Med, 2024. 13(7): p. e7140.
107. Arabi, H., et al., Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region. Med Phys, 2018. 45(11): p. 5218-5233.
108. Daraee, M., et al. A Novel Neural Network for Joint Lesion Segmentation and Confidence Score Generation from PET Image. in 2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 2022. IEEE.
109. Arabi, H. and H. Zaidi. Inclusive-Exclusive Model Training Framework to Jointly Perform Semantic Segmentation and Uncertainty Map Estimation. in 2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 2022. IEEE.
110. Arabi, H. and H. Zaidi. Confidence Score Estimation in Machine Learning-based Automated Lesion Segmentation from PET Images. in 2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 2022. IEEE.
111. Noroozi, M., H. Arabi, and A.R. Karimian. Assessment of Transformer-Based Models for Cardiac Systolic Abnormality Segmentation in Cardiac Catheterization X-Ray Images. in 2024 31st National and 9th International Iranian Conference on Biomedical Engineering (ICBME). 2024. IEEE.
112. Champendal, M., et al., A scoping review of interpretability and explainability concerning artificial intelligence methods in medical imaging. Eur J Radiol, 2023. 169: p. 111159.
113. Salih, A., et al., Explainable Artificial Intelligence and Cardiac Imaging: Toward More Interpretable Models. Circ Cardiovasc Imaging, 2023. 16(4): p. e014519.
114. Usmani, S., et al., Deep learning (DL)-based advancements in prostate cancer imaging: Artificial intelligence (AI)-based segmentation of (68)Ga-PSMSA PET for tumor volume assessment. Precis Radiat Oncol, 2025. 9(2): p. 120-132.
115. Farrag, A., et al., An explainable AI system for medical image segmentation with preserved local resolution: Mammogram tumor segmentation. IEEE Access, 2023. 11: p. 125543-125561.
116. Yang, D., et al., A Multi-Scale Interpretability-Based PET-CT Tumor Segmentation Method. Mathematics, 2025. 13(7): p. 1139.
117. Yang, F., et al., AI in SPECT Imaging: Opportunities and Challenges. Semin Nucl Med, 2025. 55(3): p. 294-312.
118. Toumaj, S., A. Heidari, and N. Jafari Navimipour, Leveraging explainable artificial intelligence for transparent and trustworthy cancer detection systems. Artif Intell Med, 2025. 169: p. 103243.
119. Abas Mohamed, Y., et al., Decoding the black box: Explainable AI (XAI) for cancer diagnosis, prognosis, and treatment planning-A state-of-the art systematic review. Int J Med Inform, 2025. 193: p. 105689.
120. Jiang, C., et al., An explainable transformer model integrating PET and tabular data for histologic grading and prognosis of follicular lymphoma: a multi-institutional digital biopsy study. Eur J Nucl Med Mol Imaging, 2025. 52(7): p. 2384-2396.
121. Duan, F., et al., Non-invasive Prediction of Lymph Node Metastasis in NSCLC Using Clinical, Radiomics, and Deep Learning Features From (18)F-FDG PET/CT Based on Interpretable Machine Learning. Acad Radiol, 2025. 32(3): p. 1645-1655.
122. Luo, T., et al., Improved prognostication of overall survival after radiotherapy in lung cancer patients by an interpretable machine learning model integrating lung and tumor radiomics and clinical parameters. Radiol Med, 2025. 130(1): p. 96-109.
123. Turner, E., et al., Explainable AI in radiation therapy prediction. 2024.
124. Cui, S., et al., Interpretable artificial intelligence in radiology and radiation oncology. Br J Radiol, 2023. 96(1150): p. 20230142.
125. Yang, Z., Explainable Artificial Intelligence Techniques in Medical Imaging Analysis. 2023, Duke University.
126. Luo, Y., et al., Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling. BJR Open, 2019. 1(1): p. 20190021.
127. Hosny, A., et al., Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med, 2018. 15(11): p. e1002711.
128. Cui, S., R.K. Ten Haken, and I. El Naqa, Integrating Multiomics Information in Deep Learning Architectures for Joint Actuarial Outcome Prediction in Non-Small Cell Lung Cancer Patients After Radiation Therapy. Int J Radiat Oncol Biol Phys, 2021. 110(3): p. 893-904.
129. Zhang, J., et al., An Interpretable Planning Bot for Pancreas Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys, 2021. 109(4): p. 1076-1085.
130. Lafata, K.J., et al., Association of pre-treatment radiomic features with lung cancer recurrence following stereotactic body radiation therapy. Phys Med Biol, 2019. 64(2): p. 025007.
131. Ji, H., et al., Post-Radiotherapy PET Image Outcome Prediction by Deep Learning Under Biological Model Guidance: A Feasibility Study of Oropharyngeal Cancer Application. Front Oncol, 2022. 12: p. 895544.
132. Wang, C., et al., Dose-Distribution-Driven PET Image-Based Outcome Prediction (DDD-PIOP): A Deep Learning Study for Oropharyngeal Cancer IMRT Application. Front Oncol, 2020. 10: p. 1592.
133. Pahud de Mortanges, A., et al., Orchestrating explainable artificial intelligence for multimodal and longitudinal data in medical imaging. NPJ Digit Med, 2024. 7(1): p. 195.
134. Pinto-Coelho, L., How artificial intelligence is shaping medical imaging technology: a survey of innovations and applications. Bioengineering, 2023. 10(12): p. 1435.
135. Antoniadi, A.M., et al., Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: a systematic review. Applied Sciences, 2021. 11(11): p. 5088.
136. Räz, T., A. Pahud De Mortanges, and M. Reyes, Explainable AI in medicine: challenges of integrating XAI into the future clinical routine. Frontiers in Radiology, 2025. 5: p. 1627169.
137. Saw, S.N., Y.Y. Yan, and K.H. Ng, Current status and future directions of explainable artificial intelligence in medical imaging. Eur J Radiol, 2025. 183: p. 111884.
138. Abrantes, J. and P. Rouzrokh, Explaining explainability: The role of XAI in medical imaging. Eur J Radiol, 2024. 173: p. 111389.
139. Rajabi, E. and K. Etminani, Knowledge-graph-based explainable AI: A systematic review. J Inf Sci, 2024. 50(4): p. 1019-1029.
140. Guo, T., et al., An explainable artificial intelligence approach using graph learning to predict intensive care unit length of stay. Information Systems Research, 2025. 36(3): p. 1478-1501.
141. Hou, J., et al., Self-explainable ai for medical image analysis: A survey and new outlooks. arXiv preprint arXiv:2410.02331, 2024.
142. Bergomi, L., et al., Which explanations do clinicians prefer? A comparative evaluation of XAI understandability and actionability in predicting the need for hospitalization. BMC Medical Informatics and Decision Making, 2025. 25(1): p. 1-13.
143. Röber, T.E., R. Goedhart, and S. Birbil, Clinicians' Voice: Fundamental Considerations for XAI in Healthcare. arXiv preprint arXiv:2411.04855, 2024.
144. Brankovic, A., et al., Clinician-informed XAI evaluation checklist with metrics (CLIX-M) for AI-powered clinical decision support systems. NPJ Digit Med, 2025. 8(1): p. 364.
| Files | ||
| Issue | Vol 13 No 1 (2026) | |
| Section | Literature (Narrative) Review(s) | |
| DOI | https://doi.org/10.18502/fbt.v13i1.20789 | |
| Keywords | ||
| XAI Artificial Intelligence PET SPECT Nuclear Medicine | ||
| Rights and permissions | |
|
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |

